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Lattice Boltzmann method for miscible gases: A forcing-term approach
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A lattice Boltzmann method for miscible gases is presented. In this model, the standard lattice Boltzmann
method is employed for each species composing the mixture. Diffusion interaction among species is taken
into account by means of a force derived from kinetic theory of gases. Transport coefficients expressions are
recovered from the kinetic theory. Species with dissimilar molar masses are simulated by also introducing a
force. Finally, mixing dynamics is recovered as shown in different applications: an equimolar counterdiffusion
case, Loschmidt’s tube experiment, and an opposed jets flow simulation. Since collision is not altered, the present
method can easily be introduced in any other lattice Boltzmann algorithms.
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I. INTRODUCTION

This paper deals with the application of the lattice Boltz-
mann method (LBM) to mixing dynamics. Mixing occurs in
many natural and industrial processes such as thermohaline
circulation, pollute dispersion, diffusion in porous media,
combustion, chemical processing, or mass and momentum
transport in multicomponent fluids. An accurate understand-
ing of mixing dynamics is of great importance for these
applications.

In the simplest case of the mixing not affecting the flow
dynamics, as is the case of the mixing of a dye or a tracing
species, the Navier-Stokes or the lattice Boltzmann equations
are solved to describe the flow dynamics, while the dye
or species concentrations are modeled separately by sim-
ple convection-diffusion equations (passive scalar approach).
However, mixing is often much more complex. The flow
dynamics and the mixing process are heavily coupled and
cannot be separated since mixing produces changes to the
fluid. Mixing dynamics are then incredibly complicated as the
interactions between various species need to be accounted for
(e.g., collisions in the kinetic formulation). Whereas a large
number of studies about global mixing dynamics are avail-
able, a good understanding of the microscopical processes
involved in complex chemical mixing is still lacking.

The classical approach for the simulation of mixtures is
based on the single-fluid approach that assumes as unknowns
the species densities and the mixture velocity. The Navier-
Stokes equations are solved for the mixture using phenomeno-
logical laws such as Fick’s law or the Maxwell-Stefan equa-
tions for the species mass fluxes. This approach is often used
in combustion with detailed chemistry, which involves a large
number of species (see Ref. [1] for a lattice Boltzmann single-
fluid model).
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However, the use of a mixture velocity as a unique un-
known can lead to errors in the description of the flow dy-
namics. This is particularly true when the chemical properties
of each species differ greatly and in situations where the
mixing process depends on the chemical composition and
on the velocities of each species. For instance, consider the
case of two different coflowing gases separated by a splitter
plate. On either side of the plate, the dynamics is governed by
Navier-Stokes equations and a velocity is defined for each gas.
Past the splitter plate, the two gases start mixing. In the case
of the single-fluid approach, only one velocity is specified for
the mixture, which may be defined in terms of either a mass,
molar, or any other averages. Instead, in order to accurately
depict the transient mixing dynamics, a more natural way is
to consider the species densities and the velocities of each
species as unknowns (as prior to mixing). This is the so-called
multifluid approach.

The LBM provides an alternative and convenient way to
model fluid flows compared to conventional macroscopic ap-
proaches [2]. Indeed, the algorithm is simple, computationally
efficient due to its explicit formulation, and easily adapted
for parallel computing. The LBM is therefore particularly
appealing for the simulation of miscible mixtures. In the mul-
tifluid strategy, one introduces a distribution function for each
species. In single-species flows, the collision of particles is
approximated by the Bhatnagar-Gross-Krook (BGK) collision
operator [3] and the distributions relax to equilibrium values
at a rate that depends on the relaxation time. In the case of
a mixture, there is no unique BGK formulation. Hence, dif-
ferent LBMs for multicomponent flows have been developed
depending on the underlying kinetic theory of the mixture
being investigated. One possible approach is to split colli-
sions between molecules of the same species (self-collision)
and collisions between molecules of different species (cross-
collision). Luo and Girimaji [4] employ a linear collision
based on Sirovich’s kinetic theory of mixtures [5]. This work
is further extended from binary to multicomponent flows in
Refs. [6,7]. In his early work, Asinari [8,9] uses a model
derived from Hamel’s kinetic theory [10]. Other noticeable
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split collision models can be found in Refs. [11] and [12]. The
latter authors exploit a fast-slow decomposition (quasiequi-
librium to equilibrium) and is further extended in Ref. [13]
to thermal multicomponent flows. Other approaches are based
on a single global collision term such as Asinari’s model [14],
derived from the AAP-BGK collision operator [15]. The
equilibrium velocity is given by the conservation of species
momenta. Diffusive and viscous effects are separated in the
momentum space. References [16–18] have slightly modified
the formulation of the equilibrium state, and the definition of
the equilibrium velocity and applications to electrolytes are
reported in Ref. [19].

In contrast to the previous LBMs, the coupling terms
due to diffusion are introduced in our model by means of
a force derived from the kinetic theory of gases extended
to mixtures [20,21]. We have extended the work of Kerkhof
and Geboers [21] to formulate the forcing term in the frame-
work of the LBM. Furthermore, the transport coefficients
are derived from the kinetic theory of gases, and a forcing-
term strategy is proposed to take into account species having
dissimilar molecular masses. This latter force, the diffusion
force, and the formulation of the transport coefficients con-
stitute the three building blocks of the present model. One
major advantage of the proposed method is the easiness of
implementation. Since collision is not modified, the method
can be introduced in any other lattice Boltzmann algorithms
(e.g., Refs. [22–25]) to take into account complex diffusion
among species.

This paper is laid out as follows. In Sec. II we introduce our
simplified kinetic model for miscible gases. The macroscopic
equations as well as the transport coefficients are presented in
Sec. III. In Sec. IV we address the problem of the simulation
of species with different molecular masses. Finally, in Sec. V
we validate the main features of our model.

II. A SIMPLIFIED KINETIC MODEL FOR
MULTICOMPONENT MIXTURES

The LBM is an alternative method for simulating fluid
flows by solving a simplified formulation of the kinetic model.
In this section, we present a LBM for mixtures of miscible
gases. The model is an extension of the macroscopic theory
of Kerkhof and Geboers [21], which is based on the work
of Hirschfelder, Curtiss, and Bird on the kinetic theory of
gases [20]. The model satisfies the indifferentiability princi-
ple, namely, for a mixture of like gases, it reduces to a single-
species BGK model. In addition, the macroscopic Maxwell-
Stefan equations are recovered for purely diffusive flows when
convection is negligible.

A mixture is composed of multiple species, and each
species is defined by its own distribution function, which
is governed by its own kinetic equation. For the sake of
simplicity we consider only a BGK-like collision operator.
More advanced collisions operators such as multiple re-
laxation time, entropic, regularized, or cumulant operators,
mostly developed to remedy some stability defects, could
also be implemented [22–25]. Let m and n denote different
species (m, n = 1, 2, . . . , N , N being the total number of
species). The distribution function of species m, f m

α , obeys the

following discrete kinetic equation:

f m
α (x + eαδt , t + δt ) = f m

α (x, t )− δt

τm

[
f m
α (x, t )− f m(eq)

α (x, t )
]

+ δt S
m
α (x, t ), (1)

where x, t , α, and τm are, respectively, the spatial coordinate,
time, number of discrete kinetic velocities eα , and relaxation
time of each species. The equilibrium distribution functions,
f m(eq)
α , are given by the standard polynomial formulation

f m(eq)
α = ρmωα

[
1 + um · eα

c2
s

+ (um · eα )2

2c4
s

− um · um

2c2
s

]
. (2)

Sm
α is the source term from Guo’s forcing scheme [26], widely

used in order to include forces in the lattice Boltzmann
algorithm,

Sm
α =

(
1 − δt

2τm

)
ωα

[
eα − um

c2
s

+ (eα · um)eα

c4
s

]
· Fm, (3)

where Fm is the force acting on the mth species, which
is derived in the following to take into account the species
interactions.

In this study, we use the so-called D2Q9 isothermal,
two-dimensional, and nine-velocity discretization. Extension
to the three-dimensional formulation (D3Q19 or D3Q27)
is straightforward. The pseudosound velocity is c2

s = 1
3 , the

kinetic velocities are expressed as

eα =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]T

1� α� 9,

(4)

and the lattice weights are equal to

ωα = [
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

]T
1 � α � 9.

(5)

The macroscopic quantities, namely, the density and momen-
tum of each species, are obtained by computing the different
moments of the distribution functions,

ρm =
∑

α

f m
α , ρmum =

∑
α

f m
α eα + δt

2
Fm. (6)

The resulting macroscopic equations are the conservation
equations for low Mach number flows subjected to a body
force (for example, the gravity). In order to take into account
the interaction of miscible species, we introduce diffusion
forces. These forces are derived from kinetic theory by
Kerkhof and Geboers [21],

FD,m = −p
N∑

n=1

xmxn

Dmn
(um − un), (7)

and Fm becomes

Fm = FD,m + FB,m, (8)

where FB,m is a body force. As a result, the discrete kinetic
equations (1) for the various species are coupled through
Fm. Since the diffusion force FD,m depends on the velocity,
total pressure p, molar fractions xm, and (Maxwell-Stefan)
diffusion coefficients Dmn, a linear system must be solved at
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each time step in order to compute the species momentum by
means of Eq. (6).

This force also called intermolecular friction force depends
on the relative velocity of species. Thus, when all species have
the same velocity, no diffusion occurs. The attempt to include
the diffusion effects as a force acting on particles dates back to
the early work on kinetic theory by Maxwell [27]. The same
expression was rigorously derived later [20,28], and Kerkhof
and Geboers present a more recent derivation in Ref. [21].

III. MACROSCOPIC LIMIT

A. Macroscopic equations

In this section we present the macroscopic limit of the
proposed model via the Chapman-Enskog analysis. This
multiple-scale expansion provides a relation between the
mesoscopic scale of the Boltzmann equation and the macro-
scopic scale of the Navier-Stokes equation. This derivation
is straightforward and is similar to the standard LBM with
a force arising from Guo’s forcing scheme (see Ref. [26]).
Therefore in the low-Mach and continuum limit, the kinetic
equation (1) and its moments (6) are equivalent to the follow-
ing macroscopic equations:

∂tρm + ∇ · (ρmum) = 0, (9)

∂t (ρmum) + ∇ · (ρmum ⊗ um)

= −∇pm + ∇ · {μm[∇um + (∇um)T ]}

−p
N∑

n=1

xmxn

Dmn
(um − un) + FB,m, (10)

where the partial pressure is equal to pm = ρmc2
s , and the total

pressure is given by Dalton’s law p = ∑N
m=1 pm. The dynamic

viscosity of species m is expressed in terms of the relaxation
time according to

μm = ρmc2
s

(
τm − δt

2

)
. (11)

B. Limit expression

We now focus on the limit expressions of the previous
equations. Using the dimensionless formulations of Eqs. (9)
and (10), one can estimate, a priori, the order of magnitude of
each term. In the following, we will show that the Maxwell-
Stefan equations are recovered in the case of pure diffusion.
We first begin with the intermolecular friction force, which
yields to the estimate

FD,m = −p
N∑

n=1

xmxn

Dmn
(um − un) = O(prefu�/Dref ), (12)

where u� is an appropriate velocity difference between
species, and quantities with the ref subscript represent an
estimate of their order of magnitude. In a similar way, we have

∂t (ρmum) = O(ρref uref/tref ), (13)

∇ · (ρmum ⊗ um) = O
(
ρrefu

2
ref/Lref

)
, (14)

∇pm = O(pref/Lref ), (15)

∇ · {μm[∇um + (∇um)T ]} = O
(
μrefuref/L2

ref

)
. (16)

The species momentum convection can be neglected com-
pared to the diffusion if Eq. (14) � Eq. (12), i.e., Ma2 � Pe�,
where the Mach number is defined as Ma = uref/cs,re f and the
Péclet number is Pe = Lref u�/Dref . Similarly, the shear forces
are negligible if Eq. (16)� Eq. (12), i.e., Ma2 � Pe�Re with
Re = Lrefuref/νref . As u� may change during the mixing, the
influence of the different terms in Eq. (10) may vary in time
and space.

Let assume a low Mach flow whose dynamic is mostly
diffusive. We can neglect the contributions associated with
convection (Ma2 � Pe�) and shear forces (Ma2 � Pe�Re).
In addition, the characteristic time is given by tref = L2

ref/Dref

and uref = u�, and thereby the species acceleration can also
be neglected, Eq. (13)� Eq. (12). Hence, Eq. (10) reduces to

∇pm = p
N∑

n=1

xmxn

Dmn
(un − um). (17)

If we sum this equation over all species, we obtain

∇p = 0. (18)

As a result for this specific case, the process is isobaric. Using
Dalton’s law, Maxwell-Stefan’s equations are easily recovered
from Eq. (17):

∇xm =
N∑

n=1

xmxn

Dmn
(un − um) =

N∑
n=1

xmNn − xnNm

ctDmn
, (19)

where we have introduced the species molar concentration
cm = xmct and the species molar flux Nm = cmum, ct being
the mixture molar concentration. In the case of an equimolar
binary mixture, Fick’s law is obtained, N1 = −ctD12∇x1 or
u1 = −x−1

1 D12∇x1.

C. Transport coefficients

In the previous subsections, the equivalent macroscopic
equations were presented. However, the transport coefficients,
viscosities, and diffusion coefficients have still to be defined.

The lattice Boltzmann scheme still retains a connection
with the macroscopic scale through the relation between
the relaxation time and the viscosity stemming from the
Chapman-Enskog expansion [Eq. (11)]. Since each species
has its own kinetic equation [Eq. (1)], N relaxation times (i.e.,
viscosities) need to be defined, and a relation between the
mixture properties and species viscosity has to be specified.
Some of the previous lattice Boltzmann multicomponent mod-
els disregard this issue ([4,7]), and others set the viscosities of
each species equal to the mixture viscosity ([8,9,14,16,18]) or
use Wilke’s law ([12,13]).

In the following, we present the submodel for the transport
coefficients that we derive in the framework of the multifluid
approach that constitutes one of the main features of our
model. Expression for the transport coefficients for a dilute
gas can be obtained by kinetic theory [20]. By extending
the works of Hirschfelder, Curtiss, and Bird to mixtures,
Kerkhof and Geboers [21] define diffusion coefficients and
species partial viscosities in terms of the molecular properties,
temperature, and composition of the mixture.

In order to avoid confusion between pure viscosity and
the viscosity of a species m in the mixture, we refer to the
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latter as the partial viscosity. Following Kerkhof and Geboers,
the partial viscosities can be computed by solving the linear
system

(μm) = [Pmn]−1

⎛
⎜⎝

1
...
1

⎞
⎟⎠ (20)

with

Pmm = 2

kBT

⎡
⎣4

5

(2,2)

mm +
N∑

n �=m

xn

xm

16

15

Mn

(Mm + Mn)2

×
(

5Mm
(1,1)
mn + 3

2
Mn


(2,2)
mn

)⎤
⎦ (21)

and for off-diagonal elements (n �= m),

Pmn = − 2

kBT

[
16

15

MmMn

(Mm + Mn)2

(
5
(1,1)

mn − 3

2

(2,2)

mn

)]
,

(22)

where kB is the Boltzmann constant, T the temperature, Mm

the mass of a single molecule for the species m, xm the mole
fraction, and the 
 integrals as defined in Ref. [20] and depend
on the temperature and the molecular properties based on the
Lennard-Jones potential (see the Appendix for details).

Following the same assumptions made in Ref. [20] (Sec.
8.2.iii) and in Ref. [29], the previous linear system can be
simplified. Thereby, the partial viscosities depend on the
composition of the mixture and can be expressed in terms of
the molar fractions, the pure viscosities μ0,m, and the species
molar masses, and Wilke’s formula is recovered yielding to

μm = xmμ0,m∑N
n xn�mn

(23)

with

�mn = 1

2
√

2

(
1 + Mm

Mn

)− 1
2

[
1 +

(
μ0,m

μ0,n

) 1
2
(

Mn

Mm

) 1
4

]2

,

(24)

where Mm = Mm/Na, with Na the Avogadro number and Mm

the molar mass of species m. We point out that in kinetic
theory, the pure viscosity has the following expression:

μ0,m = 5kBT

8

(2,2)
mm

, (25)

which is asymptotically consistent with Eqs. (21) and (22).
For the Maxwell-Stefan diffusion coefficients, we use the

same expression obtained from the classical kinetic theory of
gases [20]:

Dmn = Dnm = 3(Mm + Mn)

16pMmMn

(kBT )2



(1,1)
mn

. (26)

The diffusion coefficients are usually taken as constant at
a given reference pressure and temperature since the pressure
variation is not significant. In practice, the transport coeffi-
cients, pure viscosities, and diffusion coefficients can be set
according to different strategies. For instance, they can be

directly chosen in lattice units (as in Secs. V A and V B) de-
pending on a given dimensionless number (Reynolds number,
Péclet number, etc). In some cases, experimental values are
available (as in Sec. V C), or else the previous equations can
be employed (as in Sec. V D).

IV. SPECIES WITH DIFFERENT MOLECULAR MASSES

In the standard lattice Boltzmann equation, the pseudo-
(isothermal) speed of sound (cs) is fixed by the lattice. For
the D2Q9 velocity set, cs is equal to c2

s = 1/3 (in lattice
units for a reference temperature and molecular mass) for
all species, which is not the case for mixture of species
having different molecular masses. Indeed, recalling that the
partial pressure obeys the ideal gas law, from the definition of
the isothermal speed of sound of a species [c2

s,m = ( ∂ pm

∂ρm
)
T

],

one finds c2
s,m = RT/Mm and pm = ρmc2

s,m, where R is the
universal gas constant.

In order to account for the differences in the species pseu-
dospeed of sound, one can modify the equilibrium distribution
functions [30]. However, as shown by those authors, the max-
imum molecular mass ratio is limited to three. Furthermore,
this approach adds errors in the viscous stress tensor, which
can be reduced by increasing the velocity set from D2Q9 to
D2Q13 [31]. Nonetheless, the molar mass ratio is still limited
to three because of stability issues, and expanding the number
of velocities makes the algorithm more complex and costly.
Another strategy is to set the pseudospeed of sound in terms
of the minimum molecular mass [30]. Thus, in one time step,
the lightest species streams exactly to the next lattice point,
while the heavier species stream between the original lattice
point and the next one. Populations for the heavier species are
then interpolated to the next lattice point. This process can
simulate binary diffusion with molar mass ratio up to nine
before the accuracy decreases because of the interpolation that
adds numerical diffusion. This approach is very expensive.
Indeed, it requires the use of an interpolation scheme for each
species populations in each kinetic velocity directions (i.e.,
eight in D2Q9).

In the present study, a variable pseudospeed of sound
is introduced through a body force [32]. This strategy is
simple since neither interpolation, nor extended velocity set,
nor modified equilibrium is required. In particular, Guo’s
forcing scheme [26] is used, and the forcing term is calculated
according to

FB,m = (1 − βm)c2
s ∇ρm, (27)

where the gradient term is computed by means of a compact
scheme

∇ρm(x) = 1

c2
s

∑
α

ωαeαρm(x + eα ). (28)

The partial pressure then becomes

pm = βmc2
s ρm, (29)

where βm = c2
s,m/c2

s is the ratio between the species and the
standard LBM pseudospeed of sound. This forcing strategy
changes only the equation of state, and the relation between
the partial pressure and density is modified according to the
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FIG. 1. (a) Temporal evolution of ρ and u (b) at nx/4 for β =
0.05, 1, 4.3 and nx = 128. Symbols and lines stand for simulation
results and analytical solutions from Eqs. (30) and (31), respectively.

molecular mass of the species. This approach has also the ad-
vantage that the partial viscosity [Eq. (11)] is always defined
in terms of the standard LBM pseudospeed of sound cs. In
practice, we usually define a reference species n whose speed
of sound is the same as cs equal to 1/3 in lattice units (βn = 1,
pn = ρnc2

s = ρnRT/Mn), and βm = Mn/Mm are then the ratio
of molecular masses (pm = ρmc2

s,m = ρmc2
s βm = ρmRT/Mm).

V. NUMERICAL SIMULATIONS

In order to validate the proposed model, we present four
two-dimensional cases, referred to as A, B, C, and D. In case
A, the forcing-term approach is applied to the free decay of a
density wave. In case B, two species having the same molec-
ular mass diffuse in each other. These two cases are selected
to assess the numerical capabilities of the proposed method,
and the results are validated against analytical results. Then
Loschmidt’s tube experiment is reproduced in case C, which
corresponds to the diffusion of a ternary mixture with different
molecular masses. In case D we simulate the interaction of
two multicomponent opposed jets. In all cases the simulation
is initialized with the equilibrium distribution (2).

FIG. 2. (a) Relative errors of the density ερ and velocity εu (b).

A. Decay of a density wave

The accuracy of the forcing strategy to define the species
pseudospeed of sound is assessed by simulating a single-
species flow corresponding to the decay of a free density
wave damped by a low viscosity as proposed in Ref. [31].
By considering small perturbations of density and velocity
from the linearized Navier-Stokes equations, the density and
the velocity of the damped wave are given by

ρ = ρ0 + δρ exp(wit ) cos(kx − wrt ), (30)

u = δρ

k
exp(wit )[wr cos(kx − wrt ) − wi sin(kx − wrt )].

(31)

We perform simulations assuming a two-dimensional peri-
odic domain (nx, ny). In order to compare our results with the
analytical solution, we introduce the equivalent species pseu-
dospeed of sound ce = √

βcs and ν the kinematic viscosity of
the fluid, and set ρ0 = 1 (average density), δρ = 10−3 (ampli-
tude of the density perturbation wave), and νk/ce = 10−2, k
being the wave number k = 2π/nx. In the harmonic decom-
position, the dispersion relation yields a wave frequency that
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FIG. 3. Evolution of ρ2 for τ = 1 and D = 10−2 at different iter-
ations. Symbols and lines stand for simulation results and analytical
solutions from Eq. (37), respectively.

is split into a real and an imaginary part:

w = wr + iwi, (32)

wr = ±kce

√
1 − ν2k2/c2

e , (33)

wi = −kce(νk/ce). (34)

Simulations are carried out for different domain sizes nx at
various speed of sound ratios β while keeping ny = 5 con-
stant. As an example, we plot in Fig. 1 the temporal evolution
of ρ and u at nx/4 for β = 0.05, 1, 4.3 and nx = 128. The
dissipation error is undetectable, and a small dispersion error
is visible only for β = 0.05.

The relative global error of the density and the velocity
field is defined in terms of the L2 norm,

εφ =
√∑nx

i (φi − φanalytical,i )2∑nx
i φ2

analytical,i

, (35)

φ standing for either density or velocity. The results are com-
pared at nondimensional time ktce = 10 × 2π and reported in
Fig. 2 for various β and nx. The model is found to be stable

FIG. 4. Relative errors of the diffusion coefficient.

TABLE I. Initial molar fractions; in our simulation we take δ =
5 × 10−4 (in the experiment, δ = 0).

Tube xAr xCH4 xH2

Left (0 < x < Lref/2) 0.509 − δ 2δ 0.491 − δ

Right (Lref/2 < x < Lref ) 0.485 − δ 0.515 − δ 2δ

in the range 0.05 � β � 4.3, indicating that our model is able
to simulate molar mass ratios up to 86 with small errors on
the density and velocity depending on the size of the grid
and on the value of β. With the present strategy, the relative
errors are lower, and the range of stable β values is greater in
comparison to the modifications of the equilibrium and the use
of a larger velocity set as proposed in Ref. [31]. In addition,
the present approach is also easier to implement compared
to the interpolation of distribution functions, which can be
cumbersome to code in three dimensions, especially on the
boundary nodes.

B. Equimolar counterdiffusion

In this test case, we study the mixing between two species
of equal molecular masses for which the mass transfer occurs
only by diffusion, and governing equations are

∂tρm = D∇2ρm, for m = 1, 2. (36)

A particular solution of Eq. (36) is

ρm(x, t ) = ρ0 + (−1)mδρ exp(−k2Dt ) sin(kx). (37)

We choose ρ0 = 1, δρ = 10−3, k = 2π/nx, and use a two-
dimensional periodic domain (nx = 200, ny = 5). As an ex-
ample, we plot in Fig. 3 the temporal evolution of ρ2 for
D = 10−2 and τ = 1 for both species. Numerical results are
indistinguishable from the analytical solution (37).

For comparison, we have evaluated the error of the diffu-
sion coefficient at various D and relaxation times τ (which
is assumed to be the same for the two species). The relative
error ||Dnum − D||/D is reported in Fig. 4 where Dnum is
computed at x = nx/4 by linear fit of Eq. (37) and D is set
using Eq. (7). The numerical solution is in good agreement
with the theoretical results for D < 0.1 and for all relaxation
times. We note that the relative error in density, ερ as defined
in Eq. (35), is three orders of magnitude smaller than the
relative errors of the diffusion coefficient. The figure shows
a discrepancy between the numerical and theoretical results

TABLE II. Physical parameters of the experiment.

Lref [m] 2
√

1/60π

p [Pa] 101325
T [K] 307.15

m Ar CH4 H2

Mm [g/mol] 39.948 16.0425 2.01588
DAr m [mm2/s] − 21.57 83.35
DCH4 m [mm2/s] 21.57 − 77.16
DH2 m [mm2/s] 83.35 77.16 −
μ0,m [μPa/s] 22.83 11.35 9.18
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FIG. 5. Comparison between simulation (lines) and experimental
data (symbols) extracted from Ref. [36]. Molar fraction of argon,
blue; molar fraction of methane, orange; molar fraction of hydrogen,
green. Solid lines and filled symbols, left tube; dashed lines and
unfilled symbols, right tube.

for D > 0.1. Having kept constant the size of the domain for
all D, this discrepancy is likely to be ascribed to a loss of
spatial and temporal resolution. Nonetheless the relative error
of the diffusion coefficient is always less than 0.4% for all τ .
Different sizes of domain are used (not shown in the present
study), and we recover the classic second-order accuracy in
space indicating that the forcing approach does not deteriorate
the accuracy of the LBM algorithm.

C. Loschmidt’s tube

Having validated the ability of the method to simulate the
decay of a single-species density wave (at various different

FIG. 6. Molar fraction and velocity streamline plot of H2O.

TABLE III. Initial molar fractions; in our simulation we take δ =
10−5 (in the experiment, δ = 0).

Stream xH2 xN2 xO2 xH2O

Left 0.10 0.85 − δ 0 + δ 0.05
Right 0 + δ 0.9 − 2δ 0.10 0 + δ

molar masses), and the counterdiffusion of species having
equal molecular masses (at various diffusion coefficients), we
simulate the Loschmidt’s tube experiment [33]. The latter
consists of the mixing of a ternary mixture of gases having
different molecular masses (argon, methane, and hydrogen).
For such a process, a diffusion reversal is observed depending
on the initial species composition [34]. In particular, we
have considered two tubes of the same dimension filled with
mixtures of different composition in the left and right tubes
that are joined at the beginning of the experiment. In the
experiment the left and right mean composition is measured
in time during the mixing. In the experimental apparatus,
the length of each tube is Lref/2 ≈ 0.405, and the period of
observation is approximately 1 h. The initial molar fractions
are given in Table I, and the other physical parameters are
summarized in Table II.

The simulation is carried out on a domain size of (nx, ny) =
(200, 25). Classical bounce-back rules are used on the left and
right boundaries, and periodic conditions are applied on the
top and bottom sides of the domain.

For computational purposes, we have rescaled the
Maxwell-Stefan diffusion coefficients by a factor 103, and
the partial viscosities have been computed imposing the same
species Schmidt numbers, which we define in terms of the
pure viscosity as in the experiment.

Figure 5 reports the evolution of the mean molar fractions
for the left and right tubes in nondimensional time units t∗ =
t × DArCH4/(Lref )2. The mean molar fractions are in very good
agreement with the experimental data. As expected, initially
argon diffuses in the same direction of the concentration
gradient, contrary to the behavior predicted by using Fick’s
law. This reverse diffusion occurs on a scale of approximately
0.04 nondimensional time units, and the concentration of
argon attains a plateau in both tubes in spite of the presence
of large concentration gradients. The other species do not
exhibit such a diffusion barrier. At later times, Fick’s-like
diffusion takes place. It is important to point out that this
complex diffusion dynamics can be recovered only by the
Maxwell-Stephan equations [35].

D. Opposed jets flow

The model is finally validated for a flow whose dynamics is
dominated by a convection-diffusion competing mechanism.

TABLE IV. Kinetic constants from Ref. [20].

m H2 N2 O2 H2O

Mm [g/mol] 2.01588 28.0134 31.9988 18.0153
εm/kB [K] 36.7 47.6 113 775
σm [nm] 0.2959 0.385 0.433 0.252
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FIG. 7. Comparison between the present method (line) and LBM
from Ref. [12] (symbols) at y = ny/2.

The test case that we investigate is the same proposed in
Ref. [12], which consists of two opposed jets of quaternary
mixtures of gases having different initial concentrations (see
Fig. 6 and Table III). The domain size is (nx, ny) = (200, 400)
and the widths of the left and right incoming streams are
the same and equal to 0.4ny. At left and right boundaries,
equilibrium is assumed for the distribution functions, and the
velocity is set equal to zero. For the left and right incoming
streams, we assume that all species velocities are respectively
equal to UL = U0 and UR = −0.936U0 (as inferred from Fig. 3
of Ref. [12]), and we chose U0 = 0.04. At the top and bot-
tom boundaries, the outer incoming distribution functions are
extrapolated from the interior. The transport coefficients are
evaluated by means of Eqs. (23)–(26) at atmospheric pressure
and temperature T = 300 K. The species kinetic constants
needed to evaluate the 
 integrals are given in Table IV.

Figure 7 shows the distributions of the molar fractions and
the mixture mass velocity at the symmetry plane (y = ny/2)
and at steady state. The results are in close agreement with
Ref. [12] where the CHEMKIN package is used to calculate
the transport coefficients and mixture-averaged diffusion co-
efficients are employed for each species. Despite using a
simplifying mixture-average diffusion, the results are similar
since the multicomponent diffusion effects, which cannot be
captured with this assumption, are not significant. In addition,
these transitory complex diffusion phenomena as in the case
of the Loschmidt’s tube experiment (Sec. V C) would not be
visible on this steady-state comparison. Figure 7 confirms that
our model correctly predicts the dynamics of the flow charac-
terized by a competing convection-diffusion mechanism.

VI. CONCLUSION

In the present paper, we derive, explain, and validate a
LBM for miscible gases. We show that the mixing dynamics
of multispecies mixtures can be simulated by a forcing term in
the lattice Boltzmann algorithm [Eq. (7)] and the addition of
a body force to account for species having different molecular
masses [Eq. (27)]. Furthermore, the model also relies on
the use of transport coefficients that are calculated by an

approximation of the relations obtained from kinetic theory
[Eq. (23)].

The model is validated against analytical, experimental,
and numerical results available in the literature. We have
shown that the model can accurately simulate the decay
of a density wave for a variety of pseudospeed of sound
corresponding to molar mass ratios up to 86. The model
adequately predicts the diffusion process in binary and ternary
mixtures of gases as shown for the case of the equimo-
lar counterdiffusion and Loschmidt’s tube experiment. Com-
plex diffusion phenomena such as reverse diffusion occur in
ternary mixtures. These phenomena are well observed in our
model, and the dynamics predicted by the Maxwell-Stefan
equations is correctly recovered. The present model also
adequately predicts the dynamics of flows where convection
and diffusion compete as in the case of two opposed jets of
mixtures.

Finally, one of the advantages of the forcing approach is the
easiness of implementation. Since collision is not altered, the
method that we propose can easily be introduced in any other
lattice Boltzmann algorithms in order to take into account
complex diffusion among species. Upcoming applications of
the present model will focus on instabilities resulting from the
transient mixing dynamics in porous media.

APPENDIX: � INTEGRALS

We specify the expression of the 
 integrals. We recall
that the interactions of a similar pair of molecules can be
approximated by the Lennard-Jones potential,

ϕ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (A1)

where r is the distance between the molecules, σ the collision
diameter, and ε the depth of the potential well. For a dissim-
ilar (m, n) pair of molecules, we use the following standard
mixing rules:

σmn = (σm + σn)/2, (A2)

εmn = √
εmεn, (A3)

1

ψmn
= 1

Mm
+ 1

Mn
. (A4)

Unlike the rigid sphere model, the Lennard-Jones potential
is a physically realistic potential, and the 
 integrals cannot be
calculated analytically. However, we compute the 
 integrals
for the rigid sphere and introduce the 
� ratio, which embod-
ies the deviation of the 
 integrals between the Lennard-Jones
and rigid sphere potentials,


�(i, j)
mn = 
(i, j)

mn /
rs(i, j)
mn , (A5)

with


rs(i, j)
mn =

√
kBT

2πψmn

( j + 1)!

2

[
1 − 1

2

1 + (−1)i

1 + i

]
π (σmn)2.

(A6)
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�(i, j)
mn depends only on T � = T kB/εmn, and its value is ob-

tained from a fitted curve computed from a numerical integra-
tion [21]. For more details about the potentials, we invite the
reader to read Chap. 8 of Ref. [20].

Despite that the derivation is rigorously correct only for
dilute gases, we could to a certain extent apply these results to
liquids and dense gases by means of the Eyring and Enskog
theories, respectively.
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