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Relativistic Kinetic theory for spin-1/2 particles: Conservation laws,
thermodynamics, and linear waves
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We study a recently derived fully relativistic kinetic model for spin-1/2 particles. First, the full set of
conservation laws for energy, momentum, and angular momentum are given together with an expression for
the (nonsymmetric) stress-energy tensor. Next, the thermodynamic equilibrium distribution is given in different
limiting cases. Furthermore, we address the analytical complexity that arises when the spin and momentum
eigenfunctions are coupled in linear theory by calculating the linear dispersion relation for such a case. Finally,
we discuss the model and give some context by comparing with potentially relevant phenomena that are not
included, such as radiation reaction and vacuum polarization.
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I. INTRODUCTION

Current and next-generation high-intensity laser facilities
provide opportunities to study highly relativistic electron dy-
namics. Here, the electron spin [1-4] is of interest as the
electrons may spin polarize [5-7] in just a few laser cycles.
The ultrastrong magnetic fields present in astrophysical envi-
ronments [8—10] also enhance the significance of spin-related
phenomena.

In less extreme settings, applications in, for example, spin-
tronics [11], quantum wells [12], and plasmonics [13] have
also stimulated an interest in high density plasmas where
quantum effects are significant [14,15].

Earlier spin-kinetic models have included effects, such as
the magnetic dipole force, magnetization currents, and spin
precession [16-21], but have been limited to particle velocities
well below the speed of light in vacuum. However, in a
previous paper [22], which we will refer to as Paper I below,
a fully relativistic kinetic equation for spin 1/2 was presented
along with its couplings to Maxwell’s equations. This forms a
model that can be used to describe self-consistent relativistic
plasma dynamics, including spin effects.

Here, our purpose is to study some basic properties of the
model and provide some tools needed for analytical studies.
The organization of the paper is as follows: In Sec. II, we give
an overview of the model, including the assumptions made in
the derivation. Next, in Sec. III, we derive conservation laws
for energy, momentum, and angular momentum and give an
expression for the stress-energy tensor. It turns out that the
stress-energy tensor is nonsymmetric in our case, which is
related to the presence of spin angular momentum. Section IV
is devoted to a study of the thermodynamic background
distribution for various cases and the associated background
magnetization due to the electrons. In particular, we present
the expression for the relativistic and the nonrelativistic cases
allowing for, in both cases, nondegenerate and degenerate
electrons. Next, in Sec. V, we analyze linear theory in a
homogeneous magnetized medium. It turns out that, due to
relativistic effects, the spin and momentum eigenfunctions
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become coupled, and the standard solution procedure must be
generalized. We give an example of how this can be performed
and present a dispersion relation in the limiting case of wave
propagation perpendicular to the magnetic field. Finally, in
Sec. VI, the significance of our results and the applicability
of the model are discussed.

II. OVERVIEW OF THE MODEL

The model comes from separating positive and negative
energy solutions of the Dirac equation by means of a Foldy-
Wouthuysen (F-W) transformation [23,24]. Since we are de-
coupling electrons and positrons, the physical condition of
applicability is that pair production is negligible. Quantita-
tively, the fields should not be comparable to the critical fields
E <« E. = m?/qh and similarly for B, and their typical scale
lengths should be long compared to the Compton wavelength
h/m. We then take a gauge-invariant Wigner transformation
[25-27] (see Ref. [28] for a pedagogical introduction to
the Wigner formalism) to obtain an evolution equation for
a 2 x 2-matrix valued Wigner function W,g(x;, p;, t). Here,
X;, p; denote that, in a many-body system, the Wigner func-
tion depends on all the positions and momenta. However,
the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy ap-
plies, and neglecting collisions, the evolution equation for the
one-particle Wigner function is found from the one-particle
Hamiltonian.

Next, we apply a spin transformation [17],

fx,p,s,t):= LTr[(l +s- o)W, p)l
4

1
2_80( *O0q Wa ) 1t 1
471( g+5-0,8)Wpe(X,p, 1) (D

to obtain a scalar Wigner function (summation convention
applied to the spin indices). In this formalism, densities in
space are given by moments of the Wigner function over
the momentum and spin variables p and s. For example, the
number density is n = [ d’pd?®s f. Below, we will often use
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the notations dQ2 = d*pd®s and

(D) = / AQ O f. @)

where @ is some function on phase space. The normalization
of the spin transformation is such that the spin density is

oupppal) =3 [ d2ss. )

Also, it is easy to derive the identities,
/dQV_Yf=2/dst, 4)
/dstX~st:O, 5

where X is any vector independent of s. These identities are
used repeatedly below.
The evolution equation for the scalar Wigner function f is

0=a,f+<§—u3v,j“> V.f

—i—q[E—i— (g —MBVPT> x B} V,f

2‘;’*’"@ xT)-Vof,  (6)

+up(ViT) -V, f +

where €2 = p?> +m?, ug = gh/2m is the Bohr magneton,

and
T=@<B—pXE>, 7
€ €E+m
T=T.(s4+V,). )

The system is closed with Maxwell’s equations in units
where ¢ = €9 = uo = 1,

V.E=p—V-P, (9a)
V.B=0, (9b)
B
VxE=——, (9¢)
ot
VaxBojt+ E R oM (9d)
X = _— —_— X
T o ot ’

where P and M are the polarization and magnetization den-
sities and pr and j¢ are the free charge and current densities.
These are given by

pr = q/de, (10)

ji = q/dQ (i—) — ugV,T- 3s)f, an
. ms X p

P— 3u3/dsz oy, (12)

M = 3M3/d§2 %f, (13)

and we refer to Paper I for the derivation. It follows from the
evolution equation, Eq. (6), that the free charge is conserved,

oot + V - jr = 0, and we interpret
p
V== —ugV,T:3s, (14)
€

as the function on phase space corresponding to the velocity—
it is, in fact, the Weyl transform of the velocity opera-
tor Vv = %[I? ,X] given by the Heisenberg equation of mo-
tion. The spin-dependent term is related to the ‘“hidden
momentum” [29-32] of systems with magnetic moments. It is
discussed further in Paper I with additional references. Here,
we make some further observations:

(a) Anomalous magnetic moment. The derivation of the
model considered here is based on the Dirac theory where
the gyromagnetic ratio is g = 2, discarding the anomalous
magnetic moment (AMM). However, making this assumption
is not necessary for the Foldy-Wouthuysen transformation
[24], and we will allow for g # 2 below. Let us discuss the
validity of this.

Including the AMM corresponds to adding a term
(g— 2)FWEG‘”¢ to the Dirac equation, and consequently,
new terms will appear in the Hamiltonian in the F-W represen-
tation rather than just modifying g. One of those new terms has
the form (g — 2)o - B, i.e., unlike the Dirac magnetic moment,
there is no 1/¢ length contraction factor. Since g —2 ~ = is
small, the modification g — ¢ = 2 + /7 should be satisfac-
tory for a phenomenological description. Nonrelativistically,
such an analysis was carried out in Ref. [16] and later more
generally in Ref. [33], finding new wave-particle resonances
due to the mismatch between the electron cyclotron and the
Larmor precession frequencies. We will continue in this spirit
and consider g — 2 # 0 in Sec. V.

(b) Radiation reaction. As it stands, the model does not
include the effect of the radiation reaction (RR) (reviewed in,
e.g., Refs. [34,35]). In principle, a radiation reaction force
could be added to Eq. (6) as a Frr -V, f term, possibly
including the spin dependence of the RR force [36]. It is
also now well known how to include RR in a particle-in-cell
scheme [37]. However, the ratio of the RR to the Lorentz
force is n = ay?E /E.; where y is the Lorentz factor and «
is the fine-structure constant. The strong RR regime n =~ 1 is
only expected to be reached with next-generation 10 PW laser
facilities [34] (but see Refs. [38,39] for a recent experiment
using the Gemini laser), and by inspection, there are clearly
regimes where 1 < 1, but y is large enough that an O(v?/c?)
treatment is inapplicable. Furthermore, even for strong fields,
the spin-dependent non-RR forces may be comparable to the
RR force or even dominate it [10]. However, the present
model is not developed exclusively for strong fields, and
relativistic spin effects could be important, e.g., for relativistic
temperatures (thermodynamic or Fermi).

III. CONSERVATION LAWS AND
STRESS-ENERGY TENSOR

As a sanity check, the model should have conservation
laws for energy, momentum, and angular momentum. In the
previous paper, the conservation law for energy was given and
discussed in relation to the Abraham-Minkowski dilemma;
here we give the full set of conservation laws.
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A. Energy and momentum

The total energy density is given by

1, B
W= +B)+/d§2 € =3upm—-s)f. (1)

and with the energy flux vector,

B pxE
K:/d9|:e+ugm3s~ <— — —)i|vf+Ex H,
€ €(e+m)
(16)

where H=B - M, we have a conservation law on
divergence form

W +V.K=0. (17)

To derive the conservation of momentum, we look at

0,(p) = Bz/dﬂpf=/d§2p8zf. (18)

We substitute for 9, f using the kinetic equation.

Because p is independent of s, we can divide the integral
as [d’pp [d*sd,f and using the spin integral identities
Egs. (4) and (5) we arrive at

—/de&,f:/d3pp/d2sx[V-fo+q(E+v><B)

Vof 4+ 3up(s - 0,T)dp, f]. (19)

The first term here is f a2 p;iv i Vx; f, however, the x diver-
gence cannot be taken outside the integral to write this as the
divergence of a moment because v depends on x through T.

In the second term, we integrate by parts. Since 9, vy is
symmetric in its indices, we have

f]/dQPi(Ej-i-éjklkaz)ap,f = —CI/dQ 8ii(Ej+e€juviBr)f
= —(p¢E + jr x B);, (20)

which is the Lorentz force density. The spin-dependent part
will be found below.
For the third term in Eq. (19), we have

3MB/dQPi(Sk -0, Tk) 8y, f

= ~3yn [ 550, i + pisid, 0, T)f

/dQ( — 3upsk0y, Tk + pidy,v)) f. (21)

For the first term above, it is simple to establish that

3MB/dQ 50y, Tx) f = M0y, By + Pidy, By, (22)

using the definitions of M, P in Egs. (12) and (13). The second
term in Eq. (21), containing d,,v;, is what we need for the
divergence of a moment with a x dependence. It is, of course,
not a miracle that this happens but a consequence of that the
kinetic equation essentially has the form of a Poisson bracket
between f and the Hamiltonian.

To summarize
pi = = [ dslpwsa, + pi(a,)
—3ups;(8,T))]f + (otE + jr x B);
= =0, [ dSpuyf + (i +ic x B,
+M;0,Bj + P;jo.E;, (23)
using, on the second line, Eq. (22). Here, we can identify

T:; = (piv;), (24)

as the stress tensor for the electrons. Note that the relation
between p and v also contains field variables and there will
be no clean separation of the total stress tensor into field and
particle parts. This is what one would expect for an interacting
theory.

We now need to find an appropriate Poynting vector and
electromagnetic stress tensor to match this force density. From
Maxwell’s equations, using various vector identities, one
finds that

(D x B); + 05, T,7M
= —(pE + jr x B); — My0y,Bi — P 0y Er,  (25)
where D = E + P and the tensor TlfM is defined by
M = J(E* + B —2M - B)S;; — HiB; —E;D;,  (26)

where the source term is precisely the negative of that in
Eq. (23). We should note that, although we have used notation
to indicate that this is the field part of the stress tensor, it
still contains particle variables through the magnetization and

polarization.
Thus, we can express conservation of momentum as
3 ((p) +D x B); + 0, (75 + T7M) = 0. (27)

The stress tensor we have found is not symmetric, and be-
cause it is E x H that appears in the energy conservation law,
the full stress-energy tensor is not symmetric under 0i < i0.
This is usually considered a defect, for two reasons, discussed
in more detail in Landau and Lifshitz, Vol. 2, Secs. 32-33 and
94 [40].

The first reason is that to conserve angular momentum
r x II, the stress tensor should be symmetric. However, this
condition applies only if the angular momentum is entirely or-
bital angular momentum. If there is spin angular momentum,
angular momentum can be conserved even with a stress tensor
that is not symmetric, and we will demonstrate explicitly that
this is the case for our model, below.

Identifying the correct stress-energy tensor is a general
problem for field theories [41] since to a tensor 7, with
9, T = 0, we can add any four-divergence 9, ¥/, with ¥,
antisymmetric in ppu to obtain a new tensor with vanishing
four-divergence. Hence, the integrals [ d’x T™—the actual
conserved quantities—will be unchanged, but their densities
in space are not uniquely defined without a further physical
principle. As a familiar example, indeed, the tensor obtained
by applying Noether’s theorem to the free electromagnetic
field is neither symmetric nor even gauge invariant but can
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be made so [42]. Still, merely requiring the tensor to be
symmetric may not be enough to guarantee uniqueness [41].

The physical principle that ensures uniqueness is that the
components of the stress-energy tensor are, in principle, ob-
servable: One needs simply a ruler precise enough to measure
the curvature of space-time. This is the second reason to
prefer a symmetric stress-energy tensor: It is the source of
gravitation, and the left-hand side of Einstein’s field equations
is the symmetric Einstein tensor. This also provides a method
to obtain the stress-energy tensor directly: It is the variation of
the matter action with respect to the metric.

For manifestly Lorentz-covariant theories, the Belinfante-
Rosenfeld construction [43,44] gives an explicit form for ¥,
to symmetrize the Noether tensor, but this construction relies
on the structure of the Lorentz group. Because our model is
in Hamiltonian form and written in terms of E, B, we have
broken manifest covariance and cannot use the Belinfante-
Rosenfeld construction directly.

The Belinfante-Rosenfeld method, or the variation with
respect to the metric, can be applied to the manifestly co-
variant Lagrangian in the Dirac representation, yielding a
symmetric tensor Y70y = v (y,Dy + y,Dy)¥, D, being
the gauge covariant derivative. An alternative approach would,
therefore, be to transform the operator TEU to the Foldy-
Wouthuysen representation. However, there are issues with
gauge invariance to consider [45], and this is outside the scope
of the present paper.

B. Spin transport

To establish conservation of angular momentum, we con-
sider 0, (s). Here, we must establish a few facts about the spin
moments. Because products of Pauli matrices are reducible
to Pauli matrices, there are no higher spin moments. That is,
because 0;0; = §;; + i€;jx0x, we must have [ s;s;f d*s o« §;;
since moments of the Wigner function should correspond to
symmetrically ordered operators. In calculating the spin trans-
port, we will want the moment corresponding to the operator
:0;D;: where the colons indicate Weyl ordering. Using the
Pauli matrices relation, we find that

A

A P A
OiVji= O','ZJ — pLgapjT,-. (28)

Because f = % Tr[(1 +s-0)W], the moment corre-
sponding to this operator is

(x| 001 pIx) = / dQ(as,% —Mgap,n)f, (29)

where the factor of 3 is needed only in the first term. Also,
using the definition of f, we find

1
/ d*ssis;f = 3 / d*s f, (30)
and, importantly,
1
/ d*s s;,f = yo f d*s s; Tr[(oj — sjs,0,)W] = 0,

because all odd moments over the sphere vanish by reflection
symmetry.

Thus, to find

8,/d§23sf=3/d§2s8,f,

we again look at the terms in the kinetic equation. The Lorentz
force term will not contribute anything: The electric force is
independent of p, so we get [ a? pV,f = 0; when integrating
the magnetic force term by parts we get V,- (p x ---) =0.
For the first term, we get

/dQ 3s,-<% — 1wy, Ti (51 + as,))ax,f

= /d9<351& - MBapj]—;)anf? (31)
€

using the identities above.
The index structure in the spin torque term will be

si€jrskTi[o; — $78,0,],

where the term fourth order in s; does not contribute be-
cause it is contracted with the antisymmetric Levi-Civita.
Thus, the spin-torque term, unsurprisingly and reassuringly,
gives the spin precession as in the Bargmann-Michel-Telegdi
equation [46],

3

/dzss,-e_,-klsﬂwsjf = P dzssiej;dskT; Trlo;W]

= €T Tr[o;W]
(T x (a));

= (T X f d’s 3sf) ) (32)

The term containing V, 7" in the kinetic equation is treated
similarly to the first. It gives an x derivative on the function in
Eq. (29) complementing that on f in Eq. (31).

In conclusion, after multiplying by %/2, giving the spin
angular momentum, we find

h h Dj
58,/d2s3s,~f = —Eaxj /-dzs(si?] — ugV,,j.T,-)f

— <T X /d% 3sf) . (33)

C. Angular momentum

Let IT = D x B + (p) be the total linear momentum, and
define the orbital angular momentum L. = r x II. Then,

0:L; = €;jxrj0 P = —€;jir0,Txn, (34)

= —0u(€ijurjTin) + €iji Tk, (35)

and we see that the orbital angular momentum would be
conserved were T ; symmetric.

The source of orbital angular momentum is —¢;x7j;. For
our stress tensor, this is

HXxB+EXD—-(pxv)=—MXxB+ExP— (pxv),
(36)

using that H=B — M, D = E + P, so only the magnetiza-
tion or polarization contributes to the cross product.
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Now,
_ 3usp
va_—e(e+m) x (E x s), 37
_ 3up
ExP_Ex<—E(6+m)pxs>, (38)
SO
3B
ExP—-—(pxv)=—(Ex(pxs)+px(sxE))
e(e +m)
_ 3usp
= detm (s x (p x E)), (39)

using the Jacobi identity for the cross product.
We then recognize that

8,L,- + 8n6ijkrokn = — / a2 (3S X T)lf (40)

But this source term is exactly the negative of the spin torque
in (33), so the total angular momentum, orbital plus spin, is
conserved. Hence, the reasons to prefer a symmetric stress-
energy tensor, discussed above, are not relevant in our case.

IV. THE THERMODYNAMIC BACKGROUND
WIGNER FUNCTION

The aim is to find the thermodynamic background Wigner
function for electrons in a constant magnetic field ByZ and to
compute the associated background magnetization. We will
divide the treatment into the nonrelativistic and the relativistic
regimes. Before we look into specific cases, we apply spher-
ical coordinates in spin space (where 6; is the angle with the
z axis) and introduce the division of the equilibrium Wigner
function fy into its spin-up and spin-down parts (see, e.g.,
Ref. [17]) according to

1 1
fo=—Fy+(1 4+ cos 65) + — Fy_(1 — cos 6;), “1n
4 4

and
1 1
nox = — | Foxe(1 £cos 0,)dQ = — [ FyrdQ, (42)
A 4r

where ng4 is the number density of the spin-up and spin-down
populations, respectively, and we write ny = noy + no—. The
factors (1 &£ cos 6;) correspond to the projection operators
1+o,.

We note that nonrelativistically, the background magne-
tization My = g [ sfo(p, s)dQ2 = MoZ is given by My =
Upnot+ — wpho— = Rupgng where the thermodynamic factor R
is defined by

no+ — Np—

R= — (43)
no

i.e., it is a functional of the distribution. Below, the value of
R, i.e., the degree of spin polarization, will be presented for
a few specific cases, and the relativistic generalization for the
background magnetization will be given.

A. The nonrelativistic regime

For the nonrelativistic case, the characteristic Kinetic en-
ergy E; should be much lower than the electron rest mass

energy. E; is the thermal energy kg7 or the (nonrelativistic)
Fermi energy Er = (3m%ng)*/*h*/2m, whichever is higher.
Moreover, we assume the Zeeman energy upB, to fulfill
upBy < Ey. If this is fulfilled, Landau quantization is not
significant, which means that the energy states are continuous
to a good approximation. The general nonrelativistic expres-
sion for the Wigner function has been computed in Ref. [17]
[see Eq. (59) in that work]. In the limit of ugBy < Ej, this
expression reduces to

B (1 £ cos 6y)
So(p,s)=C ? exp[(p2/2m F ugBo + ) /kgT]1+ 1 ’

(44)

where the normalization constant C can be chosen, such as to
fulfill f fo(p, s)d2 = ny. The chemical potential x. coincides
with the Fermi energy for T <« Tr, and for the opposite
ordering it suffices to know that p. is large and negative. For
T > Tr, we can use exp(—u./kgT) > 1 and get

2
p usB
Jfo(p,s) = Cexp (kaBT> |:exp (— kl;T0>(1 + cos 6y)
B
+ exp <+“B O)(l—cos 95)}, (45)
kgT
where the normalization condition gives us
4 2mkpT )3/?
C o wno(2wkpT) 46)

oxp (— 520) + exp (+ B2)

For the nondegenerate case given by (45), it is easily
confirmed that the R factor is given by the textbook result,

B
RIT > Tr, Ex < m] = tanh (IZBTO). 47
B

Next, we consider the fully degenerate case where T = 0.
As aresult, the number densities of spin-up and down particles
are given by the volumes of the respective Fermi spheres,

limited by the Fermi-momentum ppy = +/2m(Er F upBy)
for spin-up and down states, respectively. Thus, we have

Py — Pr_ . 3 msBo
Py +pp_ 2 kTy

RIT < T, Ex <m] = (48)
The approximation performed in (48) is a Taylor expansion
to first order in wgBy/kgTF, in line with the general condi-
tion upBy < Ej, which is needed to avoid the complications
related to strong Landau quantization.

B. The relativistic regime

Since ugBy <K Ej still holds relativistically, Landau quan-
tization is not an issue. As a result, most of the previ-
ous section can be copied by simply replacing the veloc-
ity dependence with a momentum dependence, the nonrela-
tivistic kinetic energy with (y — 1)m, replacing pugBy with
upBo/y, and now using the relativistic Fermi energy Er =
[(m)* + c*p2]"? —m where p2 = (37%ng)* K. Here, we
may neglect the corrections of the relativistic factor due to
the magnetic dipole energy Eq. (14) (there is no electric
field in equilibrium, so the E x s term vanishes) and use
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¥ = (14 p*/m*c?)"/2. In the nondegenerate case (large negative chemical potential), we immediately get

fo(p,s) = C exp (—(y —D

The corresponding thermodynamic factor, thus, becomes

R[T > Tr] =

,uBO

Dm
— X
ks T P\ VT

[ (p*exp{l—(y — Dym + pugBo/y1/ksT}

kgT

>(1+cos@)+exp<+“3 0>(l—c059):| (49)

— p*exp{[—(y — Dm + upBo/y1/ksT})dp

J (-

Since upBy is a correction term, we may Taylor expand the
exponentials in which case we get

,LLBBO f p7‘ eXP[—(V - l)m/kBT]dp
ksT [ p*expl—(y — Dm/kgT1dp’
which agrees with the nonrelativistic expression in the limit of
yr—-bH<L

For a fully degenerate relativistic system, we again use
fo = For (1 4 cos 6;) + Fy—(1 — cos 6;) but with

RIT > Tr] =

(51

1/Q2h)? —1 b < Er,
g, 2 [ o= hmE n s
0, otherwise.
Thus, the R factor is determined by
3
RIT < Ty] = ””—”51 (53)
Pry + Pr_
where pr+ is determined from
Prs Erp = upBo/vr _ EF usBo
1+ - =+ ———
m2c? m m m4+Ep
(54)

where we have used the fact that the relativistic factor

near the Fermi surface fulfills yp >~ 1 + Er/m. Simplifying

Eq. (53) using ugBy < m and pugBy < Ep results in the final
expression,

3ugBo

R[T Tr] = , 55

[T < Tr] [(Ep/m + 1) — 1}m (55)

which coincides with the nonrelativistic expression in the limit

Er < m.
It should be noted that the expression My = Rugng re-
quires that each particle contribute with x5 to the magnetic

J

dfi
ot +m'

(v — Dm + upBo/y1/ksT} + p* exp{[—(y — Dym + pupBo/y1/ksT }dp

(50)

(

moment. Since this is only true in the rest frame, we must
compensate. If the magnetic dipole energy is large, this would
be complicated, but for ugBy < m, a simplified calculation
suffices. The result is that the magnetization is reduced in
proportion to the y factor, i.e.,

f%fOpdSP
ffOpd3p ’

where fy, is the reduced momentum distribution function
that would apply in the absence of spin polarization (i.e., a
relativistic Fermi-Dirac or a Synge-Jiittner distribution for the
two cases considered above). The above expression gives the
correct magnetization to first order in an expansion pugBg/m.
It should be stressed that the expression for M, becomes
significantly more complicated if higher order contributions
are required.

Physically, we can note that relativistic effects decrease the
total background magnetization in two ways. First, for rela-
tivistic particles, the energy difference between the spin-up
and the spin-down states (in the laboratory frame) is smaller,
reducing the difference in number density between the spin-up
and the down states [see, e.g., Eq. (49)]. Second, the contribu-
tion to the magnetic dipole moment in the laboratory frame
is smaller for a moving particle, reducing the magnetization a
second time [see, e.g., Eq. (56)].

1
My = RHB”O<;> = Rupno (56)

V. DISPERSION RELATION FOR LINEAR WAVES

The enhanced complexity of Eq. (6), compared to nonrela-
tivistic theories, introduces some technical obstacles already
in linearized theory. Our purpose here is to address these
difficulties and present a general calculation method.

After linearization Eq. (6) can be written as

1 1
Vifi — upm[Bg - (s + Vs)]vp<;> -Vifi + %(P x Bo) - Vp fi — qusm([Bg - (s + V)] (Vpg X Bo> - Vphi

21 x E 1
+ TB(S x Bo) - Vifi = —qE -V, fo — %[P x Bil- V,fo +61/LB””|:(B1 B pz—m) s+ Vs)} (Vpg X BO) “Vipfo

1 p xE
+qupm[Bg - (s + V)] Vpg x By ) - Vpfo—qusyVy S

—upVi[By - (s+ V)]V, fo+

Here, 6; is the angle between the spin and By. Some of
the difficulties in Eq. (57) as compared to the classical Vlasov

(s + Vs):| X Bo} -V fo

2 E
SIVA(P X B)- (s+ Vo)l - Voo - %[ s x (Bl - p;ﬂ )] Vefo. (57)

(

equation follow from y = €/m being a function of momen-
tum. However, since it is well known from classical relativistic
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theory how to deal with this, we will focus on some of
the other subtleties and use the lowest order approximations,
e/m~1, V,(1/e)~ =2p/m>.

From now on, we consider a restricted geometry, namely,
transverse waves with
k=kye, E =Ee, B;=DBp¢e,,
where k is the wave vector. The perturbed quantities fol-
low the plane-wave ansatz according to f; = fje/®*=) We

J

kipy

1
Yp(@p, pL) = Nt exp [i<ﬂ<pp - r:w

ce

express the momentum of the particles in cylindrical coordi-
nates (p1, ¢p, p;) and the spin in spherical coordinates s =
sin 6 cos @€, + sin 6, sin ge, + cos O,e..

Furthermore, we perform an expansion of f in eigenfunc-
tions of the operators on the right-hand side of Eq. (57) [33],

~ eiﬂl%
fi(p,s) = ;gaﬁ(lu,Pz,9s)1/fﬁ(¢p,PL)E, (58)

where

. 1 kipi\ ipg—
= > HE=2)ep, 59
- %)} Nor T(mwce)e ©)

where J; is the Bessel function of first kind and w.. = gBy/m is the electron cyclotron frequency. Here, greek summation indices
take integer values from —oo to 400, and we will suppress the argument of the Bessel functions as it is always k| p| /mw,.. Only
o = =£1 will contribute in Eq. (58). From now on, we will additionally use latin summation indices that take only the values +1

to distinguish between the two types of sums.
Using this eigenfunction expansion together with

q
—(p X Bo) - Vpfi = e,
m

2[,L3m
mh

where ¢, = (g/2)w. in Eq. (57), we get

(S X BO) . fol - _wcga_%v

o/ (602)
99,

o/ (60b)

ip k B d B 0 ad d
{— iw+ lp;l L cos go,,|:1 + an 0 (cos 6y — sin 9&8_95)1| — a)ce|:1 + M; 0 <cos 6y — sin 958_93>:|8_g0p — wcga—(ps}f]

= RHS,

where RHS is the right-hand side of Eq. (57), simplified
according to the above assumptions.

The differential equation, Eq. (61), is relatively hard
to solve analytically. However, the troublesome operator
cos 6 — sin 0,0y, appears with a factor ppBy/m, which is on
the order of unity for magnetars but is much smaller for other
known environments [8]. Hence, we can solve this equation
for f) by using perturbation theory. Expanding f1 = fio + fi1,
where fi; is first order in wgBo/m, fio is the solution to
Eq. (61), keeping only zeroth-order terms in pgBy/m on the
right-hand side,

fio =Y Jpe P PIA, + (B, + Cpe™].  (62)
n.p.p

The first-order term f; is then obtained by taking f; = fio in
all first-order terms in Eq. (61),

upBow
fui= —Ce(
m

0
cos 65 — sin §,—
00s

% Z ei(pp(ﬂ_p)pJﬁJaJp+afr

T,B.a,p

(63)

> [ A BHG e,-,,%_}
LW T W D — WeefP + nweg

(61)
[
In these expansions,
0 J
A, = —inﬁ L (64)
Ip; @ — Weep
0\ 0
B, = —if sin 6, 4 cos 6; i Z S o S
805 aPJ_ " W — WeeP + NWcg
qEBy Bimw,, Ek,p,
Jon J J ,
><|:4m pont N 2p1 ot 4m P
(65)

d fo ipnp/h
= 36, 2 w—

Now, with f} expressed in terms of fj, we can split f; into
its spin parts using the notation fy; = %ng(l =+ cos 6;) asin
the previous section Eq. (41). This will give additional sums
over %, analogous to sums over the latin indices already used.
In determining the dispersion relation, we calculate the total
current density J = ji + 33—1; 4+ V x M [see Egs. (11)-(13)].
Using Maxwell’s fourth equation, Eq. (9d), the dispersion
relation is given by

22, T 2 fo M P
o' =K+ — =3 | @phlxj+xi + x5l ©D
B
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where x ,5 is the contribution from the free current density,

8/, B
f_ B UBD(
X _Zi:w—wceﬂ[li -

Byw, JoJatp—t
o HBow B Z oJo+p j|F0i, 68)
m W — WeeT

a,T
X }’3"1 is the contribution from the magnetization current density,

nhk/m

M
X = —_—
B ;a)—a)wﬁ—i—nwm

B cek k
: [(uj L, kB ﬂJén)
2m pLw 2m

X

OF. 1(2k
8pL + h

PL
—Jg — —Js_n | Fo+ |, 69
PRl ) Oi:| (69)

and x}f is the contribution from the polarization current
density,

B cek k ,
([ (8B, - mmekBrm, ke,
2m pLw 2m
BFOi 1 Zk pPL
— — T — —Jg | Fox |- 70
XapLZFFz(w B+ p” ﬁ) 0:|::| (70)

Note that only in x§ do we have contributions from fi;, this
is because both B, and C, vanish in fj; when using fo+ =
= Fox(1 £ cos 6;).

Equation (67) contains both classical and quantum modes.
Since we are interested in the effects of the spin on the
dispersion relation, we consider a regime where the spin
effects are comparable to the classical ones. Considering,

@R Awe = Weg — Wee,s (71)

in this regime the denominators @ — w¢.B, ® — WP £ weg,
and w — w..B + Aw,, are minimized for 8 = 0, *+1, and O,
respectively. Keeping only these values of 8 in the summation
over B and focusing on the short Larmor radius regime, i.e.,
kp,/mw., < 1, we expand the Bessel functions to second
order. We refer to Sec. VI for more details.

Furthermore, to compute the integrals in Eq. (67) explic-
itly, we must specify the background distribution function.
Considering a Fermi-Dirac distribution for low temperatures
T < Tr, where Tp is the Fermi temperature, the dispersion
relation in Eq. (67) is

7h2a)12)k2 k2
2 2 2 2 (1 + 25 > ’
20m (che — k> — a)p) Wee
(72)

w(k) = che|:1 —

where 6 = g/2 — 1. Fork — 0, w — Aw,, as expected. The
equation above shows that w diverges from Aw,, for larger
wave numbers. This divergence is proportional to the square
of the Compton wavelength, but since the solution is in the
short Larmor radius regime, k should satisfy k < mw../p. .

VI. DISCUSSION

The present quantum kinetic relativistic model for elec-
trons, first derived in Ref. [22], is based on the Dirac equation
where a phenomenological adjustment of the spin g factor
has been performed to account for the QED contribution.
It generalizes the relativistic Vlasov equation to include the
spin dynamics, whereas still allowing for a fully relativistic
motion. In comparison with the models found in Ref. [17],
it is extended to contain spin-orbit interaction, a contribu-
tion to the polarization current associated with the spin and
Thomas precession. As compared to the model of Ref. [18], it
allows for fully relativistic motion (i.e., relativistic y factors
not close to unity). Here, we have continued studying the
model, including the full set of conservation laws for energy,
momentum, angular momentum, as well as an expression for
the stress-energy tensor. Moreover, the thermodynamic back-
ground Wigner function and the background magnetization
are given for the degenerate and nondegenerate cases in both
the relativistic and nonrelativistic cases.

A complication in the present theory when it comes to
practical calculations is the nontrivial relation between the
momentum variable and the velocity, involving the spin state.
To illustrate how this can be handled analytically, treating the
spin dependence perturbatively, we have calculated the linear
dispersion relation for the case of perpendicular propagation
across an external magnetic field. Finally, a simple limiting
case with v ~ Aw,, has been presented.

Before we go on with the technical aspects, let us first
discuss some specific systems where the current model is of
particular interest, i.e., plasmas where the particle motion is
relativistic and the electrons are spin polarized. As described
in Sec. IV, the thermodynamic background distribution has
a degree of spin polarization on the order of ugBy/kgT for
a nondegenerate system and on the order of ugBy/kgTF for
degenerate systems. For astrophysical objects, such as pulsars
(B ~ 10% T at the surface) and magnetars (B ~ 10'°-10'' T
at the surface) [8,9], we typically have nonrelativistic temper-
atures T ~ 10% K in the atmosphere [47]. This corresponds
to a large electron spin-polarization 0.1 < ugBo/kpT < 1
even at a considerable distance from the neutron star surface.
Although the electron temperature may not be of relativistic
magnitude, the particle interactions with the pulsar fields, nev-
ertheless, induce relativistic motion in the atmosphere [48,49].
For electrons at the pulsar or magnetar surface, on the other
hand, the degeneracy makes the particles strongly relativistic
with a Fermi temperature on the order of Tp ~ 102 K [50],
which, depending on the magnetic field, corresponds to a
degree of spin-polarization 0.0001 < ugBy/kgTr < 0.1.

Thus, for electrons belonging to the neutron star surface,
we note that spin polarization is pronounced for magnetars but
not as much for pulsars. Turning to laboratory applications,
laser-plasma interactions with dense targets are of particular
interest [5-7,34,51-56]. Although such systems are not ini-
tially spin polarized, theories aided by particle-in-cell simula-
tions have predicted [51] that a quasistatic magnetic field with
a field strength on the order of By ~ 10° T can be formed.
It should be stressed that these estimates are fully consistent
with experiments, see, e.g., Refs. [52,53]. Before the final
stage of laser-plasma compression, where significant electron
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heating may occur, this corresponds to a spin polarization on
the order of 0.01 < upBo/kgTr < 0.1 at the same time as the
electrons are relativistic due to the quiver motion in the laser
field [34,54].

Here, we have mainly been concerned with systems that,
besides being relativistic, have a thermodynamic background
distribution that is spin polarized. However, it is worth noting
that interaction with a dynamical electromagnetic field by
itself can lead to spin polarization, see, e.g., Refs [5-7,55,56].
Moreover, we stress that the current theory deviates from
simpler models to some extent already for modest y factors,
see the discussion of hidden momentum in Paper L.

The current model is of particular interest for strong
fields. However, a classical or QED corrected radiation
reaction [57-59] is not covered and neither is strong field
vacuum polarization due to QED included. Thus, it is of
interest to establish the regime of validity for the model, i.e.,
to find the conditions when the spin contributions are the most
important extensions of the classical physics. First, it should
be noted that the nonrelativistic spin contributions are not
necessarily dependent on strong fields, in particular, the ratio
of the magnetic dipole force over the Lorentz force scales
as fik? /mw for a plane-wave field. Thus, in case we have a
short-wavelength plasma perturbation with a low frequency,
the magnetic dipole force should be included independent
of the field strength. Although effects of this nature have
been covered already in previous nonrelativistic works [17,19]
or weakly relativistic theories [18,60], the theory presented
here is needed in case the thermodynamic temperature or the
Fermi temperature is relativistic. In the absence of relativistic
temperatures, however, the strong field effects of the present
theory, whose relative importance is proportional to ugB/m,
need to be compared with the effects of the radiation reaction
and vacuum polarization.

The contribution from the classical radiation reaction rela-
tive to the Lorentz force scales as the dimensionless parameter
R =2a3yaw/3m where ay = qEo/(wm) is the normalized
vector potential, Ey being the peak field strength, w is the
laser frequency, and « is the fine-structure constant. Thus,
the relative importance of the radiation reaction in relation to
relativistic spin effects in fields of strength E and B is given by

mR _ Zaéyaa) _ 4Ea0yoz. 73)
/,LBB 3,l,LBB 3B

For definiteness, if the relativistic particle velocities are
induced by strong laser fields such that E/B ~ 1 and y ~ ay,
the condition for the spin effects to dominate over the
radiation reaction becomes

3\ /2
<=
(@)
Thus, for moderately relativistic fields, the relativistic
contribution to the spin dynamics is more important than the
radiation reaction, whereas, for strong enough laser fields,
the ordering is the opposite. However, for other types of field
configurations (i.e., not due to lasers), in particular, in the
vicinity of strongly magnetized objects (e.g., pulsars), we
may have E/B < 1. As seen from Eq. (73), in this case,

[

10. (74)

the spin-relativistic effects may dominate over the radiation
reaction even for y > 10.

Next, we note that our treatment assumes uzpB/m < 1,
which corresponds to a field magnitude below the critical
field strength, i.e., the value for which pair production is
exponentially suppressed. In case the pair production does
not take place, vacuum polarization scales as (« /907 )E?/E2
[54,61]. Thus, provided the plasma is not dilute [62], vacuum
polarization is smaller than the spin-relativistic effects by a
factor on the order of

a E
907 E..’
where we have put E = B to simplify the expression, which
is justified since electric and magnetic fields induce effects of
the same order.

Due to the complexity of the kinetic model, it is rather
difficult to analyze for problems beyond linear waves in
homogeneous media. Still, due to the richness of the physics
included, the present theory can be useful in many different
contexts. First, Eqs. (6)—(13) can serve as a starting point
for deriving simpler models using, e.g., a moment expansion
[63,64] of the kinetic evolution equation. Second, the present
theory can be used to determine the region of validity of many
simpler models. Third, potentially there are new phenomena
to be found from Eqgs. (6)—(13) even for the special case of
linear homogeneous plasmas as we have only covered a few
of those possibilities here. Finally, the mathematical struc-
ture of the present theory can help shedding light over
long-standing problems, such as the Abraham-Minkowski
controversy [65].

In this paper, we have written the model with the spin as
an independent variable, which is convenient for analytical
calculations. One can instead not take the spin transform and
formulate the model in terms of the four independent com-
ponents of the Hermitian matrix W, g, analogous to Ref. [19].
In this case, the computational cost of simulating the model
would be that of simulating four models for spinless particles,
plus some extra cost due to additional terms, which is not
prohibitive compared to simulating the Vlasov equation.

(75)
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APPENDIX: THE HARMONIC LIMIT

In obtaining the harmonic dispersion relation in Eq. (72)
from Eq. (67), several approximations have been performed.
Working with v ~ Aw,, gives us possibilities for minimizing
the values of the denominators in Eq. (67) for certain values of
B. Considering only the leading terms where the denominators
are minimized according to

Xfrw— wcelg - w,
Xm-@w — a)ce,B + Wee —> @ =+ che»

Xp:W — Wee £ Awee — 0 £ Awe,,
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where we set § = 0, %1, and 0, respectively. Note that, when
using B8 =0 in xy, the contribution from fi; in Eq. (67)
becomes zero.

Considering the short Larmor radius regime where the
argument of the Bessel functions is small, i.e., kp | /mw. <
1, we can perform a second-order Taylor expansion of the
Bessel functions. Furthermore, we consider the case where the
background distribution is Fermi-Dirac with the low temper-
ature T < Tr. Hence, we have Fy 4w p3F . /3 ~ ny. Equation

(67) is now

(a)2 -k — a)f,) (w2 — Awfe) = -

2

7}‘12(1),2,k2 , k%
o\ T 2)

(AL)

Since we are looking for w & Aw.., we consider the w? —
Aw?, toot and approximate w® on the right-hand side of
Eq. (Al) to Aw?,. We finally have the dispersion relation in
Eq. (72).
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