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Radiation in equilibrium with plasma and plasma effects on cosmic microwave background
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The spectrum of the radiation of a body in equilibrium is given by Planck’s law. In plasma, however,
waves below the plasma frequency cannot propagate; consequently, the equilibrium radiation inside plasma
is necessarily different from the Planck spectrum. We derive, using three different approaches, the spectrum for
the equilibrium radiation inside plasma. We show that, while plasma effects cannot be realistically detected with
technology available in the near future, there are a number of quantifiable ways in which plasma affects cosmic
microwave background radiation.
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I. INTRODUCTION

A system in thermodynamic equilibrium is often said to
have a blackbody radiation spectrum given by Planck’s law.
However, the Planck spectrum should be modified within a
medium. Indeed, in plasma, for example, radiation below the
plasma frequency ωp cannot propagate. Thus, the equilib-
rium radiation inside plasma is necessarily different from the
Planck spectrum. This paper is dedicated to the investigation
of the equilibrium radiation inside plasma and to the study of
the plasma effects and the possibility of their detection with
respect to one of the most known examples of equilibrium ra-
diation in nature—the cosmic microwave background (CMB).

In Sec. II we derive the equilibrium spectral energy density
of radiation inside plasma using three different approaches:
From the point of view of photons in plasma treating them as
quasiparticles obeying Bose-Einstein statistics, from the point
of view of plasma that generates electromagnetic fluctuations,
and from the point of view of equilibrium between plasma and
external blackbody radiation.

In Sec. III we consider several questions related to exper-
imental measurements for stationary and moving observers
inside a plasma universe. We distinguish quantities expressed
in terms of frequency from quantities expressed in terms of
wavelength. In a medium with unknown dispersion we also
distinguish energy density from radiation intensity. We also
calculate the Lorentz transformation for a moving observer
inside plasma.

In Sec. IV we study plasma effects on CMB radiation. We
consider the possibility of experimental detection of static and
dynamical plasma effects on CMB but conclude that these
effects cannot be detected in the next-generation experiments.
We show that the static equilibrium distribution should have
been significantly modified during the epoch of recombina-
tion and that this can manifest itself as an extremely small
frequency-dependent chemical potential. We demonstrate that
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plasma changes the cosmological redshift and calculate how
it distorts the equilibrium spectrum as the universe expands.

In Sec. V we consider how plasma modifies the Kompa-
neets equation both because of the change in the dispersion
relation and because of coherent scattering in plasma.

In Sec. VI we consider plasma effects on CMB during and
after the epoch of reionization. We calculate plasma correc-
tions to Compton y distortion due to the thermal Sunyaev-
Zel’dovich effect. We identify a mechanism of magnetic-
field generation at the epoch of reionization resulting from
conversion of some of the energy of CMB into the magnetic
field.

We estimate the corrections that plasma effects can bring to
other expected CMB distortions for Planck’s telescope [1] and
SKA-LOW [2] and conclude that plasma effects are extremely
small, on the order of magnitude of O(ω2

p/ω
2) in most cases,

and thus cannot be realistically detected in the near future.

II. RADIATION IN THERMODYNAMIC EQUILIBRIUM
WITH PLASMA

Planck’s radiation spectrum is characterized only by one
parameter—temperature—and it is nonzero for all frequen-
cies. In equilibrium plasma, however, radiation with frequen-
cies below the plasma frequency ωp cannot propagate. Thus,
the spectral energy density of radiation inside plasma is nec-
essarily different from radiation in free space. Let us derive
this spectrum using three different approaches.

A. Photons as quasiparticles

Photons are bosons and so they follow Bose-Einstein statis-
tics that says that the average number of particles with given
energy ε is proportional to [e(ε−μ)/T − 1]

−1
. Thus, we can

write the photon number nγ and energy densities uγ as

nγ = 1

V

∑
k

gγ

e
h̄ω(k)−μ

T − 1
, (1)

uγ = 1

V

∑
k

gγ h̄ω(k)

e
h̄ω(k)−μ

T − 1
. (2)
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Planck’s law follows from these equations if the following
assumptions are employed: gγ = 2, corresponding to two po-
larizations of electromagnetic waves; μ = 0, corresponding to
zero chemical potential of photons that can be freely absorbed
and emitted; nondispersive light in vacuum with ω = kc;
and substitution of summation with integration (1/V )

∑
k →∫

d3k/(2π )3. Then Eq. (2) yields:

uPlanck = h̄

π2c3

∫ ∞

0

ω3

e
h̄ω
T − 1

dω. (3)

Throughout the paper we will use uω = du/dω for energy
density per dω, which for blackbody Planck’s radiation we
will denote as ubb. We will also use Iω for intensity per
dω defined as Iω = vgruω, where vgr = ∂ω/∂k is the group
velocity, and Ibb for intensity per dω for blackbody radiation.

Equation (2) shows that the radiation in thermodynamic
equilibrium with plasma or any other matter can be dif-
ferent from Planck’s law for three reasons. First, because
of dispersion of waves in matter, only certain waves with
certain frequencies ω = ω(k) and, as a consequence, energy
ε(k) = h̄ω(k) can propagate in the medium for a given k.
Second, there is nonzero chemical potential μ �= 0. Though
it is often approximated that light has zero chemical potential
(for example, Refs. [3,4]), it is not the case in general [5,6].
Chemical potential is related to constraints on the number of
particles and such situations can be realized, for example,
in semiconductors [5–8], where the number of photons is
related to the number of electrons and holes; in plasmas when
scattering dominates over absorption and thus the number of
photons conserved [9]; in dye filled microcavities [10,11]; and
in other systems [12–14]. Third, there are geometrical and
finiteness effects restricting the number of available k modes.
The sum over k in

∑
k in general should be performed only

over certain k’s. For example, in cavities depending on the
size and geometry only certain waves with given k’s can exist
[15–17].

Now let us consider the case of infinite plasma. The typical
nonrelativistic plasma has the following dispersion relation
for electromagnetic waves:

ω2 = ω2
p + k2c2, (4)

where the plasma frequency is defined through the sum
over the species of charged particles in plasma: ω2

p =∑
s 4πnse2

s /ms. Since photon energy is ε = h̄ω, we can
rewrite Eq. (4) as

ε2 = m2
γ c4 + p2

γ c2, (5)

i.e., in plasma, a photon behaves as a relativistic massive
particle with mass mγ = h̄ωp/c2 and momentum pγ = h̄k. It
is interesting to calculate the density of electrons for which the
effective photon mass equals the electron rest mass. It happens
for electron density ne ≈ (reλ

2
C )−3 ≈ 1031 cm−3 (correspond-

ing plasma frequency is about 1020 s−1), where re is the
classical electron radius and λC is the Compton wavelength.
Thus, for extremely high density plasmas, photons can be
expected to behave similarly to massive elementary particles
like electrons.

Going from summation to integration and introducing di-
mensionless parameters a = h̄ωp/T and μ′ = μ/T , we can
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FIG. 1. Photon energy density in the units of T 4/π 2 h̄3c3 versus
normalized frequency x = h̄ω/T for different values of parameter a
and μ′ = 0. Blackbody Planck density corresponding to a = μ′ = 0
is also shown for comparison.

write the photon number and energy densities in terms of the
normalized wave vector y = h̄kc/T as:

nγ = T 3

π2h̄3c3

∫ ∞

0

y2

e
√

y2+a2−μ′ − 1
dy, (6)

uγ = T 4

π2h̄3c3

∫ ∞

0

√
y2 + a2y2

e
√

y2+a2−μ′ − 1
dy, (7)

and in terms of the normalized frequency x = h̄ω/T as:

nγ = T 3

π2h̄3c3

∫ ∞

a

x2

ex−μ′ − 1
dx, (8)

uγ = T 4

π2h̄3c3

∫ ∞

a

x2
√

x2 − a2

ex−μ′ − 1
dx. (9)

Thus, the radiation distribution inside plasma is described
by three parameters: temperature T , chemical potential μ, and
parameter a = h̄ωp/T . The parameter a is a measure of the
density.

Using the expansion

1

e
√

y2+a2−μ′ − 1
=

∞∑
l=1

e−l (
√

y2+a2−μ′ ), (10)

substituting y = a sinh θ and employing the integral represen-
tation for the modified Bessel functions of the second kind,
we can get the total number and energy densities:

nγ = T 3

π2h̄3c3

∞∑
l=1

elμ′

l3
(la)2K2(la), (11)

uγ = T 4

π2h̄3c3

∞∑
l=1

elμ′

l4
[(la)3K1(la) + 3(la)2K2(la)]. (12)

Similar expressions were obtained in Refs. [18–23].
Figure 1 shows spectral energy density duγ /dx in the units

of T 4/π2h̄3c3 as a function of normalized frequency x =
h̄ω/T for several values of parameter a = h̄ωp/T and zero
chemical potential. We see the truncation of the spectrum for
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FIG. 2. Photon energy density in the units of T 4/π 2 h̄3c3 versus
normalized frequency x = h̄ω/T for different values of chemical
potential μ′ and a = 1. Blackbody Planck density corresponding to
a = μ′ = 0 is also shown for comparison.

frequencies below the plasma frequency as well as an overall
decrease of the radiation density with growth of a. We also
see that for a � 1 the radiation density starts to significantly
deviate from the Planck distribution, which corresponds to
a = μ′ = 0.

Figure 2 shows spectral energy density duγ /dx in the
units of T 4/π2h̄3c3 as a function of normalized frequency
x = h̄ω/T for fixed parameter a = 1 but different chemi-
cal potentials. Despite the occasional claim that bosons can
have only zero or negative chemical potential (for example,
Refs. [4,24]), in fact they can have positive chemical potential,
too; the only restriction is that the smallest energy level is
larger than zero and the corresponding integrals converge.
We see that the chemical potential can affect the distribution
significantly. However, we do not address the question of
whether a particular chemical potential can be realistically
achieved in any physical system. Note also that Fig. 2 does not
correspond to one system with given a and different chemical
potentials, but to several independent systems with different
number of photons. For a given system with a fixed number of
photons, one cannot vary the chemical potential independent
of T and a; see Ref. [23] for details.

Figure 2 also suggests that the radiation energy can exceed
Planck’s radiation density. However, it does not contradict the
often-made statement that thermal blackbody radiation estab-
lishes the upper limit on the maximum energy emitted for any
body at the same temperature (for example, Refs. [25,26]),
because Fig. 2 shows the energy density inside the plasma and
not the intensity that will be emitted by plasma. Moreover,
objects for which the absorption cross section exceeds the
geometrical cross section can actually emit more than black-
body, but this does not contradict standard physics and fits the
generalized form of Kirchhoff’s law [27].

B. Fluctuation-dissipation theorem

So far we have derived properties of equilibrium radiation
from the point of view of photons obeying Bose-Einstein

statistics. Since the radiation is in equilibrium with the matter,
the same results should be obtained by considering oscillat-
ing electrons in plasma and calculating the density of the
electromagnetic-field generated by them using the fluctuation-
dissipation theorem [20,28].

Following Ref. [28], the spectral energy density per dω

in a transparent medium with dielectric function ε(ω) is
given by

uγ =
∫ ∞

0

1

8π

[
2(E2)ω

∂ (ωε)

∂ω
+ 2(H2)ω

]
dω

2π
, (13)

where the fluctuations (E2)ω and (H2)ω of the electric and
magnetic fields are defined through

〈E2〉 =
∫ ∞

−∞
(E2)ω

dω

2π
=

∫ ∞

0
2(E2)ω

dω

2π
, (14)

〈H2〉 =
∫ ∞

−∞
(H2)ω

dω

2π
=

∫ ∞

0
2(H2)ω

dω

2π
. (15)

According to Ref. [28], the electromagnetic-field fluctua-
tions can be expressed as

(E2)ω = 1

ε
(H2)ω = 2ω2h̄ε

1
2

c3
coth

h̄ω

2T

= 4ω2 h̄ε
1
2

c3

(
1

2
+ 1

e
h̄ω
T − 1

)
, (16)

so we have

duγ = h̄ω2ε
1
2

2π2c3

[
∂ (ωε)

∂ω
+ ε

](
1

2
+ 1

e
h̄ω
T − 1

)
dω. (17)

Using ε(ω) = 1 − ω2
p/ω

2 for plasma and ignoring zero-
field fluctuations (1/2 term), we get the same result for the
spectral energy density of radiation in plasma as previously
obtained: Eq. (9) with μ = 0 .

C. Equilibrium with blackbody walls

Consider a lossless medium (plasma) surrounded by black-
body walls at temperature T and being in equilibrium with
them (see Fig. 3). Let us look at a ray of frequency ω0 and
energy ubb(ω0)dω0, which is emitted by the blackbody walls,
and then propagates through vacuum and impinges on the
medium at angle θ0 to its normal. The wave will experience
refraction, such that its frequency remains the same (ω = ω0),
while its wave vector changes. A change in the wave vector
implies a change in aperture. Specifically, using Snell’s law
n = c/vph = sin θ0/ sin θ , the solid angle d	 = 2π sin θdθ in
plasma can be expressed through the original solid angle as:

d	 =
(vph

c

)2 cos θ0

cos θ
d	0, (18)

which is the well-known étendue conservation condition [8].
In addition, the group velocity, which determines the

energy transport, changes in the medium. Since in loss-
less medium the energy must be conserved, the pulse must
be shortened or stretched depending, correspondingly, on
whether the group velocity in the medium is smaller or larger
than in vacuum.

Finally, only part of the energy of the wave will be trans-
mitted into the medium, because part of the wave will be

023202-3



VADIM R. MUNIROV AND NATHANIEL J. FISCH PHYSICAL REVIEW E 100, 023202 (2019)

FIG. 3. Equilibrium between blackbody radiation and plasma,
showing detailed balance among emission, absorption, and
reflection.

reflected. The reflection coefficient for unpolarized light is
R = (Rs + Rp)/2, where Rs and Rp are the reflectances of
s-polarized and p-polarized electromagnetic waves given by
the Fresnel equations. The transmission coefficient is given
by 1 − R.

Taking into account both the change in the aperture and the
group velocity, we can write the energy conservation law:

(1 − R)ubbc cos θ0dω0d	0 + Ruωvgr cos θdωd	

= uωvgr cos θdωd	. (19)

Here the first term on the left-hand side is the transmitted
energy, while the second term is the energy of the wave
incident on the medium-vacuum interface at angle θ from
within the medium and reflected back. Notice that the reflec-
tion coefficients coincide because the reflectance of the light
incident from medium 1 on medium 2 at the angle θi and
refracted into the angle θt is the same as the reflectance of
the light incident from medium 2 on medium 1 at the angle θt .
Thus, using Eqs. (18) and (19), we get that the energy density
inside the medium is independent of the reflection coefficient
R and is given by

uω = c3

vgrv
2
ph

ubb. (20)

For plasma vgr = ∂ω/∂k = c
√

1 − ω2
p/ω

2, vph = ω/k =
c/

√
1 − ω2

p/ω
2, and using the Planck energy density, we again

get the same result for the electromagnetic radiation energy
density inside plasma as before.

The above result can also be considered through the radia-
tion transfer equation in the medium [29,30]:

n2
r

d

dl

(
Iω
n2

r

)
= 1

vgr

∂Iω
∂t

+ n2
r

∂

∂l

(
Iω
n2

r

)
= αω − μωIω, (21)

where Iω is the ray intensity per dω and is related to the energy
density through group velocity as uω = du/dω = Iω/vgr, nr is
the ray refractive index, which is the usual refractive index for
isotropic medium (see Ref. [29]), αω is emissivity, and μω is
the absorption coefficient (including scattering).

The condition of transparency of the medium, which cor-
responds to αω = μω = 0 and makes the right-hand side of
the radiation transfer equation zero, results in Iω/n2 = const
along the ray. The condition Iω/n2 = const gives Iω = n2Ibb =
(1 − ω2

p/ω
2)Ibb, i.e., the same radiation energy density inside

plasma as before. The condition Iω/n2 = const also means
that Iω is constant inside plasma as expected for transparent
medium. However, another way to make the right-hand side
zero is to have αω/μω = Iω. In this case Iω is constant inside
the medium as well; not because the medium does not absorb
and emit radiation at all, but because it does so in a very
particular way. This is what actually happens in plasma, where
equilibrium is reached through balance between emission and
absorption (and scattering).

We emphasize that uω is the energy density inside the bulk
of the plasma and does not determine the radiation emitted
from the plasma. The radiation leaving the plasma experi-
ences refraction and lengthening in accordance with the above
formulas such that emission from equilibrium plasma above
the plasma frequency is just that of a blackbody given by
the Stefan-Boltzmann law, as expected in equilibrium. Below
the plasma frequency, plasma is a perfect reflector. There
must also be plasma waves along the surface of the boundary.
However, the boundary effects at the plasma-vacuum interface
are a separate and intricate topic beyond the scope of the
considerations here.

III. MEASURING PLASMA SPECTRUM BY STATIONARY
AND MOVING OBSERVERS

Let us consider the experimental detection of radiation
inside plasma (or, in general, any kind of dispersive medium).
Imagine we have two observers: One is in a plasma-filled
universe in thermodynamic equilibrium at temperature T and
the other is immersed in blackbody radiation of the same
temperature T in vacuum. Imagine both have identical de-
vices manufactured and calibrated in vacuum that allow them
measure electromagnetic radiation spectrum. What would the
observers actually measure and how should these results be
interpreted? Will they be able to see the difference?

First, we should say that it is intensity and not energy
density that is being measured. In vacuum they are related
through the speed of light, but in the medium they are
related through the group velocity, which depends on un-
known properties of the medium. Second, in vacuum the
wavelength and frequency are related through the speed of
light (ω = 2πc/λ), so any physical quantity expressed in
terms of frequency can be immediately expressed in terms of
wavelength; for example, if we know intensity per frequency
Iω, then we immediately know intensity per wavelength Iλ.
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In the medium frequency and wavelength are related through
ω = 2πc/λn(ω), i.e., the conversion depends on unknown
properties of the medium. Thus, we should be specific whether
the observer in plasma measures at the same wavelength or at
the same frequency as in vacuum.

We can imagine that the observer with a measuring in-
strument is in a small vacuum bubble inside the plasma or
the measuring instrument is in direct contact with plasma. In
any case, since the light ray traveling through two different
mediums keeps its frequency but changes its wavelength,
all the observable quantities should be expressed in terms
of frequency, i.e., the observer will measure intensity per
frequency Iω. If the bubble is in equilibrium with plasma, then,
from the analysis of the previous section, it is apparent that the
radiation inside the bubble would be that of blackbody and the
device in equilibrium with plasma universe would register just
blackbody radiation spectrum. Thus, the bubble should not be
in equilibrium and, ideally, the measuring instruments should
not radiate. This can be achieved by keeping the temperature
of the measuring instruments close to absolute zero as is done,
for example, on Planck’s telescope where the active refrig-
eration system keeps the HFI detector temperature at 0.1 K
[1]. Another effect that should be taken into account when
interpreting the experimental results is that the telescope has
inevitable reflections. They can be accounted for in vacuum,
but, in the plasma universe, the reflection coefficient will be
different and generally speaking unknown. Thus, the observer
will measure [1 − R(ω)]Iω, where the reflection coefficient
R(ω) is not known.

Finally, we address how the spectrum changes for a moving
observer. Since the Doppler shift depends on properties of the
medium, the transformation of the spectrum in the moving
reference frame would be different than that in vacuum. As
shown in Ref. [31] for the emitted and observed intensities,
the following relationship holds true:

Iω
ω3n2

= const. (22)

In vacuum, the frequency experiences Doppler shift ω =
γ (ω′ + k′v) = γω′(1 + β cos θ ′) and the blackbody radiation
for a moving observer becomes

I ′
ω′ = ω′3

ω3
Iω = ω′3

ω3
Ibb = h̄

π2c2

ω′3

e
h̄ω′
T ′ − 1

, (23)

i.e., for the moving observer the radiation spectrum appears
as blackbody but with new effective directional temperature
T ′ = T/γ (1 + β cos θ ′).

For a moving observer in the plasma universe:

I ′
ω′ = ω′3n′2

ω3n2
Iω = ω′3

ω3
n′2Ibb = h̄

π2c

ω′3n′2

e
h̄ω
T − 1

. (24)

Using the Lorentz transformation we can express n′ and ω

in terms of ω′ and θ ′ to get the expression for I ′
ω′ in the moving

frame. We cannot find the analytical expression for a general
medium, but, luckily, for plasma, the dispersion relation is
Lorentz invariant:

ω′2 − k′2c2 = ω2 − k2c2 = ω2
p, (25)

so that the refractive index for a moving observer has the
same functional dependance as for the stationary observer:
n′ = ck′/ω′ = 1 − ω2

p/ω
′2. Thus, the intensity measured by

the moving observer in plasma is

I ′
ω′ = h̄

π2c

ω′(ω′2 − ω2
p

)
e

h̄ω′
T ′ − 1

, (26)

i.e., for the moving observer the radiation spectrum appears
as that of equilibrium radiation in plasma but with new
frequency-dependent effective directional temperature T ′ =
T/γ (1 + β

√
1 − ω2

p/ω
′2 cos θ ′).

In reality most of the plasmas are not in thermal equilib-
rium. If we are interested in radiation from the plasma, we
should know specific emission mechanism in plasma and its
optical depth. The most prominent example of the equilibrium
radiation in nature is CMB. We are going to study plasma
effects on it in the next section.

IV. EARLY UNIVERSE AND PLASMA EFFECTS ON CMB

According to accepted cosmology models, the radiation in
the early universe and ionized matter (plasma) were tightly
coupled and thermalized due to Thomson scattering, until,
at cosmological redshift z ≈ 1100, because of the recombi-
nation, the radiation became decoupled from now essentially
neutral matter. This radiation from the early universe is known
as CMB.

Experimental data show that CMB spectrum is consistent
with Planck’s law to very high accuracy [32]. In principle,
however, since before the recombination the universe was in
the plasma state for which waves with frequencies below the
plasma frequency ωp cannot propagate, the radiation inside
it should have been different from the Planck spectrum. For
this reason, in this section we discuss the influence of plasma
effects on CMB and the possibility of the experimental obser-
vation of new effects.

A. Direct detection of plasma spectrum

A comparison of the equilibrium radiation in plasma given
by Eq. (9) with experimental data on CMB radiation was
investigated in Ref. [33]. Three methods of the detection of
plasma dispersion effects were proposed. One is the direct
observation of the plasma effects, specifically, the cutoff at
plasma frequency, by comparing experimental data on CMB
with the distribution given by Eq. (9). The second is the
modification of the Sunyaev-Zel’ dovich effect as the plasma
modified CMB radiation travels through the electron gas of
galaxy clusters. The third is the modification of the cosmo-
logical 21-cm background radiation. The conclusion reached
in Ref. [33] can be summarized as that, even though the
currently available experimental data cannot show any plasma
effects, they might be detectable with the new generation of
low-frequency experiments such as SKA-LOW. We argue that
the conclusion reached in Ref. [33] is too optimistic for two
reasons.

First, the values of parameter a = (3.63, 6.10, 7.36) ×
10−3 used in Ref. [33] were estimated through a numerical
fit to COBE-FIRAS data, to some other data in the range
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∼1.3–50 GHz (see Ref. [33]), and to three low-frequency
data points from Refs. [34–36]. This procedure of obtain-
ing a is likely to significantly overestimate it, because the
value of a is mostly determined by the above mentioned
three low-frequency data points, which, besides having high
uncertainty, can give only the upper limit on a. Simply put, in
this case the parameter a is essentially approximated by the
lowest experimental value available, but the absence of low-
frequency data should not determine the plasma frequency,
which actually can be much lower than the lowest experimen-
tal value. Indeed, the value of parameter a estimated through
the electron density (ne ≈ 300 cm−3 [20]) and the CMB
temperature (T/kB ≈ 3000 K) just before the recombination
gives orders of magnitude lower value a ≈ 2 × 10−9. Plasma
dispersion brings corrections on the order of O(a2/x2) or
O(ω2

p/ω
2), which is a small number. Indeed, the value of elec-

tron density just before the recombination is ne ≈ 300 cm−3

[20], with corresponding plasma frequency ωp ≈ 106 s−1.
The smallest frequency measurable by Planck’s spacecraft is
νmin = 30 GHz [1], which corresponds to ω = 2πν(1 + z) ≈
2 × 1014 s−1 at z ≈ 1100, giving ω2

p/ω
2 ≈ 2 × 10−17. For the

proposed SKA-LOW experiment, the minimum frequency is
νmin = 50 MHz [2], which corresponds to ω = 2πν(1 + z) ≈
3 × 1011 s−1 at z ≈ 1100, giving ω2

p/ω
2 ≈ 8 × 10−12.

Second, even if, before the recombination, the CMB spec-
trum were given by Eq. (9), it would have been modified sig-
nificantly during the recombination. The after-recombination
spectrum of CMB depends on how fast the recombination
happened. If it were so slow that full thermal equilibrium
was maintained at every step (this requires destruction and
creation of photons), then, after the recombination, we would
get the radiation spectrum (9) with the parameter a equal
to zero (for simplicity, we consider complete recombination
into neutral state, in reality the electron density decreases
by about a factor of 103–104 [37]), which is just the Planck
distribution (maybe with nonzero μ) and no plasma disper-
sion effects would be present. If, on the other hand, the
recombination were so sudden that the number of photons
is conserved, then the wave vector (and wavelength) of each
radiation mode would remain constant, while the frequency
would change: k = k0, ω = kc =

√
ω2

0 − ω2
p. The number of

photons dnγ would not change, the total energy density of
photons would decrease (part of the initial energy would
be converted into heat), and the energy spectrum would
become

uγ = T 4

π2h̄3c3

∫ ∞

0

x3

e
√

x2+a2−μ′ − 1
dx. (27)

This is consistent with the adiabatic formula from Ref. [38]
that says that the energy density per frequency [duγ (x)/x]
remains constant as the density of plasma changes. Adiabatic
here means slow in comparison with period of the wave
d ln ωp/dt � ω making the number of waves an adiabatic in-
variant but not so slow that the full equilibrium is established.
The amount of energy taken from CMB and converted to
heat can be approximated for small values of a as �uγ /uγ =
5a2/2π2. Notice, though, that part of this energy would be
radiated back into CMB because excited recombined atoms
would radiate photons as they fall back into the ground
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FIG. 4. Photon spectral energy density in the units of T 4/π 2 h̄3c3

versus normalized frequency x = h̄ω/T for a = 1, μ = 0 before
and after sudden recombination and for a blackbody of the same
temperature with a = 0, μ = 0.

state. The detailed physics of this process is complicated; the
thorough numerical calculations can be found in Ref. [39].
According to standard cosmology, the active cosmological
hydrogen recombination happened between z ≈ 1600 and
z ≈ 800 and the electron density decreased from 1 to about
10−4–10−3 [37]. Thus, the adiabatic scenario should have
been realized.

Let us compare the spectral energy density given by
Eq. (27) with the original spectral energy density in plasma
given by Eq. (9). Figure 4 shows the spectral energy density
versus the normalized frequency for a = 1.0 before and after
sudden recombination, as well as the blackbody spectrum
for the same temperature. We see that the distribution after
the sudden recombination resembles the blackbody spectrum
with different temperature. Most importantly, it does not have
cutoff at low frequencies. For small a, the difference between
the spectral radiation after the sudden recombination and that
of blackbody is especially hard to notice as demonstrated in
Fig. 5 for a = 0.1. We remind the reader that the estimate
for parameter a just before the recombination is a ≈ 2 ×
10−9 � 1. Since Eq. (27) with μ′ = 0 has e

√
x2+a2 − 1 ≈

ex+a2/2x − 1 in the denominator in contrast to ex − 1 for the
blackbody spectrum, then, for x  a, plasma effects can
appear as frequency-dependent chemical potential μCMB =
a2/2x (see definition of μCMB in the next subsection). How-
ever, this chemical potential is extremely small. Indeed, for
x = 2.8, which corresponds to the maximum of the blackbody
spectrum, μCMB has a negligible value of about 7 × 10−19,
for xmin = 5 × 10−1 corresponding to the smallest frequency
measured by Planck’s spacecraft μCMB ≈ 4 × 10−18, and for
the SKA-LOW experiment xmin = 9 × 10−4 and μCMB ≈ 2 ×
10−15. For reference, μ distortion expected from different
processes in CDM cosmology is about 10−9–10−8 [40]. This
is itself a very small quantity and has not been experimentally
detected yet, but still, it is about 6 to 10 orders of magni-
tude higher than the chemical potential from plasma effect
described above.
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FIG. 5. Photon spectral energy density in the units of T 4/π 2 h̄3c3

versus normalized frequency x = h̄ω/T for a = 0.1, μ = 0 before
and after sudden recombination and for a blackbody of the same
temperature with a = 0, μ = 0.

The recombination was not complete but the electron den-
sity decreased in 104 times, which gives parameter a ≈ 2 ×
10−11 just after the recombination. It is obvious, though, that
detection of the effects related to this, even smaller parameter
a, is harder.

Thus, the detection of plasma dispersion effects on CMB,
such as the existence of the lower-frequency cutoff, is much
harder than suggested in Ref. [33]. Even if the spectrum of
CMB were indeed given by Eq. (9) before the recombination,
after the recombination, the plasma dispersion effects could
have been erased almost completely.

B. Plasma modification of redshift

Another apparent plasma effect is change in redshift. The
usual cosmological redshift is described by

ω̇

ω
= − ȧsc

asc
, (28)

where asc(t ) = 1/(1 + z) is the cosmic scale factor and is
not related to parameter a = h̄ωp/T . In a dispersive medium
Eq. (28) takes different form [31]:

ω̇

ω
= −

(
1 + ω

n

∂n

∂ω

)−1( ȧsc

asc
+ ṅ

n

)
, (29)

where the time derivative in ṅ is not applied to ω in n. For
plasma it gives a frequency-dependent redshift,

ω̇

ω
= −

(
1 + 1

2

ω2
p

ω2

)
ȧsc

asc
, (30)

which is consistent with the expression obtained in Ref. [41].
According to Eq. (28), frequency scales as 1 + z, and since

temperature also scales as 1 + z, their ratio x = h̄ω/T is scale
invariant, so that the blackbody radiation spectrum remains
blackbody-shaped as the universe expands. In contrast, ac-
cording to Eq. (30), the frequency does not scale simply as
1 + z anymore, suggesting that in plasma the shape of the
spectrum does not remain the same as the universe expands.

Intuitively, it is because light, which is inherently relativistic,
in plasma acquires some properties of the matter, which is
nonrelativistic. For ultrarelativistic plasma the plasma fre-
quency is ω2

p = 4πne2c2/3T . In this case the frequency would
grow in the same way as temperature.

It is believed that the universe was in full equilibrium at
z0 = 2 × 106, which defines the blackbody surface [42]. In
the absence of plasma and purely under the influence of cos-
mological redshift (no distortions) the blackbody spectrum at
z0 would be transformed into another blackbody spectrum at
z = 1100 with the new temperature T = T0(1 + z)/(1 + z0).
Now, with plasma, the full equilibrium spectrum at z0 was
given by Eq. (9) with zero chemical potential. From Eq. (30)
we obtain (ω2 − ω2

p)/(ω2
0 − ω2

p0) = (1 + z)2/(1 + z0)2 [31]
and, using ω2

p ∝ ne ∝ (1 + z)3, we can calculate what the full
equilibrium spectrum at z0 = 2 × 106 would look like at z =
1100 under plasma modified cosmological redshift (ignoring
all other processes causing distortion):

duγ = T 4

π2h̄3c3

x
√

x2 − a2
√

x2 + z0−z
1+z a2

e
√

x2+ z0−z
1+z a2 − 1

dx. (31)

We see that while plasma redshift does not change
the cutoff frequency it brings additional corrections on
the order of a2(z0 − z)/(1 + z) ≈ a2(z0/z) ≈ 4 × 10−15,
i.e., these corrections are determined by parameter
a0 = a(1 + z0)1/2/(1 + z)1/2 ≈ a(z0/z)1/2 at z0 = 2 × 106

rather than parameter a at z = 1100. In particular it can
manifest itself as a frequency-dependent chemical potential
μCMB ≈ (z0/z)a2/2x. This chemical potential is about
(z0/z) ≈ 103 times larger than the one considered in the
previous subsection but it is still beyond the values that can
be experimentally detected. In addition, we note that for
SKA-LOW at its lowest frequency νmin = 50 MHz, CMB
foregrounds are going to further complicate measurements.
Thus, the plasma correction to the redshift is extremely small
and can hardly be detected by any past and near future CMB
experiments.

Similar plasma redshift corrections would take place after
the recombination for lower redshifts before (since the recom-
bination is not complete) and after the reionization, but these
corrections are smaller, since parameter a at z0 = 2 × 106 is
higher.

V. MODIFICATION OF THE KOMPANEETS EQUATION

The standard way to describe the thermalization of the
radiation and electrons through Thomson scattering and to
quantify distortions of CMB from blackbody is to use the
Kompaneets equation [43] (xe = h̄ω/Te):

∂nγ

∂t
= neσT Te

mec

1

x2
e

∂

∂xe

[
x4

e

(
∂nγ

∂xe
+ nγ + n2

γ

)]
, (32)

where σT is the Thomson cross section.
The equilibrium solution (∂nγ /∂t = 0) of this equation

is given by the Bose-Einstein distribution with, in general,
nonzero chemical potential μ (we note that it is customary
to use a different sign convention for chemical potential in
CMB science in comparison with the statistical mechanics
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literature: μCMB = −μ′ = −μ/T ). The chemical potential
appears because Eq. (32) accounts only for scattering and,
consequently, conserves the number of photons. This devia-
tion from the Planck distribution is known as μ distortion.
If it exists, μ distortion is very small: According to the
COBE-FIRAS data the constraint on μ is |μ|/T < 9 × 10−5

[44], while recent Planck data put even stronger constraint:
|μ|/T < 6.1 × 10−6 [45]. In the limit of small optical depth
for electron Compton scattering, Eq. (32) describes another
type of distortion called Compton y distortion, where dy =
neσT cdt (Te − Tγ )/mec2 (this y is not related to the normalized
wave vector used before). The constraint on y distortion is also
very strong: |y| < 1.5 × 10−5 according to COBE-FIRAS
[44]. The intermediate regime between the two extremes is
called i distortion [46].

We want the modified version of Eq. (32) that includes
the influence of plasma dispersion and has the equilib-
rium solution corresponding to the energy density given by
Eq. (9). This generalization of Eq. (32) to plasma environment
was derived in Ref. [47], where the possibility of Bose-
Einstein condensation in scattering dominated plasma was
investigated:

∂nγ

∂t
= neσT Te

mec

1

y2
e

∂

∂ye

[
y4

e

(√
y2

e + a2
e

ye

∂nγ

∂ye
+ nγ + n2

γ

)]
,

(33)

where ye = h̄kc/Te = √
x2

e − a2
e and ae = h̄ωp/Te.

An interesting feature of Eqs. (33) and (32) is that if the
temperature of the photons is initially higher than the electron
temperature (Tγ > Te), then the Thomson scattering leads to
the formation of a peak near k = 0 or ω = ωp [ω = 0 for
Eq. (32)]. This pile-up of photons near low frequencies is
reminiscent of Bose-Einstein condensation [9,23,47,48]. In
the absence of energy injection, the situation with Tγ > Te

is realized for CMB: As the universe expands the tempera-
ture of the radiation scales inversely with the scale factor:
Tγ ∝ (1 + z), while the temperature of the matter scales
as Te ∝ (1 + z)2. It is then usually argued that the Bose-
Einstein condensation does not actually take place in real-
ity, because at low frequencies absorption mechanisms, such
as Bremsstrahlung and double Compton scattering, become
important. Thus, Thomson scattering redistributes the excess
energy among photons creating large number of low energy
photons, which are then absorbed at low frequency. This leads
to a negative (if μ is defined in terms of CMB community
convention) adiabatic cooling μ distortion [40,49], which
partly cancels positive μ distortion due to energy injection.
In plasma, Bremsstrahlung and double Compton scattering
are reduced around plasma frequency, so some other photon
absorption mechanisms should take place. Since Thomson
scattering creates an excess of photons at low frequencies,
the electromagnetic wave energy can significantly exceed the
thermal level, making unique plasma mechanisms of radiation
absorption effective at getting rid of the excess photons at
low frequency. For example, different types of parametric
instabilities, such as the two-plasmon decay, when the elec-
tromagnetic wave with frequency around 2ωp decays into two

plasmons. In addition, collisionless absorption due to Landau
damping might be important.

Equation (33) allows one to study the evolution of the
CMB spectrum and its deviation from blackbody radiation
taking into account both Thomson scattering and change in
the dispersion relation of photons in plasma. The resulting
distortions, however, would be significantly different from
the ones obtained through Eq. (32) only for low frequencies
around ω ≈ ωp.

A further step in generalizing Eq. (32) can be made by
including the influence of the collective plasma effects on
Thomson scattering. It is known that for wavelengths larger
than the Debye length λD = vth/ωp, where the electron ther-
mal speed is vth = Te/me, the electromagnetic waves see
not the collection of individual independent electrons but
rather correlated dressed particles, which leads to coherent
rather than incoherent scattering and can reduce the effective
scattering cross section [50]. Condition λ = λD corresponds
to frequency ω = ωp

√
c2/v2

th − 1 ≈ ωp(c/vth ), which means
frequencies c/vth times larger than the ones in Eq. (33) would
be affected by this.

The generalization of Eq. (32) that takes into account the
collective effects in Thomson scattering was suggested in
Ref. [50]. According to Ref. [50], the Kompaneets equation
with the collective effects taken into account (wave time
dispersion is ignored here) can be written as

∂nγ

∂y
= 1

x2
e

∂

∂xe

[
Ie(δe)x4

e

(
∂nγ

∂xe
+ nγ + n2

γ

)]
. (34)

Here the collective parameter δe is introduced:

δe = ω2
p

ω2 − ω2
p

c2

2v2
th

, (35)

and function of the collective parameter Ie(δe) is defined
through the following integral:

Ie(δe) = 3

4

∫ 1

−1
dζ (1 + ζ 2)(1 − ζ )3

× 1√
π

∫ ∞

−∞

ξ 2e−ξ 2
dξ

|1 − ζ + δeW (ξ )|2 , (36)

W (ξ ) = 1 − 2ξe−ξ 2
∫ ξ

0
et2

dt + i
√

πe−ξ 2 = 1 + Z (ξ ), (37)

where Z (ξ ) is plasma dispersion function for real arguments.
Figure 6 shows function Ie(δe) and negative of its logarith-

mic derivative dIe(δe)/d ln δe as a function of the collective
parameter δe. We can see that the function Ie(δe) quickly
decreases between δe = 10−2 and δe = 10 dropping from Ie ≈
0.98 at δe = 10−2 to Ie ≈ 0.04 at δe = 10. This means that for
δe  1 the collective effects would reduce the scattering by
orders of magnitude. One should keep in mind, however, that
for very large δe the ion contribution to scattering should be
taken into account by adding the appropriate function Ii(δe),
see Ref. [50]. Note also that the graph for function Ie(δe) and
asymptotic formulas in Ref. [50] appear to be erroneous.
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FIG. 6. Function Ie(δe) defined by Eq. (36) and negative of its
logarithmic derivative dIe(δe)/d ln δe versus the collective parameter
δe.

VI. PLASMA EFFECTS DURING AND AFTER THE EPOCH
OF REIONIZATION

A. Plasma corrections to y distortion

After the epoch of recombination, the universe became
ionized again during the epoch of reionization. The epoch
of reionization took place approximately for the redshifts
z ∼ 6–15 [51]. As CMB light passes through newly ionized
intergalactic medium (IGM) during the epoch of reionization
and, later, postreionization, as it travels through electron
plasma of IGM and through plasma of intracluster medium
(ICM) of clusters of galaxies, the CMB spectrum experiences
scattering on hot electrons (Te  Tγ ), which results in Comp-
ton y distortion. Modern estimates suggest that sky-averaged
nonrelativistic contributions to y distortion from ICM, IGM,
and reionization are given, respectively, by 〈y〉ICM = 1.58 ×
10−6, 〈y〉IGM = 8.9 × 10−8, 〈y〉reion = 9.8 × 10−8 [52], mak-
ing it the largest expected CMB distortion within the CDM
cosmology [40]. Let us derive and estimate corrections from
plasma dispersion described by Eq. (33) and from the collec-
tive effects described by Eq. (34) to y-type distortion. Note
that our analysis below is different from the one in Ref. [33]
where it was assumed that plasma modified spectrum given
by Eq. (9) enters galaxy cluster, and here we assume that
blackbody spectrum enters galaxy cluster and experiences
change in dispersion relation or change in scattering due
to the collective effects while inside it, which leads to the
modification of Compton y distortion.

We rewrite Eq. (33) in terms of the normalized frequency
x = h̄ω/Tγ = (Te/Tγ )xe and using smallness of Tγ /Te � 1
and y ≈ neσT tc(Te/mec2) � 1 we keep only ∂nγ /∂x term in
the brackets:

∂nγ

∂y
= 1

x
√

x2 − a2

∂

∂x

{
(x2 − a2)2

[
∂nγ

∂x
+ Tγ

Te

(
nγ + n2

γ

)]}

≈ 1

x
√

x2 − a2

∂

∂x

[
(x2 − a2)2 ∂nγ

∂x

]
. (38)

Substituting the equilibrium blackbody solution into the
right-hand side, we obtain the estimate for the change in
photon distribution:

�nγ

y
=

√
x2 − a2ex

(ex − 1)2

(
x2 − a2

x

ex + 1

ex − 1
− 4

)
. (39)

For a = 0, the above equation gives the usual y-type dis-
tortion with the corresponding change in intensity �Iω(x) =
x3�nγ (x)I0, where I0 = (h̄/2π2c2)(T 3/h̄3). For a � x, it
gives:

�nγ

y
= xex

(ex − 1)2

(
x

ex + 1

ex − 1
− 4

)

− a2

x2

xex

(ex − 1)2

(
3

2
x

ex + 1

ex − 1
− 2

)
, (40)

where the first term is the usual nonrelativistic y distortion
and the second term is O(a2/x2) order plasma correction to
it. For completeness we note that, in addition, the same order
O(ω2

p/ω
2) corrections would also be present due to reflection

at the cluster boundary. Equations (39) and (40) together with
�Iω(x) = x3�nγ (x)I0 give the shape and value of the plasma
modified y distortion.

Similarly, from Eq. (34) we obtain:

�nγ

y
= xex

(ex − 1)2

[
Ie(δe)

(
x

ex + 1

ex − 1
− 4

)

+ 2
x2

x2 − a2

dIe(δe)

d ln δe

]
. (41)

Based on Fig. 6 we can see that the effect of Eq. (41) is
the overall reduction of the effective value of parameter y for
such x that δe  1. This reduction and the effects from plasma
dispersion are negligible for relevant parameters, however.
Indeed, the ICM of clusters of galaxies have electron plasma
with temperature about Te ≈ 107 K and density ne ≈ 10−4–
10−2 cm−3 [53]. We would take ne ≈ 10−2 cm−2 for esti-
mates, which gives ωp ≈ 6 × 103 s−1. For Planck’s spacecraft
νmin = 30 GHz and ω2

p/ω
2 ≈ 10−15, for SKA-LOW νmin =

50 MHz and ω2
p/ω

2 ≈ 4 × 10−10. As for the collective plasma
correction to y distortion, for Planck’s spacecraft we have
δe = 8 × 10−16 and the correction estimated as |1 − Ie(δe)| +
0.5|dIe(δe)/d ln δe| is approximately 2 × 10−15, for SKA-
LOW δe = 3 × 10−10 and the correction is about 9 × 10−10.
The collective plasma corrections to y distortion in IGM
should be somewhat higher because of the lower tempera-
ture, but lower temperature in turn makes the total distortion
smaller (parameter y), making it harder to detect.

Thus, plasma effects would cause extremely small change,
at the order of less than 10−10, to the already quite small
and not yet detected y distortion (y ≈ 10−6), which makes us
conclude that plasma effects on y-type distortion during and
after the epoch of reionization can hardly be detected in the
near future.

A smaller Compton y distortion with y ≈ 10−10–10−8 also
took place for redshift between z = 105 and z = 103 [42] and
the same procedure can be applied to those conditions. It
is obvious, though, that one would get similarly minuscule
corrections.
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B. Heating and magnetic-field generation

Unlike cosmological recombination, which is mostly a
volumetric uniform process, cosmological reionization is a
patchy nonuniform process. The universe became reionized
because of ultraviolet (UV) light coming from first stars and
galaxies (and maybe x-rays coming from quasars) [54]. This
UV light first ionized overdense regions and then ionization
fronts were moving ionizing the rest of IGM [55].

In Refs. [56–58] it was shown that, when a plane electro-
magnetic wave of frequency ω0 experiences sudden ioniza-
tion, it is transformed into three modes: forward and backward
propagating frequency upshifted (ω =

√
ω2

p + ω2
0) waves, and

a static magnetic field mode. It is easy to see that, in case of
unpolarized light, there will be no static magnetic field mode
since the magnetic fields generated for each equally possible
configurations will cancel each other, resulting in heat.

Due to Thomson scattering CMB radiation is linearly
polarized at the level of 10% [59,60]. The linear polarization
was first detected by the degree angular scale interferometer
(DASI) in 2002 [61]. The polarization could be formed at the
epoch of recombination [59,62], i.e., way before the epoch of
reionization, so that CMB was likely already polarized just
before the ionization. Thus, part of the energy of this linearly
polarized component could have been transformed into the
energy of static magnetic field. Let us estimate the magnitude
of this field.

According to Refs. [57,58], the amount of the initial wave
energy converted into the magnetic field due to instantaneous
ionization is given by

1

2

ω2
p

ω2
p + ω2

0

= 1

2

a2

a2 + x2
≈ 1

2

a2

x2
, (42)

so that the amount of CMB energy density converted into the
magnetic field energy density can be estimated as

B2

8π
≈ 0.1

T 4

π2h̄3c3

∫ ∞

0

a2

2x2

x3

ex − 1
dx = a2

8π2

4

c
σSB

(
T

kB

)4

.

(43)
The CMB temperature for z ∼ 6–15 was approximately

T/kB ∼ 19–44 K. Taking T/kB ≈ 20 K and the parameter
a ≈ 2 × 10−10 for this temperature and ne ≈ 10−4 cm−3 [63],
we get that, even though a very small fraction a2/8π2 ≈
5 × 10−22 of the original CMB energy density goes into the
magnetic field energy, we still get cosmologically very large
estimates: The magnetic field energy density is at the order
of 10−30 erg cm−3 and the corresponding magnetic field is
about B ≈ 10−15 G. For comparison, in Ref. [64] the magnetic
field produced during reionization by the Biermann battery
effect was estimated to be B ≈ 10−19 G. Thus, it seems that
the presented mechanism could have been a reason for the
origin of the still unexplained initial magnetic field seed
[65,66]. However, when we take into account the finite time
of ionization τion, we find that the ionization happens in
the adiabatic regime (ω  τ−1

ion ), so most of this energy is
converted into heat instead of magnetic field. The physical
picture is that, in case of sudden ionization, electrons start
oscillating approximately at the same phase resulting in the
directed motion, electric current, and magnetic field, while for
adiabatic ionization electrons have random phases resulting in

random motion and heat. The decrease of the magnetic energy
with the growth of the ionization time and its conversion into
the heat is confirmed by numerical simulations [57].

The ionization time depends on the thickness of the ion-
ization front and can be estimated as τion = d/vfront, where
d is the ionization front thickness and vfront is the ionization
front speed. According to Ref. [67], the front speed is about
vfront ∼ (0.05–0.1)c. The width of the ionization front can
be estimated to be several mean free paths of UV photons
[68,69]. The mean free path is around λmfp ∼ 1 physical kpc.
The amount of energy going into the magnetic field exponen-
tially decreases with the growth of the ionization time τion

as ∝ e−τionω. Then, even for low frequencies around plasma
frequency ωp ≈ 5 × 102 s−1, τionωp  1 and the attenuation
factor is practically zero e−τionωp ≈ 0, the magnetic field is
practically zero, too, with all the energy going into heat. The
total amount going into heat is higher by about one order of
magnitude if we account for the unpolarized part of CMB light
and is roughly a2/π2 ≈ 10−21, which gives a tiny temperature
increase of about �T/kB ≈ 10−20 K.

The possibility of the generation of seed magnetic field
should not be completely ruled out, however. For example,
regions with higher than average density and, consequently,
higher parameter a can be present or sharper ionization fronts
can be potentially produced.

VII. SUMMARY AND CONCLUSIONS

We derived, using three different approaches, the equi-
librium radiation spectrum inside plasma. We demonstrated
that, because of dispersion, it is different from the blackbody
Planck spectrum. We considered what stationary and moving
observers sent into the plasma-filled universe would measure
and how these results should be interpreted.

We then considered how plasma can affect the spectrum
of CMB radiation. Namely, we pointed out the change in
the cosmological redshift that can appear as an effective
frequency-dependent chemical potential; we discussed the
possibility of the direct detection of plasma equilibrium spec-
trum from CMB data, emphasized its sensitivity to how fast
the cosmological recombination happened and reached more
pessimistic conclusion about its experimental detection than
before [33]; we gave expressions for the modified Kompaneets
equation due to plasma dispersion and collective effects; we
calculated how Compton y distortion during and after the
epoch of reionization is changed because of plasma; and we
proposed, estimated, and deemed likely unrealistic a novel
mechanism of magnetic-field generation during the epoch of
reionization due to conversion of some of the energy of CMB
into magnetic field energy.

We concluded that plasma effects are extremely small, on
the order of O(ω2

p/ω
2) in most cases and hence cannot be

realistically detected in the near future. However, if some
of the assumptions employed here were violated, then there
would be possibilities for larger effects. Thus, it is important
to know how plasma affects the CMB spectrum in order to
fully understand the cosmological evolution of our universe;
for example, restrictions imposed by plasma effects might,
in principle, be used to test alternative models of cosmology
as they put boundaries on the baryon density at different
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epochs. Moreover, the analysis conducted in the paper could
be relevant to other astrophysical and laboratory situations
where radiation interacts with plasma.
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