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Probing predictions due to the nonlocal interface Hamiltonian: Monte Carlo simulations of
interfacial fluctuations in Ising films
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Extensive Monte Carlo simulations have been performed on an Ising ferromagnet under conditions that would
lead to complete wetting in a semi-infinite system. We studied an L × L × D slab geometry with oppositely
directed surface fields so that a single interface is formed and can undergo a localization-delocalization transition.
Under the chosen conditions the interface position is, on average, in the middle of the slab, and its fluctuations
allow a sensitive test of predictions that the effective interactions between the interface and the confining surfaces
are nonlocal. The decay of distance dependent correlation functions are measured within the surface, in the
middle of the slab, and between middle and the surface for slabs of varying thickness D. From Fourier transforms
of these correlation functions a nonlinear correlation length is extracted, and its behavior is found to confirm
theoretical predictions for D > 6 lattice spacings.
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I. INTRODUCTION

The theoretical understanding of interfaces between coex-
isting phases and their interaction with confining boundaries
has been a long-standing challenge [1–8]. Thus, phenomena
such as wetting and dewetting [3–8], droplet spreading at
walls [3,4,8], capillary condensation in pores [1,2,7,9–14],
and heterogenous nucleation [15–23] are still subjects of
research. In spite of decades of research, many questions still
are open.

A very popular concept treats the interface as an essentially
infinitesimally thin dividing surface between the coexisting
phases (Fig. 1) [1–8]. Here it is anticipated that by suffi-
cient coarse-graining short-wavelength degrees of freedom
are eliminated [24]. The configurations of the interface are
described by a (smooth) single-valued function z = �(x, y),
describing its heights over some confining external (inert)
wall in the x-y plane. Thus, there are no overhangs of the
interface, and all bulk fluctuations inside the bulk phases are
completely eliminated. Thus, one describes the system (which
now only exhibits long-wavelength interfacial fluctuations as
its degrees of freedom) by the so-called “capillary wave” [25]
Hamiltonian.

However, while the idea expressed in Fig. 1 is clearly very
appealing, the extent to which this reduction of the problem is
consistently feasible is still controversial (e.g., [26–28]). Even
for a “free” interface (very far from any wall) it is clear that
the description needs to be modified on short-length scales for
which the bulk phases also exhibit nontrivial correlations (of
the local density of the fluid, in the case of the vapor-liquid
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coexistence). As Höfling and Dietrich [26] put it, “the rep-
resentation of a liquid-vapor interface by a two-dimensional
manifold renders only an incomplete picture of this inherently
three-dimensional object.” This problem becomes even more
severe when considering a second-order wetting transition,
where a change of suitable parameters (e.g., temperature T ,
or strength of a local surface potential acting on fluid particles
close to the wall, etc.) leads to a continuous unbinding of
the interface from the wall [5–7]. Thus, the theory of criti-
cal wetting has been a subject of long-standing debate [26,
29–42]. However, systems with short-range surface forces on
the particles exhibiting a second-order transition are difficult
to find experimentally [6], and much evidence on this prob-
lem stems only from Monte Carlo simulations of a nearest-
neighbor lattice gas or Ising model with a local surface field
H1 [33,36,41–43]. But it is of great conceptional importance
to understand what goes wrong when the standard capillary
wave Hamiltonian, where the wall simply produces a local
potential Vwall(�), is used.

A possible resolution of the problem was pointed out
by Parry and co-workers [38–40,44,45] who suggested
that the actual interaction between the interface [described
by the variable {z = �(x, y)}] and the wall [described by
the surface z(x, y) = 0] must be nonlocal. So the potential
felt by the interface at the coordinates x, y does not only
depend on the height z = �(x, y) at this point, but also the
interfacial positions �(x′, y′) at all the neighboring points in its
environment. This nonlocality causes long-ranged interfacial
interactions controlling the repulsion from the wall that are not
modeled correctly when only the local wall potential is used.

However, discriminating between the concept of a local
wall potential Vwall(�) acting on the interface in Fig. 1 and
the concept of nonlocal interactions is a subtle matter, and
this is the subject of the present paper. Monte Carlo sim-
ulations of interfacial fluctuations of thin Ising films with
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FIG. 1. Schematic illustration of the configuration of a coarse-
grained interface (shaded) at local height z = �(x, y) separating a
liquid film at a wall from the vapor phase in thermal equilibrium at
conditions where the phases can coexist in the bulk. The description
in terms of the capillary wave Hamiltonian assumes that the only im-
portant degrees of freedom are smooth, long-wavelength undulations
of the interface, with typical correlation length ξ||, which is much
larger than any molecular linear dimensions close to a second-order
wetting transition.

competing walls permit the testing of specific consequences
of the nonlocal theory. In the next section we shall sketch the
theoretical background necessary to understand how this can
be done. In Sec. III, we shall specify the simulation model
and describe our results and their analysis. While preliminary
results of this approach have been briefly described in a
Ref. [46], this work suffered from an unfortunate choice of
parameters, putting the system into the critical region of the
second-order wetting transition (as a later study of critical
wetting has revealed [42]) rather than in the region where
complete wetting prevails. The present work uses conditions
where this problem is avoided and also extends the study to
significantly larger systems. Thus the finite-size effects, still
quite visible in the preliminary work [46], now are essentially
eliminated. Gratifyingly, the present work no longer suffers
from some discrepancies between theoretical predictions and
simulations, unlike [46]. Section IV then briefly summarizes
our conclusions.

II. THEORETICAL BACKGROUND

The capillary wave Hamiltonian that is normally used to
describe the interfacial fluctuations of an interface interacting
with a wall (Fig. 1) is

H[�(x, y)] =
∫

dx
∫

dy

[∑
2

(∇�)2 + Vwall(�)

]
, (1)

where
∑

is the interfacial stiffness, and Vwall describes the
local wall potential which constrains the fluctuations of the
local height �(x, y) of the interface.

However, while a local potential is plausible for a point
particle interacting with a wall, the interface is an extended
object, and, as pointed out in the Introduction, a nonlo-
cal interaction must be expected [38–40,44,47]. Parry et al.
[44,45] constructed a systematic expansion for this nonlocal
potential, and the leading-order diagrams of this diagrammatic
expansion are depicted in Fig. 2. To be specific, the diagram

FIG. 2. Schematic illustration of the diagrams representing the
leading-order contributions to the expansion of the nonlocal interac-
tion between the wall (horizontal straight line) and the fluctuating
interface (curved line).

of Fig. 2(a) represents a contribution

V1 =
∫

dx
∫

dy
√

1 + (∇�)2 e−κ�(x,y), (2)

where κ is of the order of the inverse correlation range in the
bulk. The diagram of Fig. 2(b) corresponds to

V2 =
∫

dx1

∫
dy1

∫
dx2

∫
dy2 U (x12, �12), (3)

where x12 is the distance between the points (x1, y1) and
(x2, y2) while �12 = [�(x1, y1) + �(x2, y2)]/2 and U (x, �) is an
isotropic two-body interfacial interaction.

For thick wetting films (κ�12 � 1) Eq. (3) can be rear-
ranged as

V2 ≈
∫

dx1

∫
dy1

∫
dx2

∫
dy2 e−κ�(x1,y1 )

× e−κx2
12/4ξ 2

NL

4πξ 2
NL

e−κ�(x2,y2 ). (4)

Equation (4) involves the characteristic nonlocal correlation
length of the Gaussian repulsion appearing in Eq. (4) as

ξNL =
√

�12/κ. (5)

This is a second parallel correlation length associated with
interfacial fluctuations, in addition to the diverging length ξ||
that is traditionally considered for critical wetting.

This description readily removes certain inconsistencies
that appear when one works with only Eq. (1), such as
violations of sum rules for correlation functions. The con-
sequences of the nonlocal interface model are most easily
explored for the case of “complete wetting,” i.e., a system
at temperatures where the fluid at liquid-vapor equilibrium
would be above its wetting transition temperature, and slightly
off bulk coexistence, so that the average distance �̄ of the
interface from the wall is much larger than all microscopic
distances (which are of order κ−1) but still finite. Nonlocality
effects then show up in the site-site correlation C(z1, z2, r) of
the local order parameter at two sites at heights z1, z2 above
the wall and separated by a radial distance r. For the liquid-
vapor transition, the order parameter is the density difference
between liquid and vapor. In the lattice-gas Ising model one
simply studies the spin-spin correlations at the appropriate
lattice sites. Specifically, we consider the Fourier transform
[48]

G(z1, z2, �q) ≈
∫

drx

∫
dry exp[i(qxrx + qyry)]C(z1, z2, r),

(6)
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FIG. 3. (Schematic sketch of an interface at height z = �(x, y)
with average height �̄ (broken horizontal straight line) above a wall at
z = 0 (shaded). The thick straight line between points at the surface
at distance r indicated by squares indicates the correlation C(0, 0, r),
while the thick straight line between two points at distance z = �̄

(circles) indicates the correlation C(�̄, �̄, r). The third thick straight
line connecting a point at the surface with a point at z = �̄ represents
the correlation C(0, �̄, r).

where rx, ry are the x, y coordinates of the distance vector �r,
with r2 = r2

x + r2
y . Specifically, we consider three choices of

z1, z2 (Fig. 3):

G(�̄, �̄, q) ∝ (1 + q2ξ 2
|| )

−1, (7)

G(0, �̄, q) ∝ exp
( − q2ξ 2

NL/2
)
/(1 + q2ξ 2

|| ), (8)

and

G(0, 0, q) ∝ exp
( − q2ξ 2

NL

)
/(1 + q2ξ 2

|| ). (9)

Note that G(z1, z2, q) in Eq. (6) always contains a regular
background term and a term that becomes singular if z1 and/or
z2 = �̄ and �̄ diverges [41]. Only the singular part is addressed
in Eqs. (7)–(9). However, since G(0, 0, 0) always stays finite,
the singular part does not dominate G(0, 0, q), and hence
Eq. (9) is not useful for extracting the correlation lengths,
hence G(0, 0, q) will not be used further.

Equations (7)–(9) are supposed to hold in the regime of
small wave numbers q/κ � 1, of course, and since [Eq. (5)]
ξ 2

NL = �̄/κ , the terms q2ξ 2
NL = q�̄(q/κ ) can be of order unity

when q�̄ � 1. We recall that for complete wetting the dom-
inating term of the wall potential Vwall(�) in the standard
interface Hamiltonian is simply [cf. Eq. (2)] [5–7]

Vwall(�) ∝ exp(−κ�), (10)

so the effect of the nonlocal repulsion is felt under conditions
where the effect of the local repulsion [Eqs. (2) and (10)] is
rather weak.

Equations (1)–(10) all refer to a macroscopic system in
a semi-infinite geometry (z � 0) whereas computer simula-
tions, of course, can only be done for finite systems [49]. In
x and y directions, use of a large parallel linear dimension
L � ξ|| and periodic boundary conditions makes the system
quasi-infinite. However, the finiteness of the system in the
z direction, and the boundary condition for large z, is more
subtle. In the framework of the Ising or lattice gas model,
the wall at z = 0 in Figs. 1–3 is simply represented by a
free boundary plane in which a surface field H1 acts on the
spins representing the occupancy of the lattice sites. Early

FIG. 4. Schematic view of an L × L × D Ising system with
antisymmetric surface fields H1 < 0, HD = −H1 > 0, and periodic
boundary conditions (pbc) in x, y directions. The walls (free surfaces
where surface fields act) at z = 0, z = D are shaded. The signs of the
magnetization in the domains separated by the interface (wavy line)
are shown by thick arrows.

simulations of wetting transitions [33,36,43] then used a L ×
L × D geometry with a second free boundary plane at z = D
and a surface field HD = H1. However, in the absence of a
bulk field H (with sign opposite to the sign of the surface
fields) the state of the system with wetting layers on the walls
(or precursors thereof) is only metastable, rather than truly
thermodynamically stable. The proper stable situation of the
system would be a state where the whole system is in the
liquid phase (i.e., the “magnetization” of the spins in the bulk
of the film has the same sign as the surface fields). Due to
this problem, the estimation for the location of the wetting
transition temperature Tw(H1) in this geometry (as done in
[33,36,43]) is delicate. Recently [41,42] it was pointed out that
choosing a strictly antisymmetric situation H1 = −HD is more
appropriate. Then, there is a single interface in the system,
which in the regime of partial wetting [T < Tw(H1)] is bound
either to the wall at z = 0 or the wall at z = D, while in the
wet region [T > Tw(H1)] the interface fluctuates around the
center of the film (Fig. 4), �̄ = D/2.

Strictly speaking, Fig. 4 applies only to the limiting case
when both D and L are infinite, since otherwise the wetting
transition is rounded by subtle finite-size effects [41,42]. If
we choose D finite and take only L → ∞, we no longer
have a wetting transition, but an interface localization or
delocalization transition [47,50–53] occurs at Tc(H1, D), with
Tc(H1, D → ∞) → Tw(H1). Then the state for T < Tc(H1, D)
is twofold degenerate, since the interface can be bound either
to the wall at z = 0 or to the wall at z = D. For T > Tc(H1, D)
the average interface position is at �̄ = D/2 (lower part of
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Fig. 4). This is the analog of keeping the interface in the
complete wetting regime at a distance �̄ ∝ lnH by a bulk
magnetic field. Since it was shown that Tc(H1, D) increases
monotonically with increasing D [52,53] hence Tw(H1) is
approached from below as D → ∞ choosing T > Tw(H1) is
a sufficient condition for having �̄ = D/2. Thus, we can use
Eqs. (7)–(9) when we study correlation functions indicated in
Fig. 3 for the L × L × D geometry with �̄ = D/2.

III. SIMULATION RESULTS

Following Refs. [46,51–53] we study the nearest-neighbor
Ising model in L × L × D geometry (Fig. 4) on the simple
cubic lattice, J being the exchange constant,

H = −J
∑
〈i, j〉

SiS j − H1

∑
i∈ layer 1

Si − HD

∑
i∈ layer D

Si,

(11)

where Si = ±1. We choose systems with D = 6, 8, 10, 12, 14,
and 16 layers, and the lateral linear dimension L = 256 and
512, with periodic boundary conditions throughout. Multiple
runs are made with different starting configurations and differ-
ent random number seeds to determine statistical errors and to
detect any systematic errors. Typically, a total of around 108

Monte Carlo steps per site were kept for computing averages
of the correlation functions. We also keep the choice |H1|/J =
0.55 consistent with previous work [46]. Note that it is impor-
tant to choose the magnitude of the surface field such that the
temperature T , which must be somewhat larger than Tw(H1),
is neither close to the bulk critical temperature Tcb [J/kBTcb =
0.221 654 626(5) [54]] nor to the temperature of the inter-
facial roughening transition TR [J/kBTR ≈ 0.409(1) [55,56]].
In early work on wetting in the Ising model [36], it was
concluded that for J/kBT = 0.25, where the correlation length
associated with bulk critical fluctuations is of the order of the
lattice spacing and the lattice anisotropy of the interfacial ten-
sion is negligible [55–57], critical wetting occurs at H1w(T ) ≈

FIG. 5. Correlation functions C(D/2, D/2, r) (top-most curves),
C(0, D/2, r) (curves in the middle), and C(0, 0, r) (bottom curves)
plotted vs r for the case D = 12. Two data sets [for L = 256 (red
open circles, squares, and triangles) and L = 512 (black closed
circles, squares, and triangles)] are included in each case.

FIG. 6. Correlation functions (a) C( D
2 , D

2 , r), (b) C(0, D
2 , r), and

(c) C(0, 0, r) plotted vs r for the choice L = 512, J/kBT = 0.236.

Six choices of D are included, as indicated.

0.55J. Note that H1w(T )/J simply is the inverse function of
kBTw(H1)/J . Thus in our preliminary work [46] the inverse
temperature J/kBT = 0.244 was chosen, assuming hence that
the choice (J/kBT = 0.244, |H1|/J = 0.55) is a state point in
the wet region of the wetting phase diagram. However, recent
work [42] has revealed that the early estimate H1w/J ≈ 0.55
for J/kBT = 0.25 is too inaccurate, and actually H1w/J ≈
0.616.
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FIG. 7. Correlation functions G( D
2 , D

2 , q) (upper set of curves)

and G(0, D
2 , q) plotted vs wave number q for L = 512, J/kBT =

0.236. Case (a) shows the full range 0 � q � π (note that our unit of
length is the lattice spacing), case (b) shows the region of small q, to
which the theoretical formulas [Eqs. (7) and (8)] should apply.

The scaling relation [58] H1w/J = A(1 − T/Tcb)�1 where
the exponent �1 ≈ 0.48(3) [41,59] and the amplitude A ≈
1.65, leads to the conclusion that for J/kBT = 0.244 the field
|H1|/J = 0.55 would coincide with H1w/J to within numer-
ical error! This misjudgment of the location of the wetting
transition explains why unusually large finite-size effects for
C(D/2, D/2, r) were detected in the preliminary work [46],
thus making a meaningful estimation of ξ|| impossible. Hence,
in the present work we choose a temperature J/kBT = 0.236
which is slightly closer to bulk criticality and for which
H1w/J = 0.55 is safely in the regime of complete wetting (ir-
respective of the remaining uncertainties in the exact location
of the wetting transition phase boundary). A test for finite-
size effects (Fig. 5) shows that the results are now indeed
independent of L, to a very good accuracy. This figure is
very different from its counterpart for J/kBT = 0.244 (Fig. 2
in [46]) where strong size effects are apparent, rendering a
meaningful estimation of ξ|| impossible. Note that due to the
discreteness of the lattice, distances z are only possible at
integer values n = 1, 2, . . . , D − 1, D. Here we measure all
lengths in units of the lattice spacing.

FIG. 8. Ratio of the correlation functions G(0, D/2, q)/
G(D/2, D/2, q) plotted vs q2 for L = 512, J/kBT = 0.2360, and
several choices of D as indicated. Note the logarithmic scale of
the ordinate: straight lines indicate that the proposed variation
proportional exp(−q2ξ 2

NL/2) holds.

Correlations for z = 0 actually refer to spins situated in the
layer n = 1 above the lower wall. For an integer value of D,
the actual midplane between the first (n = 1) and last (n = D)
layer would actually fall in between the layers n = D/2 and
n = D/2 + 1. So the correlation functions involving a point in
the interface are always averages over points in both layers D

2
and D

2 + 1,

C(z = D/2, z = D/2, r)

≡
[
C̃

(
n = D

2
, n = D

2
, r

)

+ C̃

(
n = D

2
+ 1, n = D

2
+ 1, r

)]/
2, (12)

C

(
z = 0, z = D

2
, r

)

≡
[
C̃

(
n = 1, n = D

2
, r

)

+ C̃

(
n = 1, n = D

2
+ 1, r

)]/
2. (13)

where C̃ refers to the correlations between the discrete lattice
points indicated within the parentheses. Since all correlations
for small r exhibit a nonexponential decay their analysis in
real space would be difficult, although it is plausible that an
exponential decay [proportional to exp(−r/ξ||)] always takes
over for large distances. This observation remains true for all
choices of D studied (Fig. 6).

Equations (7)–(9) suggest considering the Fourier trans-
forms, and some such results are shown in Fig. 7. [Since
C(0, 0, r) only has good statistical accuracy for small r, where
effects due to the length scale κ−1 are still present, its Fourier
transform is not considered here.]

Indeed the data for G( D
2 , D

2 , q) have the shape expected for
a simple Ornstein-Zernike type behavior that Eq. (7) suggests.
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FIG. 9. Plot of nonlocal correlation length (ξ 2
NL/2) vs film thick-

ness (D) for the choice L = 512, J/kBT = 0.236.

In order to extract most conveniently the nonlocal correla-
tion length ξNL, Eqs. (7) and (8) suggest analyzing the ratio
G(0, D

2 , q)/G( D
2 , D

2 , q) since this should be proportional to a

simple exponential decay exp(−q2ξ 2
NL/2). Figure 8 provides

evidence that this simple recipe actually works nicely for all
D > 6 studied, and hence the decay constant ξ 2

NL increases
linearly with D. [Although the straight line does not intersect
the origin for D = 0 but rather for D = 6. As should have been
expected, the theory of Sec. II does not apply on length scales
which are not much larger than κ−1.]

The behavior of ξ|| can be extracted from Eq. (7) and the
prediction that ξ||(D) ∝ exp(κD/4), and the data, shown in
Fig. 10, verify this prediction. The rather modest values of
ξ|| indicate that, as anticipated, we were not too close to the
critical wetting transition.

IV. CONCLUSIONS

We have studied a long-standing, fundamental prob-
lem of statistical mechanics regarding the nature of a

FIG. 10. Plot of parallel correlation length (lnξ||) vs film thick-
ness (D) for the choice L = 512, J/kBT = 0.236.

fluctuating interface interacting with a wall. Following
decades of discussion about whether or not it could be viewed
as a two-dimensional object subject to a potential due to the
wall acting on this interface (see Fig. 1), Parry and co-workers
[38–40,44,45] showed that such a description is possible
provided the nonlocal character of the wall potential (see
Fig. 2) is included. However, the direct consequences of this
nonlocal interface are somewhat subtle and identifying them
from quantities observable in experiments and simulations is
challenging.

In the present work, we have tested the prediction due
to Parry et al. [41] that Fourier transforms of correlation
functions probing fluctuations (Fig. 3) of an interface bound
to the wall [Eqs. (6)–(8)] are described in terms of two
mesoscopic lengths if the mean distance of the interface from
the wall is much larger than molecular dimensions. For short-
range forces, the larger of these lengths [which is already
present for a strictly local interface potential V (�)] grows
exponentially with this mean distance. The second length, due
to the nonlocality of the potential, only grows with the square
root of this distance.

In our preliminary Monte Carlo study of this problem [46]
we exploited the idea that this behavior could be studied by
choosing an Ising model with two competing planar surfaces
a distance D apart with antiparallel surface fields. The temper-
ature was above the wetting transition temperature where the
average interface distance from either wall is D/2 (Fig. 4).
However, due to an unfavorable choice of temperature, the
system was so close to the wetting transition that the results
were hampered by strong finite-size effects associated with
the parallel linear dimension L. Consequently, only qualitative
evidence for the nonlocal theory was obtained.

The present work chose conditions that did not suffer from
size effects so that the decay of the correlations could be
determined accurately over three decades (Figs. 5 and 6). As
a result, both correlation lengths could be extracted from the
Fourier transforms, varying D from 6 to 16 lattice spacings,
for L = 512 (Figs. 7 and 8). Note that the slowness of long-
wavelength interfacial fluctuations still precludes the choice
of significantly larger values of D. Nevertheless, we are able
to convincingly verify the theoretically expected variation of
both correlation lengths with D (Figs. 9 and 10). We thus feel
that the present work presents comprehensive evidence for the
nonlocal interface Hamiltonian theory.
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