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Fermion sign problem in path integral Monte Carlo simulations:
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The ab initio thermodynamic simulation of correlated Fermi systems is of central importance for many
applications, such as warm dense matter, electrons in quantum dots, and ultracold atoms. Unfortunately, path
integral Monte Carlo (PIMC) simulations of fermions are severely restricted by the notorious fermion sign
problem (FSP). In this paper, we present a hands-on discussion of the FSP and investigate in detail its
manifestation with respect to temperature, system size, interaction-strength and -type, and the dimensionality
of the system. Moreover, we analyze the probability distribution of fermionic expectation values, which can be
non-Gaussian and fat-tailed when the FSP is severe. As a practical application, we consider electrons and dipolar
atoms in a harmonic confinement, and the uniform electron gas in the warm dense matter regime. In addition,
we provide extensive PIMC data, which can be used as a reference for the development of new methods and as
a benchmark for approximations.
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I. INTRODUCTION

The numerical solution of the well-known, but highly
complex equations that govern quantum mechanics using
modern high-performance computers has emerged as one of
the most active and successful fields in theoretical physics
and chemistry. A particularly useful approach to accomplish
this goal for a correlated quantum system in thermodynamic
equilibrium (i.e., at finite temperature) was already outlined
by Feynman [1], who proposed to map the complicated
quantum system of interest onto a classical ensemble of
interacting ring-polymers [2] via the path-integral formalism
[3]. The basic idea of the path-integral Monte-Carlo (PIMC)
method [4–8] is to stochastically evaluate the resulting high-
dimensional integrals using the Metropolis algorithm [9],
which, remarkably, does not suffer from the curse of di-
mensionality [10] that renders standard quadrature methods
unfeasible in this case [11,12].

Since its first application to He4 in the late 60’s [13,14],
PIMC has emerged as one of the most successful tools in
statistical physics and has allowed for profound insights into
exciting physical phenomena such as superfluidity [15–18]
and Bose-Einstein-condensation [19,20]. Moreover, PIMC
provides exact simulations at strong coupling, which makes
it possible to study crystallization in real quantum systems
[21–23], and the direct access to imaginary-time correlation
functions [24–26] can be used as input for an analytic contin-
uation [27,28], which makes possible even the computation
of dynamic properties such as collective excitations [29–31].
In fact, recent Monte Carlo sampling techniques allow for
exact calculations of up to N ∼ 104 bosons and boltzmannons
(i.e., distinguishable particles obeying Boltzmann statistics)
[32,33].
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On the other hand, the situation is entirely different in the
case of fermions. More specifically, the antisymmetry of the
fermionic density matrix under the exchange of particles [cf.
Eq. (1)] leads to a near cancellation of positive and negative
terms both with decreasing temperature and increasing the
system size [34]. This issue is commonly known as the
fermion sign problem (FSP) [35–38], and generally prevents
fermionic PIMC simulations once quantum degeneracy ef-
fects start to get important [39]. This is very unfortunate, as
correlated Fermi systems offer a wealth of interesting effects
such as the BCS-BEC crossover [43–45] in ultracold atoms
and the formation of Wigner molecules in quantum dots
[46–48].

Of particular importance is the so-called warm dense mat-
ter (WDM) regime [8,49–51], an extreme state of matter with
high temperatures (T ∼ 104 − 108 K) and extreme densities
(n ∼ 1021 − 1027 cm−3). These conditions occur in astrophys-
ical objects such as giant planet interiors [52–54] and brown
dwarfs [55–57], and are expected to play an important role
on the pathway toward inertial confinement fusion [58,59].
Moreover, WDM is now routinely realized in the laboratory
(see Ref. [60] for a topical review article) and constitutes
one of the most active frontiers in plasma science [61]. The
theoretical description of WDM, however, is notoriously dif-
ficult due to the nontrivial interplay of (i) Coulomb coupling,
(ii) quantum degeneracy effects, and (iii) thermal excitations.
This regime is typically characterized by two parameters,
which are both of the order of one: the density parameter
rs = r/aB (with r and aB being the mean interparticle distance
and first Bohr radius) and the degeneracy parameter [62]
θ = kBT/EF (with EF being the usual Fermi energy [63]).
Therefore, both perturbation theory and ground-state methods
are not applicable, which leaves ab initio PIMC simulations
as one of the most promising options [64].

Consequently, there has been a spark of developments in
the field of fermionic quantum Monte-Carlo simulations at
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finite temperature over the last years [65–87]. Despite this
exciting progress, a thorough study of the FSP itself seems
to be missing. In this paper, we aim to fill this gap by
presenting a detailed practical investigation of the FSP within
standard PIMC simulations of (i) electrons in quantum dots,
(ii) ultracold dipolar atoms in a harmonic confinement, and
(iii) the uniform electron gas (UEG) at WDM conditions
[8,79]. More specifically, we study the manifestation of the
FSP regarding different parameters (e.g., system size, cou-
pling strength, etc.) and discuss the probability distribution of
Monte Carlo expectation values, which, in the presence of a
sign problem, is not necessarily given by a simple Gaussian. In
addition, we provide extensive benchmark data, which will aid
method development and can be used to gauge the accuracy of
approximations.

The paper is organized as follows: In Sec. II, we introduce
the required theory, in particular the standard PIMC approach
(Sec. II A), followed by the FSP (Sec. II B) and the considered
system types and Hamiltonians (Sec. II C). In Sec. III, we
present our simulation results, starting with a detailed discus-
sion of the Monte Carlo sampling and the probability distribu-
tion of fermionic expectation values (Sec. III A). In addition,
we study the manifestation of the FSP with respect to temper-
ature (Sec. III B), system-size (Sec. III C), interaction-strength
and -type (Sec. III D), and the dimensionality (Sec. III E), all
for electrons and ultracold atoms in a harmonic confinement.
Lastly, we extend our considerations to the uniform electron
gas in the WDM regime, where the FSP exhibits a somewhat
different manifestation regarding system size. The paper is
concluded by a concise summary and discussion in Sec. IV.

II. THEORY

A. Path integral Monte Carlo

Throughout this paper, we restrict ourselves to the discus-
sion of N spin-polarized fermions in the canonical ensemble,
i.e., the inverse temperature β = 1/kBT , volume V [or trap
frequency � in case of a harmonic confinement, see Eq. (7)
below], and particle number N are fixed. The central quantity
in statistical physics is the partition function, which can be
written in coordinate space as

Z = 1

N!

∑
σ∈SN

sgn(σ )
∫

dR 〈R| e−βĤ |π̂σ R〉 , (1)

where R = (r1, . . . , rN )T contains the coordinates of all parti-
cles. Since we are interested in fermions, we have to explicitly
evaluate the sum over all possible permutations of particle
coordinates σ , with SN denoting the permutation group and π̂σ

being the corresponding permutation operator. Note that the
sign sgn(σ ) is positive (negative) for an even (odd) number of
pair exchanges. For completeness, we mention that we restrict
ourselves to the spin-polarized case (i.e., only one species of
fermions, like spin-up electrons) throughout this paper, but the
generalization to multiple particle species is straightforward
and does not affect the manifestation of the FSP. To make
the evaluation the matrix elements of the density operator
ρ̂ = e−βĤ in Eq. (1) possible, one typically performs a Trotter
decomposition [89] and finds that Z can be expressed as the
sum over all closed paths X in the imaginary time τ . However,

FIG. 1. Example configurations from a PIMC simulation of N =
3 spin-polarized fermions: Each particle is represented by an entire
path in the imaginary time τ ∈ [0, β] (with ε = β/P being the
so-called time step). In panel (a), there is no exchange of particle
coordinates, and the weight function W (X) is positive. In panel (b),
the two particles on the left side form a combined exchange cycle,
and the weight is negative. Taken from Ref. [88] with the permission
of the authors.

since both the derivation and final formulas have already been
presented elsewhere [7,8], they need not be repeated here. For
the present purposes, it is fully sufficient to work with the
abstract expression

Z =
∫

dX W (X), (2)

which can be interpreted as follows: The PND-dimensional
(with P denoting the number of so-called imaginary time
slices, cf. Fig. 1, and D being the dimensionality of the
system) variable X constitutes a so-called configuration, and
each configuration contributes to Z with the appropriate con-
figuration weight W (X), which is a function that can be
readily evaluated. This is illustrated in Fig. 1, where we show
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example configurations from a PIMC simulation of N = 3
fermions. First and foremost, we note that each particle is now
represented by an entire path in the imaginary time τ , with
P = 6 imaginary time slices. In Fig. 1(a), there is no exchange
of particle coordinates and, consequently, the configuration
weight W (X) is positive. In contrast, the second depicted
configuration contains an exchange-cycle comprised of two
fermions. Due to this pair exchange, the corresponding W is
negative.

The basic idea of the PIMC method [4,7] is to generate
a Markov chain of path-configurations X that are distributed
according to P(X) = W (X)/Z . Although the normalization Z
is not known, this can be accomplished efficiently using the
celebrated Metropolis algorithm [9]. Indeed, simulations of
up to N ∼ 104 bosons and boltzmannons (i.e., distinguish-
able particles obeying classical Boltzmann statistics [23,90])
are feasible using recent Monte Carlo sampling techniques
[32,33] without the introduction of any approximation. Un-
fortunately, since the weight function W (X) is not strictly
positive in the case of fermions, it cannot be interpreted as
a probability distribution, which, as we shall see in the next
section, is the origin of the infamous FSP.

For completeness, we mention that it is, at least in princi-
ple, possible to recast Eq. (1) into a sum over only positive
terms by exploiting the nodal structure of the density matrix
[34,91]. However, since the exact nodes are a priori unknown,
this simplification comes at the cost of an uncontrolled ap-
proximation [92].

B. The fermion sign problem

The first task at hand is to find a way to generate the
paths X using the Metropolis algorithm, although their weight
function is negative. In practice, we switch to the modified
partition function

Z ′ =
∫

dX |W (X)|, (3)

where the paths X are now generated according to the absolute
value of the weight function. We note that in the case of
standard PIMC, as it has been introduced above, Eq. (3)
coincides with the (symmetrized) bosonic partition function,
which has some interesting implications that are discussed
later on. To calculate the fermionic expectation value of an
observable Â, we then have to evaluate the ratio

〈Â〉 = 〈ÂŜ〉′
〈Ŝ〉′ , (4)

where the operator Ŝ measures the sign of the configuration
weight, i.e., S(X) = W (X)/|W (X)|. The problem with this
approach is that both the enumerator and the denominator in
Eq. (4) vanish simultaneously both toward low temperature
(i.e., large β) and with increasing system size N . This is
captured by the average value of Ŝ, which is given by the ratio
of the fermionic and bosonic partition function

S := 〈Ŝ〉′ = 1

Z ′

∫
dX |W (X)|S(X)

= Z

Z ′ = e−βN ( f − f ′ ), (5)

and which we will simply refer to as the average sign through-
out this paper. In fact, Eq. (5) constitutes a direct measure
for the amount of cancellations within a fermionic PIMC
simulation, and exponentially decays both with N and β (with
f and f ′ being the free energy density of the fermionic and
modified system, respectively). This is bad news, because a
small sign (typically S ∼ 10−3) means that simulations are
no longer feasible. This can be understood by considering the
relative Monte Carlo error of Eq. (4), which is given by [34]


A

A
∼ 1

S
√

M
∼ eβN ( f − f ′ )

√
M

. (6)

Evidently, the statistical error exponentially increases with
N and β, which can only be compensated by increasing the
number of Monte Carlo samples as 1/

√
M. In practice, one

thus quickly runs into an exponential wall, which is nothing
else than the FSP.

C. System types and Hamiltonians

1. Harmonic confinement

The most widely used model system that is considered in
this paper are fermions in a harmonic confinement, which is
governed by the Hamiltonian

Ĥ = −1

2

N∑
k=1

∇2
k + 1

2

N∑
k=1

r̂2
k +

N∑
k>l

λ

|r̂l − r̂k|α , (7)

where we assume oscillator units, i.e., the characteristic length
l0 = √

h̄/m� (with � being the trap frequency) and energy
scale E0 = h̄�. Of particular importance is the exponent
α ∈ {1, 3}, which distinguishes between Coulomb interac-
tion (α = 1, corresponding to electrons in a quantum dot
[72,90,97]) and dipole interaction (α = 3, corresponding to
ultracold atoms [98–100]). In addition, the coupling constant
λ is defined as the ratio of the interaction energy to E0,

λ =
{

e2

4πε0l0E0
, if α = 1

D
4π l3

0 E0
if α = 3,

(8)

with D being the usual dipole-dipole interaction constant,
see, e.g., Ref. [99]. Finally, we consider two- and three-
dimensional systems in this paper, and the dimensionality
of the harmonic confinement is always equal to the overall
number of dimensions.

2. Uniform electron gas

The second type of model system that we consider in
this paper is the uniform electron gas (see Refs. [8,101] for
topical review articles), which is defined as an ensemble of N
electrons in a periodic box of length L and volume V = L3.
The corresponding Hamiltonian is given by

Ĥ = −1

2

N∑
k=1

∇2
k +

N∑
k>l

w(r̂l , r̂k ). (9)

Note that we always assume Hartree atomic units (i.e., ener-
gies in Hartree and distances in units of the first Bohr radius
a0) when discussing the UEG. Let us briefly turn our atten-
tion to the pair interaction potential w(r̂l , r̂k ) in Eq. (9). To
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TABLE I. System-size dependence: Ab initio path-integral Monte Carlo results for spin-polarized electrons (Coulomb interaction) at β = 1
(top half) and β = 0.3 (bottom half) in a 2D harmonic trap with coupling strength λ = 0.5. All results have been obtained for P = 200
imaginary-time propagators (see Appendix for details) and are given in oscillator units (i.e., energies in units of E0 = h̄�). Parts of the data set
are shown in Fig. 7.

N S EHO V K Kvir E

3 0.4746(2) 4.1585(9) 4.9640(8) 3.755(3) 3.756(1) 8.719(3)
4 0.2453(1) 6.0593(9) 7.6279(8) 5.275(7) 5.275(1) 12.903(7)
5 0.1085(1) 8.168(3) 10.721(2) 6.94(2) 6.892(4) 17.66(2)
6 0.04184(8) 10.483(8) 14.234(5) 8.59(5) 8.61(1) 22.82(5)
7 0.01425(9) 12.98(3) 18.13(1) 10.6(2) 10.41(4) 28.7(2)
8 0.00428(6) 15.68(7) 22.40(3) 12.1(5) 12.3(1) 34.5(5)
9 0.00130(8) 17.9(3) 26.7(2) 13(2) 13.5(5) 40(2)
10 0.00030(3) 21.4(6) 31.8(3) 17(3) 16.2(10) 49(3)

4 0.8413(1) 14.392(5) 15.592(5) 13.782(6) 13.792(9) 29.374(8)
6 0.6580(2) 22.492(8) 25.438(8) 21.01(1) 21.02(1) 46.45(1)
8 0.4679(2) 31.118(10) 36.527(9) 28.44(2) 28.41(2) 64.97(2)
9 0.3816(3) 35.65(2) 42.55(1) 32.24(2) 32.20(2) 74.78(3)
10 0.3051(3) 40.32(2) 48.88(2) 36.04(4) 36.04(3) 84.92(4)
11 0.2384(3) 45.06(2) 55.45(2) 39.86(5) 39.87(4) 95.31(6)
12 0.1833(1) 49.98(1) 62.35(1) 43.85(5) 43.80(2) 106.20(6)
14 0.1021(2) 60.11(3) 76.95(3) 51.7(2) 51.70(5) 128.7(2)
16 0.0530(2) 70.75(6) 92.67(5) 59.7(3) 59.79(9) 152.4(3)
18 0.0259(1) 81.89(8) 109.47(6) 69.6(6) 68.1(1) 179.1(6)
20 0.01164(6) 93.3(1) 127.18(8) 75.8(10) 76.4(2) 203.0(10)

mitigate finite-size effects, one typically employs the Ewald
summation, which takes into account both the interaction
between the two electrons l and k (and the respective positive
background) and the infinite array of periodic images [102].
In this paper, we use a preaveraged (i.e., with respect to the
orientation of the array of images) Ewald potential introduced
by Yakub and Ronchi [103,104], where the infinite sums
both in real and reciprocal space are evaluated analytically
beforehand. This leads to a significant saving of time, while
the differences to the real Ewald summation are expected to
be small under the conditions considered in this paper.

For completeness, we mention that a complete thermo-
dynamic description of the UEG at WDM conditions was
achieved only recently [79] on the basis of configuration
PIMC and permutation-blocking PIMC simulation data; see
Ref. [8] for a comprehensive discussion.

III. RESULTS

All results in this paper have been obtained using a canon-
ical adaption [105] of the worm algorithm [32,33]. Further,
we use P = 200 imaginary-time propagators based on the
primitive action, see Appendix for details, and Refs. [106,107]
for an accessible discussion. All fermionic results listed in
Tables I, II, and III are converged with respect to P within
the given statistical uncertainty.

A. Monte Carlo sampling and probability
distribution of expectation values

Let us start our discussion of the FSP with an illustration
of the sampling of the expectation value of an observable.
In Fig. 2, we show PIMC results for a simulation of N = 6

electrons in a 2D harmonic trap [cf. Eq. (7)] at moderate
coupling λ = 0.5 and two inverse temperatures, β = 0.2 (red)
and β = 1.6 (blue). Figure 2(a) shows a series of M = 300
measurements for the signed potential energy V S, i.e., the
enumerator from Eq. (4). The solid red line corresponds to
β = 0.2, which is a comparatively high temperature, where
fermionic exchange-effects are not that important. Conse-
quently, the sign stays mostly positive (with S ≈ 0.82), and
sign changes due to permutation cycles appear as brief neg-
ative spikes in the series of measurements. In stark contrast,
the blue line corresponds to β = 1.6, and the situation looks
completely different: At this low temperature, positive and
negative signs appear with a similar frequency and the average
sign has decreased to S ≈ 0.002.

To further illustrate the origin of these cancellations, it
is instructive to consider the modified (bosonic) probability
distribution, which is used to generate the paths X. To this end,
we show in Fig. 2(b) (β = 0.2) and Fig. 2(c) (β = 1.6) the
radial density distribution n(r) both for Bose (red squares) and
Fermi (blue crosses) statistics. At high temperature, the two
data sets are very similar and the most significant deviations
occur around the center of the trap, where the density is
at the maximum. At β = 1.6, on the other hand, the two
densities exhibit severe discrepancies over the entire r-range.
While bosons tend to cluster around the center of the trap,
the fermions are pushed outward by the Pauli blocking. Since
the paths in our simulations are distributed according to the
bosonic density, the difference in the results for fermions at
low temperature can only be accomplished by the cancellation
and subsequent division by the small value for S [cf. Eq. (4)].

Let us next consider the probability distribution of the
expectation values within a fermionic PIMC simulation. Ac-
cording to the central limiting theorem [108], the average
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TABLE II. Coupling strength dependence: Ab initio path integral Monte Carlo results for N = 6 spin-polarized electrons (top half) and
ultracold atoms with dipole interaction (bottom half) in a 2D harmonic trap at an inverse temperature β = 1. All results have been obtained
for P = 200 imaginary-time propagators (see Appendix for details) and are given in oscillator units (i.e., energies in units of E0 = h̄�). Parts
of the data set are shown in Fig. 9.

λ S EHO V K Kvir E

0 0.00258(1) 9.27(2) 9.27(2) 9.3(1) 9.27(3) 18.5(1)
0.01 0.00288(5) 9.24(8) 9.32(8) 9.2(4) 9.2(1) 18.5(5)
0.05 0.00393(5) 9.42(6) 9.82(5) 9.5(3) 9.22(9) 19.3(3)
0.1 0.00570(5) 9.51(4) 10.31(3) 8.7(2) 9.11(6) 19.0(2)
0.3 0.01861(10) 9.98(2) 12.31(1) 8.7(1) 8.81(2) 21.0(1)
0.5 0.04184(8) 10.483(8) 14.234(5) 8.59(5) 8.61(1) 22.82(5)
1 0.1475(1) 11.657(3) 18.644(2) 8.16(2) 8.164(5) 26.80(2)
3 0.6717(2) 15.859(2) 32.9762(9) 7.297(4) 7.301(2) 40.273(4)
10 0.99069(4) 27.149(1) 67.7235(7) 6.864(2) 6.862(2) 74.587(2)

0.01 0.02419(4) 9.327(5) 9.401(4) 9.22(3) 9.22(1) 18.62(3)
0.05 0.09311(7) 9.541(2) 9.865(2) 9.06(1) 9.056(6) 18.93(1)
0.1 0.16501(6) 9.7708(10) 10.3445(8) 8.922(5) 8.910(3) 19.266(5)
0.3 0.3721(1) 10.4931(8) 11.7701(7) 8.583(3) 8.578(2) 20.353(3)
0.5 0.5070(1) 11.0464(7) 12.8143(6) 8.394(2) 8.395(2) 21.208(2)
1 0.7015(2) 12.0977(10) 14.7323(8) 8.148(2) 8.146(3) 22.880(3)
3 0.9228(2) 14.707(1) 19.2833(9) 7.842(2) 7.842(3) 27.125(2)
10 0.99404(7) 19.4307(10) 27.2642(7) 7.680(2) 7.680(3) 34.944(2)

value of a Metropolis Monte Carlo calculation of an expec-
tation value 〈Â〉 with M measurements (and M being large) is
normally distributed around the exact value, and the standard
deviation decreases as σM ∼ 1/

√
M. This is verified in Fig. 3,

where we show histograms for the Monte Carlo average
of S (a) and V S (b) for Ns = 600 independent seeds with
M = 5 × 106 measurements per seed, for a system of N = 6

noninteracting fermions in a 2D harmonic trap at β = 1. The
blue bars correspond to our PIMC data, and the solid red
curves to Gaussian fits according to

P(A) = e− (A−μ)2

2σ2

√
2πσ 2

, (10)

TABLE III. Temperature dependence: Ab initio path integral Monte Carlo results for N = 6 spin-polarized electrons in a 2D (top half)
and 3D (bottom half) harmonic trap with Coulomb interaction and coupling strength λ = 0.5. All results have been obtained for P = 200
imaginary-time propagators (see Appendix for details) and are given in oscillator units (i.e., energies in units of E0 = h̄�). Parts of the data set
are shown in Figs. 5 and 10.

β S EHO V K Kvir E

0.3 0.6580(2) 22.492(8) 25.438(8) 21.01(1) 21.02(1) 46.45(1)
0.5 0.3616(2) 15.246(4) 18.610(3) 13.55(1) 13.564(6) 32.16(1)
0.6 0.2507(2) 13.552(4) 17.040(4) 11.82(1) 11.807(6) 28.86(1)
0.8 0.1079(1) 11.557(5) 15.211(4) 9.77(2) 9.730(8) 24.98(3)
1 0.04184(8) 10.483(8) 14.234(5) 8.59(5) 8.61(1) 22.82(5)
1.1 0.02526(9) 10.12(1) 13.902(8) 8.19(7) 8.23(2) 22.10(7)
1.3 0.00894(8) 9.62(3) 13.44(2) 7.7(2) 7.71(5) 21.2(2)
1.5 0.00321(10) 9.15(9) 13.07(5) 7.3(5) 7.2(1) 20.4(5)
1.7 0.00114(6) 8.7(2) 12.77(8) 8(1) 6.7(3) 21(1)
2 0.00023(2) 8.5(3) 12.5(1) 4(1) 6.5(5) 17(1)

0.3 0.9298(1) 31.49(1) 33.68(1) 30.414(10) 30.39(2) 64.09(2)
0.5 0.7434(2) 20.172(5) 22.833(5) 18.829(8) 18.841(8) 41.66(1)
0.6 0.6163(2) 17.465(4) 20.286(4) 16.055(8) 16.054(6) 36.341(9)
0.8 0.3610(2) 14.290(4) 17.336(3) 12.778(9) 12.768(6) 30.114(9)
1 0.1712(1) 12.547(2) 15.736(2) 10.956(9) 10.952(4) 26.692(9)
1.1 0.1102(2) 11.954(6) 15.196(5) 10.34(2) 10.333(10) 25.54(2)
1.3 0.0408(2) 11.11(1) 14.429(8) 9.49(6) 9.44(2) 23.92(6)
1.5 0.01388(8) 10.56(2) 13.93(1) 8.70(7) 8.87(3) 22.63(7)
1.7 0.00452(7) 10.14(5) 13.56(3) 8.5(2) 8.42(8) 22.0(2)
2 0.00077(3) 9.9(1) 13.28(6) 8.8(5) 8.1(2) 22.1(5)
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FIG. 2. Manifestation of the fermion sign problem in the Monte
Carlo sampling of an observable: Panel (a) shows a series of M =
600 consecutive measurements of the signed potential energy V S
[see Eq. (4)] within a PIMC simulation of N = 6 spin-polarized elec-
trons in a 2D harmonic confinement with λ = 0.5 and β = 0.2 (red)
and β = 1.6 (blue). Panels (b) (β = 0.2) and (c) (β = 1.6) depict
the corresponding radial densities n(r) computed in the modified
configuration space (i.e., for Bose statistics, red squares) and for
electrons (i.e., Fermi statistics, blue crosses).

with σ and μ being the free parameters. Evidently, we do
indeed find the expected normal distribution for both cases,
which means that the statistical uncertainty for a single seed
can be straightforwardly estimated from the Monte Carlo data

via


 〈V 〉′ =
(

1

M

M∑
i=1

(Vi − 〈V 〉′)2

)1/2

. (11)

For completeness, we note that the error bars given in all ta-
bles and figures have been obtained by evaluating Eq. (11) for
Ns statistically independent seeds, instead of M measurements
from a single seed, see Ref. [109] for details.

Let us next consider the distribution of the fermionic
observable 〈V 〉 = 〈V S〉′ / 〈S〉′, which is shown in Fig. 3(c).
Remarkably, the histogram does not exhibit a Gaussian form,
and the corresponding normal fit is not in agreement with
the PIMC results. More specifically, the simulation results
show a distinct tail toward large values of V S/S, with the
two largest outliers (see the two blue arrows in the plot) being
located around V S/S = 24, i.e., around 16 standard deviations
(assuming the σ value from the Gaussian fit) away from the
mean.

The reason for this peculiar finding is the nonlinear nature
of the fermionic expectation value from Eq. (4). In fact, it
can be shown [111] that the probability distribution of the
ratio of 〈V S〉′ and 〈S〉′ is the superposition of a Lorentzian
(also known as Cauchy distribution) and a Gaussian, with
the former one being responsible for the tail. Moreover, the
sample deviation as defined in Eq. (11) actually diverges,
and, therefore, does not constitute a good measure for the
real uncertainty in the fermionic expectation value 〈V 〉. For
completeness, we mention that a similar behavior has been
found in other fields, most notably financial modeling [112].

To further illustrate the occurrence of these tail events in
our fermionic PIMC simulation, we show the series of the
average values for all Ns = 600 seeds of both the ratio V S/S
(blue, left y axis) and the sign S (red, right y axis) in Fig. 3(d).
Let us first consider the blue curve: Evidently, the expectation
values of most seeds are located somewhere around the mean
value, with a few spikes corresponding to the upward outliers.
In contrast, the red curve does not exhibit any spikes, and we
have already seen that Si follows a normal distribution, see
Fig. 3(a). A comparison of both curves reveals that the spikes
in the ratio appear in those seeds with the smallest values of S,
and the two smallest values, which are responsible for the blue
arrows in Fig. 3(c), are highlighted by red crosses. Indeed,
these Si are more than an order of magnitude smaller than the
corresponding mean value of the distribution.

Up to this point, one might conclude that fermionic PIMC
simulations appear to be doomed as (1) we do not have a
good measure for the statistical uncertainty, which would
make the Monte Carlo expectation value an uncontrolled
approximation, and (2) the distribution of the ratio P(V S/S)
is fat-tailed and outliers exceeding 16 times the standard
deviation (often called black swan events [113]) do appear
with finite probability. However, as we will see next, all is
not lost.

In Fig. 4, we show PIMC results for the same conditions as
in Fig. 3, but with dipole-interaction and a coupling constant
λ = 0.1 (i.e., ultracold atoms). Due to the dipolar repulsion,
fermionic exchange is suppressed, and we find an average
sign of S ≈ 0.165, as compared to S ≈ 0.0025 for the non-
interacting case. Panel 4(a) shows results for P(S), and we
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FIG. 3. PIMC simulation results with Ns = 600 independent seeds (and M = 5 × 106 measurements per seed) for N = 6 spin-polarized
noninteracting fermions in a 2D harmonic trap for β = 1. Panels (a) and (b) depict the histograms of the average values per seed for the sign
〈S〉′

i and the interaction energy times the sign 〈V S〉′
i. Panel (c) shows the corresponding histogram of fermionic expectation values 〈V S〉′

i / 〈S〉′
i

[cf. Eq. (4)], again evaluated for each seed, and the blue arrows indicate two extreme values at V ≈ 22.7 and V ≈ 26.4. The solid red lines
depict Gaussian fits according to Eq. (10). Finally, panel (d) shows the individual results for 〈V S〉′

i / 〈S〉′
i (blue, left ordinate) and 〈S〉′

i (red, right
ordinate) for all Ns seeds. The two red crosses at i = 228 and i = 513 indicate the two smallest results for 〈S〉′

i, which, in turn, are responsible
for the extreme values in 〈V S〉′

i / 〈S〉′
i.

again find the expected normal distribution. In contrast to
the noninteracting case, this time P(S) has a significantly
smaller relative deviation σ/S, and no expectation values
Si with a value that is an order of magnitude smaller than
the average appear. Consequently, there are no spikes in the
seed averages of the ratio, and the corresponding distribution
P(V S/S) [Fig. 4(b)] cannot be distinguished from a Gaussian.

In summary, the nonlinear nature of the fermionic expec-
tation value Eq. (4) causes the distribution P(V S/S) to be

non-Gaussian, with a fat tail toward larger values. To put it
another way, if the relative uncertainty of the denominator
(i.e., S) is large, the smallest signs Si lead to spikes in the
fermionic observable. In contrast, if the relative error of
the sign is small (as in Fig. 4), these spikes do not appear
(or are sufficiently unlikely), and the resulting distribution
P(V S/S) cannot be distinguished from a normal distribution
in practice. Since S itself does obey a normal distribution in
any case, this condition can always be checked, and fermionic

10-1

100

101

102

103

 0.16  0.165  0.17

(a)

P(
S)

S

data
t

10-2

10-1

100

101

102

 10.3  10.35  10.4

(b)

P(
VS

/S
)

VS/S

data
t

FIG. 4. PIMC simulation results with Ns = 800 independent seeds (and M = 5 × 106 measurements per seed) for N = 6 spin-polarized
fermions with dipole interaction (i.e., ultracold atoms) and λ = 0.1 in a 2D harmonic trap for β = 1. Panel (a) depicts the histograms of the
average values for the sign 〈S〉′, and panel (b) shows the corresponding histogram of fermionic expectation values 〈V S〉′

i / 〈S〉′
i [cf. Eq. (4)],

again evaluated for each seed.
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PIMC results can safely be labeled as quasiexact after all.
Thus, the statistical uncertainty for the fermionic expectation
values given in all figures and data tables has been computed
assuming the Gaussian form from Eq. (11), which is reliable
for all presented cases.

B. Temperature dependence

Let us next investigate the manifestiation of the FSP upon
decreasing the temperature. To this end, we simulate spin-
polarized electrons in a 2D harmonic trap at intermediate
coupling λ = 0.5. Figure 5(a) shows PIMC data for the β

dependence of the average sign S for N = 6 (red squares)
and N = 9 (blue crosses). First and foremost, we note that
both data sets exhibit a qualitatively similar behavior: For
small β, the system is nearly classical and S is large, whereas
it monotonically decreases with increasing β. In addition,
the sign for N = 9 is always smaller than for N = 6, as is
expected. To verify the predicted exponential decrease of S
with β [see Eq. (5) in Sec. II B], we perform fits (starting at
β � 1) of the form

SN (β ) = aN e−bN β, (12)

with aN and bN being the free parameters. The results are
shown as the dashed lines and are indeed in excellent agree-
ment with the PIMC data for β � 1. Note that at higher tem-
perature, the free-energy density f [cf. Eq. (5)] changes sig-
nificantly with β, which leads to the deviation from Eq. (12)
in this regime.

Panel 6(b) shows the kinetic energy K for the case of N = 6
both for fermions (blue crosses) and bosons (red squares).
First, we mention that the relative deviations between Bose
and Fermi statistics increase toward low temperature, as it
is expected. Second, the red curve is very smooth over the
entire depicted β range, and the error bars cannot be seen with
the naked eye. In contrast, the fermionic data are accurate for
small β, but eventually the error bars markedly increase when
S becomes small.

To check if we are really running into the exponential
wall as predicted by Eq. (6), we show the corresponding
relative statistical uncertainty of K (blue crosses) and the
total potential energy V (i.e., both interaction and external
potential, red squares) in Fig. 5(c). The dashed lines depict
exponential fits (for β � 1) of the form


K

K
(β ) = a6eb6βcK ,


V

V
(β ) = a6eb6βcV , (13)

with CK (CV ) being the only free parameter, as a6, b6 have
already been determined by a fit to S. Evidently, the data and
the fit are in excellent agreement both for V and K , which
(sadly) confirms the severity of the FSP.

Extensive PIMC data for the temperature-dependence of
electrons in 2D and 3D (cf. Sec. III E) are given in Table III.

Let us conclude this section on the temperature dependence
with a brief excursion to the distribution of permutation-
cycles. In Fig. 6, we investigate the probability to find a
particle involved in a permutation cycle of length l , P(l )l , see
Ref. [88] for a topical introduction and extensive discussion.
Figure 6(a) shows simulation results for N = 6 noninteracting
fermions in a 2D harmonic confinement at β = 0.3 (red
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FIG. 5. Temperature-dependence of the fermion sign problem
for electrons in a 2D harmonic trap: Panel (a) shows the average sign
for N = 6 (red squares) and N = 9 (blue crosses) electrons in a 2D
harmonic trap with λ = 0.5. In panel (b), we plot the corresponding
kinetic energy for N = 6 for both Fermi (blue crosses) and Bose
statistics (red squares), and panel (c) depicts the relative statistical
uncertainty for the case of fermions both for the kinetic energy (blue
crosses) and the total potential energy (red squares), obtained for
calculations with Ns = 80 seeds and M = 5 × 106 measurements
per seed. The PIMC data for S and different energies are given in
Table III (for N = 6).

squares), β = 1 (blue crosses), and β = 5 (green circles). At
the highest temperature, the paths resemble classical particles
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FIG. 6. Permutation cycle distribution for N = 6 spin-polarized
fermions in a 2D harmonic trap: Panel (a) shows the probability of a
single particle to be involved in a exchange-cycle of length l , P(l )l ,
for noninteracting fermions at β = 0.3 (red), β = 1 (blue), and β =
5 (green). The dashed lines correspond to the theoretical result from
Eq. (14), and the points to our PIMC data. Panel (b) shows the same
information for electrons (Coulomb, solid red) and ultracold atoms
(dipole interaction, dashed blue) with λ = 0.5 for β = 0.3 (squares)
and β = 1 (crosses).

(see also Table IV), pair exchanges are quite improbable
and approximately 90% of particles are not involved in any
exchange. Therefore, we find an average sign of S ≈ 0.51.
At β = 1, the situation has already drastically changed, and
the distribution has become significantly flatter. Due to the
resulting cancellation of positive and negative terms, the sign
has decreased to S ≈ 0.002. At the lowest temperature, β = 5,
the distribution has become almost completely flat and the
sign vanishes within the given statistical uncertainty. In fact,
it does hold P(l )l = 1/N in the zero temperature limit, which
means that PIMC simulations are not possible in the ground
state since the sign vanishes [114].
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FIG. 7. System-size dependence of the fermion sign problem
for electrons in a 2D harmonic trap: Panel (a) shows the average
sign S for N = 6 spin-polarized electrons with λ = 0.5 for β = 1
(red) and β = 0.3 (blue) with the points [dashed lines] depicting
the PIMC data [a fit according to Eq. (15)]. Panel (b) shows the
corresponding results for the total energy per particle E/N for Fermi
(red squares) and Bose statistics (blue crosses). The PIMC results for
S and different energies are given in Table I.

To verify the correctness of our implementation, we com-
pare our PIMC data to the theoretical result for P(l ), which
can be phrased in terms of the noninteracting partition func-
tion at different temperature and system-size as [88,114]

P(l ) = Z ′
1(lβ )Z ′

N−l (β )

l Z ′
N (β )

. (14)

The corresponding dashed lines are in perfect agreement with
our PIMC data for all temperatures β and cycle-lengths l .

In Fig. 6(b), we show results for P(l )l for the same con-
ditions as in Fig. 6(a), but with Coulomb (red) and dipole
(blue) interaction and coupling strength λ = 0.5. For β =
0.3, we observe a qualitatively similar behavior as for the
noninteracting case shown above. Still, the repulsion between
the particles leads to a steeper decay of P(l )l toward large l ,
which is even more pronounced in the case of dipoles. This
is a direct consequence of the stronger repulsion at small
distances in the latter case, which renders the formation of
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TABLE IV. Snapshots from PIMC simulations of N = 6 spin-polarized fermions with coupling strength λ = 0.5 and P = 200 imaginary-
time slices. The left, center, and right column correspond to the inverse temperature β = 0.3, β = 1, and β = 5, respectively, and the top,
center, and bottom row to a system of ultracold atoms with dipole interaction in 2D, electrons with Coulomb interaction in a 2D harmonic trap,
and electrons in a 3D harmonic trap. The corresponding full β-dependence of the average sign S for all three systems is shown in Fig. 10.

β = 0 .3 β = 1 β = 5

exchange-cycles within the simulation even more improbable,
cf. the discussion of Fig. 9. For β = 1, the distribution is
significantly less flat than in the noninteracting case, which
is again more pronounced for the dipolar interaction.

C. System-size dependence

Another question that is of fundamental importance re-
garding fermionic PIMC simulations is the manifestation of
the FSP with the system size. This topic is investigated in
Fig. 7(a), where we show PIMC results for the average sign
S for N = 6 electrons in a 2D harmonic trap with the cou-
pling strength λ = 0.5 and the inverse temperature β = 1 (red
squares), and β = 0.3 (blue crosses). Both data sets exhibit
a steep decay with increasing N , which is significantly more
pronounced for the lower temperature, as it is expected. To
check the predicted exponential decay with N , we perform
fits of the form

Sβ (N ) = aβe−bβ N , (15)

with aβ, bβ being the free parameters. The results for Eq. (15)
are shown as the dashed lines, and are in qualitative agreement
with the PIMC data. Still, the simulation results appear to

exhibit an even faster decay than the exponential function
from Eq. (15).

To explain this finding, we plot the radial density n(r) for
β = 0.3 and three different particle numbers in Fig. 8. Evi-
dently, the addition of particles leads to an increased density,
in particular around the center of the trap. Therefore, the sys-
tem becomes more quantum degenerate, and the average sign
decreases even faster than the exponential fit from Eq. (15).
It is important to note that the situation is entirely different
for a uniform, periodic system like the UEG (see Sec. III F),
where a change in system size does hardly affect the degree of
degeneracy because the density remains constant. Therefore,
one does indeed find an exponential decay of S with N in that
case, cf. Fig. 12.

Let us conclude this discussion of the system-size depen-
dence of the FSP with the consideration of an observable. To
this end, we show the N dependence of the total energy per
particle E/N for the case of β = 1 in Fig. 7(b) both for Fermi
(blue crosses) and Bose (red squares) statistics. Evidently,
the energy per particle does not remain constant for both
cases, but increases, as is expected. This trend is even more
pronounced for the case of fermions, which are subject to the
Pauli blocking. Thus, they get pushed away from the center
of the trap, where the energy due to the external harmonic
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FIG. 8. System-size dependence of the radial density n(r) for
spin-polarized electrons (Coulomb) in a 2D harmonic confinement at
λ = 0.5 and β = 0.3. The red squares, blue crosses, and green circles
correspond to N = 9, N = 14, and N = 18 electrons, respectively.

potential is large. In addition, we note the increasing error
bars in the blue curve, which do not appear for bosons, and
are a direct consequence of the corresponding decrease in S,
cf. Eq. (6).

Extensive PIMC results for the N dependence of spin-
polarized electrons are given in Table I.

D. Interaction and coupling-strength dependence

A somewhat less well-understood question is the de-
pendence of the FSP on the interaction-type and coupling
strength. In Sec. III B, we have already seen that ultracold
atoms with dipole interaction [α = 3, cf. Eq. (7)] exhibit
a comparatively less severe sign problem than electrons at
the same value of the coupling parameter λ, cf. Fig. 6. In
Fig. 9 , we present a more systematic investigation of this
issue by performing PIMC simulations of N = 6 electrons
(red squares) and ultracold atoms (blue crosses) at β = 1.
Panel 9(a) shows the λ dependence of the average sign S over
more than three orders of magnitude in the coupling strength.
At λ = 10, the particles are spatially separated by the strong
repulsion for both types of interaction and fermionic exchange
is suppressed. With decreasing λ, the particles get increasingly
close to each other and the sign decreases for both data
sets, although it does so significantly faster in the case of
the Coulomb interaction. More specifically, the red curve has
already almost attained the noninteracting limit (λ = 0, dash-
dotted black line) at λ = 0.01, whereas the corresponding blue
data point is still one order of magnitude larger. This is a
direct consequence of the comparatively larger repulsion for
the dipole-interaction at small distances, as we have already
discussed in Sec. III B.
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FIG. 9. Impact of interaction-type on the fermion sign problem:
Panel (a) shows the λ dependence of the average sign S for N = 6
particles in a 2D harmonic trap at β = 1 for Coulomb interaction
(electrons, red squares) and dipole interaction (ultracold atoms, blue
crosses). The dashed line depicts the noninteracting limit. Panel
(b) depicts the total potential energy V , with the grey symbols corre-
sponding to the bosonic expectation value. In panel (c), we show the
radial density distributions n(r) for λ = 0.1 (and the noninteracting
case, [top] green lines) for both Bose (dashed lines) and Fermi (solid
lines) statistics. The PIMC results for S and different energies are
given in Table II.

023307-11



T. DORNHEIM PHYSICAL REVIEW E 100, 023307 (2019)

10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5

S

2D Coulomb
2D Dipole

3D Coulomb
 

data
t

FIG. 10. Dependence of the fermion sign problem on the inverse
temperature β: Shown are PIMC results for N = 6 spin-polarized
fermions with λ = 0.5 in 2D with Coulomb interaction (electrons,
red squares), 2D with dipole interaction (ultracold atoms, blue
crosses), and in 3D with Coulomb interaction (electrons, green cir-
cles). The dashed lines depict exponential fits according to Eq. (12).
All PIMC results for S and different energies are given in Table III.

Let us next consider the corresponding λ dependence of the
potential energy V , which is shown in Fig. 9(b). The squares
and crosses depict data for Coulomb and dipole interactions,
respectively, and the grey points show the corresponding re-
sults for Bose statistics. At strong coupling, quantum statistics
are negligible, the grey and colored points are in perfect agree-
ment, and the system resembles a semiclassical Coulomb or
dipole system. With decreasing λ, there appears a transition
region until eventually both the fermions and the bosons attain
their respective noninteracting limit (dash-dotted black lines).
Remarkably, this happens much faster for fermions, which
are already in good agreement for both types of interaction
at λ = 0.1, than for bosons, which still significantly deviate
for λ = 0.01.

The reason for this striking difference is illustrated in
Fig. 9(c), where we show the radial density n(r) at λ = 0.1
for Coulomb- (red), dipole- (blue), and no interaction (green)
and for both Fermi (solid) and Bose (dashed) statistics. Let us
first consider the three fermionic curves, which are in good
agreement with each other, as is by now expected from the
observed corresponding agreement in V [cf. Fig. 9(b)]. In
stark contrast, the bosonic curve for the dipole-interaction
significantly deviates from the other two, which explains the
observed behavior in both S and V : for Coulomb-interaction
(or the noninteracting case), the paths that are sampled within
our PIMC simulation are clustered around the center of the
trap. The fermionic density, which remains large for much
higher values of r, must subsequently be recovered by the
cancellation and division by a small average sign S accord-
ing to Eq. (4). For dipole-interaction, on the other hand,
the strong repulsion at small distances has a very similar
effect to the Pauli blocking, so that already the bosonic
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FIG. 11. Verification of the virial theorem for N = 6 spin-
polarized fermions with λ = 0.5: Relative difference (in %) between
the kinetic energy K computed via the standard PIMC thermo-
dynamic estimator and the virial theorem [cf. Eq. (16)]. The red
squares, blue crosses, and green circles correspond to Coulomb
interaction in 2D (α = 1), dipole interaction in 2D (α = 3), and
Coulomb interaction in 3D (α = 1), respectively, and panels (a) and
(b) show PIMC results for bosons and fermions. The red and blue
points have been shifted by ±0.2% (±2%) in the case of bosons
(fermions) for better visibility. The corresponding results for the
average sign S are shown in Fig. 10.

density is very close to its fermionic analog. Consequently,
the bosonic and fermionic configuration spaces and partition
functions are almost equal, and the average sign S ≈ 0.17 is
large.

In summary, we have found that the FSP is much
less severe for interaction types with a strong short-
range repulsion. This makes the future systematic study
of ultracold fermionic dipolar atoms [98] (in the trap,
in periodic boundary conditions, or in other geome-
tries like bilayers [115]) a promising project for future
research.

Extensive PIMC data for the coupling-strength dependence
of both electrons and ultracold atoms are given in Table II.
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FIG. 12. The fermion sign problem in PIMC simulation of the
uniform electron gas at metallic density (rs = 2): Shown are the
temperature dependence of the average sign S for N = 14 spin-
polarized electrons (bottom x axis) and the system-size dependence
at θ = 0.75 (top x axis). The symbols depict our PIMC data and the
dashed lines correspond to exponential fits according to Eqs. (12)
and (15).

E. Dimensionality versus Interaction-type, virial theorem

The last question to be investigated in this work regarding
fermions in a harmonic confinement is the impact of the
dimensionality. In Fig. 10, we show the β dependence of
the average sign S for N = 6 and λ = 0.5. The red squares,
blue crosses, and green circles depict our PIMC results for
2D Coulomb, 2D dipoles, and 3D Coulomb, respectively. The
corresponding dashed lines depict exponential fits according
to Eq. (12), which are in excellent agreement with the data
for all types of systems. As usual, the dipole interaction leads
to a significantly less steep decay of S with β, cf. Sec. III D.
In addition, we find that the Coulomb systems exhibit a very
similar behavior of S, although the exponential decrease starts
at somewhat lower temperatures in 3D. This is most likely due
to the additional degree of freedom in this case, which allows
the electrons to avoid each other more effectively.

In Table IV, we compare snapshots from our PIMC sim-
ulation for all three kinds of system types at three different
temperature regimes. For β = 0.3 (left column), all systems
exhibit a very similar behavior, with the extension of the
paths, which is proportional to the thermal wave length λβ =√

2π h̄2β/m, being significantly smaller than the average
inter-particle distance r. At β = 1 (center column), the paths
are clustered more closely around the center of the trap in all
three cases (the scale is equal for all three depicted values
of β), and λβ is comparable to r. In the case of dipole
interaction (top row), the paths of individual particles are
still mostly separated by the strong short-range repulsion (cf.
Sec. III D), and no exchange cycle is present in the snapshot
(the two particles in the front are close, but not connected).
For 2D Coulomb (center row), on the other hand, fermionic
exchange already plays a dominant role, and there appear
two permutation-cycles with N = 3 and N = 2 particles in it.
Going to 3D (bottom row), the situation looks qualitatively
the same as in 2D, and permutation cycles are present, too. At
low temperature, β = 5, the thermal wavelength is larger than
r in all three cases and the system is fully quantum degenerate.
Yet, the dipole interaction manages to push the particles away
from each other, and the corresponding average sign is several
orders of magnitude larger than for Coulomb interaction, cf.
Fig. 10. For Coulomb interaction in 2D and 3D, the particles
form an entangled knot of paths around the center of the trap,
the probability to find an exchange cycle of length l is almost
constant (cf. Fig. 6), and the average sign vanishes within the
given statistical uncertainty.

Let us conclude this section by investigating the virial
theorem [116], which gives a relation between the different
contributions to the total energy. For example, it holds that

K = EHO − α
V − EHO

2
, (16)

with V and EHO being the total potential energy and the energy
due to the external potential, respectively. Recall that α ∈
{1, 3} distinguishes between Coulomb and dipolar interaction,
cf. Eq. (7).

In Fig. 11, we show the relative difference between Eq. (16)
and the kinetic energy as evaluated using the standard PIMC
thermodynamic estimator (for an extensive discussion on
energy estimation in PIMC simulations, see Ref. [117]).
Figures 11(a) and 11(b) show results for bosons and fermions,
and the red squares, blue crosses, and green circles depict data

FIG. 13. Snapshots from a PIMC simulation of the spin-polarized UEG with N = 14 electrons at rs = 2 with P = 200 imaginary time
slices. The temperature parameters are chosen as θ = 4 (a), θ = 1 (b), and θ = 0.25 (c).
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for 2D Coulomb, 2D dipoles, and 3D Coulomb, respectively,
with the red and green curves having been shifted for better
visibility. Due to the absence of the FSP for Bose statistics,
the statistical uncertainty is of the order of 
K/K ∼ 10−4,
and the difference between both results for K vanishes within
the error bars for all three data sets. For fermions, the error
eventually explodes with increasing β, but Eq. (16) still holds
within the given uncertainty. Since Eq. (16) typically exhibits
a smaller variance than the thermodynamic estimator for K ,
this route constitutes the method of choice and the results have
been included as an extra column in all data tables as Kvir.

F. The uniform electron gas

Let us conclude this investigation of the FSP with a study
of the uniform electron gas, which is shown in Fig. 12. The
top abscissa corresponds to the blue crosses, which depict the
system-size dependence for the UEG at metallic density (rs =
2) in the WDM regime [8], θ = 0.75. Note that the density is
kept constant by increasing the volume V of the simulation
cell when adding more electrons. Therefore, increasing N
only mitigates finite-size effects, but does not significantly
affect the degree of quantum degeneracy. The dashed blue line
depicts an exponential fit according to Eq. (15), which is in
excellent agreement with our data points even for surprisingly
small system size. Thus, the FSP does indeed constitute an
exponential wall in terms of particle number N for the UEG as
predicted in Sec. II B, and the situation becomes only worse
for the harmonic confinement. The red squares in the same
plot show the decrease of S with the inverse temperature for
N = 14 electrons at rs = 2 (bottom abscissa). Again, we find
an exponential decay with β ∼ θ−1, and simulations become
unfeasible for θ � 0.5 even for such a comparatively small
system size (a typical system size for the UEG are N = 33
electrons [66,73,75]).

Lastly, we show snapshots from our PIMC simulation of
the UEG in Fig. 13 for N = 14 electrons at rs = 2 and θ = 4
(a), θ = 1 (b), and θ = 0.25 (c). At the highest temperature,
the UEG resembles a semi-classical one-component plasma
and the average sign S ≈ 0.77 is large. Figure 13(b) depicts a
configuration from the interesting transition regime, where λβ

becomes comparable to r and fermionic exchange effects are
important, but do not yet dominate. At θ = 0.25, the system is
fully degenerate, the sign vanishes within the given statistical
uncertainty, and standard PIMC simulations are unfeasible.

IV. SUMMARY AND DISCUSSION

In summary, we have presented a comprehensive, hands-on
discussion of the FSP in PIMC simulations of degenerate
Fermi systems. In particular, we have investigated the man-
ifestation of the FSP regarding different parameters and have
found the following: (i) Our PIMC data for the average sign
S are consistent with an exponential decrease in S with in-
creasing the inverse temperature β for all considered system-
and interaction types. (ii) while we do find an exponential
decrease of S with system size for the uniform electron gas, it
decreases even faster for the case of the harmonic trap. This is
explained by the increase in the radial density distribution n(r)
around the center of the trap, which leads to a higher degree

of quantum degeneracy. (iii) both the coupling strength λ and
the interaction type have a large impact on the manifestation
of the FSP. First, there is a transition with decreasing λ from
the strongly coupled, quasiclassical regime (with S ≈ 1) to
the respective noninteracting limit. Second, the short-range
dipole interaction leads to a significantly less severe FSP com-
pared to the long-range Coulomb repulsion, as the particles
are effectively separated from each other within the PIMC
simulation, which makes the formation of permutation-cycles
less probable. (iv) The increase of the dimensionality from 2D
to 3D in the case of electrons in a harmonic confinement leads
to a somewhat less severe FSP, although the scaling with β is
quite similar.

In addition, we have provided a practical example for the
Monte Carlo sampling of a fermionic observable, and have
studied the probability distribution P(V S/S) of a fermionic
expectation value in the presence of the sign problem. In the
case of a severe FSP, when the relative statistical uncertainty
of S is large, P(V S/S) is given by a superposition of a Gaus-
sian and a Lorentzian, which leads to a fat tail at large values
and a divergence of the variance. For small errors in S, on the
other hand, the distribution of the fermionic observable cannot
be distinguished from a simple Gaussian, and the fermionic
PIMC simulation is quasiexact.

We hope that our results—both regarding the manifestation
of the FSP and the extensive data tables—will aid the future
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FIG. 14. Convergence with the number of primitive high-
temperature factors P for N = 6 spin-polarized electrons at β = 1.3
and λ = 0.5 in a 2D harmonic trap. Panels (a) and (b) show PIMC
results for the potential and kinetic energy, respectively.
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development of simulation approaches for quantum degener-
ate, correlated Fermi systems. Moreover, the comparatively
less severe manifestation of the FSP in the case of dipole
interaction makes ab initio PIMC simulations of ultracold
dipolar atoms a promising project for future research, which
could allow for unprecedented insights into, e.g., the emer-
gence of pairing and fermionic superfluidity for a strongly
correlated system.
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APPENDIX: CONVERGENCE WITH
IMAGINARY-TIME SLICES P

Since the operators for the kinetic and potential energy,
K̂ and V̂ , do not commute, the canonical density matrix
within the PIMC formalism is typically decomposed using
a suitable factorization scheme, see Refs. [106,107] for a
detailed discussion. In the present paper, we restrict ourselves
to the primitive factorization,

ρ̂ε = e−ε(K̂+V̂ ) = e−εK̂ e−εV̂ + O(ε2), (A1)

with ε = β/P being the so-called imaginary time step, which
is justified by the Trotter formula [89]:

e−β(K̂+V̂ ) = lim
P→∞

(e−εK̂ e−εV̂ )P. (A2)

Therefore, P constitutes a convergence parameter within our
simulations, and the factorization error in the expectation
value of an observable A due to Eq. (A1) scales as [106]

A(P = ∞) = A(P) + δA

P2
. (A3)

In the following, we will investigate the convergence with P
for a few representative cases.

In Fig. 14, we show the convergence of the potential energy
(a) and kinetic energy (b) with P for N = 6 spin-polarized
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FIG. 16. Convergence with the number of primitive high-
temperature factors P for N = 6 ultracold atoms with dipole inter-
action at β = 1 and λ = 3 in a 2D harmonic trap. Panels (a) and
(b) show PIMC results (green crosses) and a parabolic fit [cf.
Eq. (A3)] for the potential and kinetic energy, respectively.
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electrons with β = 1.3 and λ = 0.5 in a 2D harmonic trap,
i.e., a data point from Table III. While this parameter combina-
tion does not constitute the lowest temperature considered in
this paper, it is still a good choice for this convergence study.
For lower temperatures, the FSP leads to an exponentially
increasing statistical uncertainty, and even large factorization
errors cannot be resolved. Still, even at β = 1.3 no factor-
ization error can be resolved within the given error bars.
For completeness, we mention that the increasing noise in
K toward large P is a direct consequence of the utilized
thermodynamic estimator, see Ref. [117] for an extensive
discussion.

A second degree of freedom worth considering is the
interaction strength λ. In particular, one would expect that,
for fixed temperature, the factorization error is most pro-
nounced for intermediate coupling, as the system becomes
effectively classical or noninteracting in the limits of λ �

1 and λ → 0, respectively. To this end, we consider N =
6 spin-polarized electrons in a 2D harmonic trap at λ = 3
and β = 1 (i.e., a parameter set from Table II) in Fig. 15.
The green crosses correspond to the PIMC results, and the
dashed red lines to parabolic fits according to Eq. (A3) for
20 � P � 1000. First and foremost, we do find a significant
yet small dependence of our PIMC data on P, which is
fully consistent with the expected factorization error. More-
over, we note that the data points for P = 100, 200, 500,

and 1000 cannot be distinguished within the given error
bars, which means that the results for P = 200 are indeed
quasiexact.

Lastly, we consider the case of dipole interaction (ultracold
atoms) in Fig. 16 for the same parameters as in Fig. 15. Again,
we find good agreement between the PIMC data and Eq. (A3),
and P = 200 are converged within the given statistical uncer-
tainty.
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