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Exact solutions for shock waves in dilute gases
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In 1922 Becker found an exact solution for shock waves in gases using the Navier–Stokes–Fourier constitutive
equations for a Prandtl number of value 3/4 with constant transport coefficients. His analysis has been extended
to study some cases where an implicit solution can be found in an exact way. In this work we consider this
problem for the so-called soft-spheres model in which the viscosity and thermal conductivity are proportional
to a power of the temperature η, κ ∝ T σ . In particular, we give implicit exact solutions for the Maxwell model
(σ = 1), hard spheres (σ = 1/2), and when σ (the viscosity index) is a natural number.
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I. INTRODUCTION

The history of the problem we face is long, in fact,
the subject of shock waves was founded by Stokes (1819–
1903), Earnshaw (1805–1888), Rankine (1820–1872), Hugo-
niot (1851–1887), and Riemann (1826–1866), among oth-
ers [1]. Two relevant manuscripts on the subject appeared
in 1910, one by Rayleigh [2], who addressed the works of
the founders of the subject, including his discussions with
Stokes on the subject. The other work by Taylor [3], showed
the existence of shock-wave solutions for a fluid with con-
stant viscosity with no thermal conductivity or with constant
thermal conductivity but no viscosity. He also provided a
perturbative solution for weak shocks in which both transport
coefficients were included. A remarkable result was obtained
in 1922 when Becker [4,5] showed an implicit shock-wave
solution for all Mach numbers, including constant viscosity
and thermal conductivity with the restriction that the Prandtl
number is fixed and equal to 3/4. In 1944 Thomas [6] used
the hard-sphere model to criticize Becker’s conclusion in the
sense that for strong shocks the Boltzmann equation cannot
be applied. Later on, in 1949 Morduchow and Libby [7]
improved the Becker’s work by showing the existence of a
complete integral of the energy equation and a maximum in
the entropy at the inflection point in the velocity distribution,
both results turned out to be relevant. In 2013 Johnson [8]
found analytical shock solutions at large and small Prandtl
numbers and a year later he [9] obtained closed-form (explicit)
shock solutions for some of them and also for some of
Becker’s implicit solutions, the same year Myong [10] found
implicit solutions for the Maxwell model and the hard sphere
model. Exact solutions for a van der Waals gas with Pr = 3/4
have been reported recently [11].

In the works mentioned previously the research was based
on the Navier-Stokes equations of hydrodynamics under the
continuum hypothesis. However, by 1920 the atomistic model
for fluids was already accepted, in addition it was already
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known that the Navier-Stokes equations can be obtained from
the Boltzmann equation by means of the Chapman-Enskog
method to solve it [12]. Due to the fact that in a shock
wave abrupt changes occur in a narrow region, there has been
always doubt about the validity of the Navier-Stokes consti-
tutive equations in this case. In a classical paper by Gilbarg
and Paolucci in 1953 [13] they rejected such statement based
on the evidence found by solving the fluid equations. The
discussion is not over yet but the emphasis is now on how to
improve on the Navier-Stokes hydrodynamics, if feasible, and
the search has been rather prolific as we refer briefly below.

By 1950 there were already studies to tackle the shock–
wave problem from the Boltzmann equation. One work by
Mott-Smith in 1951 [14] relied on an assumption that the
distribution function is bimodal and another one by Grad in
1952 [15], that is more in the tradition of hydrodynamics, used
the moments method (13 moments) to derive relaxation type
equations from the Boltzmann equation. Besides, again in the
tradition of hydrodynamics, higher order hydrodynamic equa-
tions obtained with the Chapman-Enskog method, Burnett,
and super-Burnett equations, were already in consideration
by Burnett in 1935 [16] and later on, in 1948, by Wang
Chang [17].

Shock-wave phenomena still provides a difficult problem
to solve from the continuum point of view. The problem, for
dilute gases, can be tackled using the Boltzmann equation
and different methods to solve it like the Chapman-Enskog
method [12], Grad’s moments method, or probabilistic meth-
ods, such as the direct simulation Monte Carlo (DSMC)
method [18,19]. Molecular dynamics (MD) [20,21] is not
restricted to dilute gases and provides a very flexible tool for
studying shock waves in many situations. The computational
methods like DSMC and MD provide a direct approach to
study shock waves, though the search about the true inter-
action potential, must be taken into account. A way to go
through this problem takes the ab initio potential calculations
to obtain thermophysical and transport properties, which can
be taken to study specific applications as actually has been
done recently [22–24].

The situation with the continuum approach has some points
that need to be addressed. For example, it is known that
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FIG. 1. (a) Explicit and implicit solutions for Pr = 3/4, σ = 0, and τ0 = 1/5. Reduced velocity vs the reduced distance, v(s) vs s. Solid
line: Explicit solution given by Eq. (45); open circles: implicit solution given by Eq. (42); solid circles: numerical solution to Eqs. (15)
and (16); dashed line: solution with the plus sign in Eq. (43). (b) Implicit and numerical solutions for Pr = 3/4, σ = 1, and τ0 = 1/5. Velocity
vs reduced distance, v(s) vs s. Open circles: implicit solution given by Eq. (47); solid circles: numerical solution to Eqs. (15) and (16); solid
line: numerical solution to Eq. (24) using the initial condition v(0) = 2/3. (c) Implicit and numerical solutions for Pr = 3/4, σ = 1/2, and
τ0 = 1/5. Velocity vs reduced distance, v(s) vs s. Open circles: implicit solution given by Eq. (47); solid circles: numerical solution to Eqs. (15)
and (16) with initial condition v(0) = 2/3 and τ (0) = 14/45; solid line: numerical solution to Eq. (24) using the initial condition v(0) = 2/3.
(d) Normalized density profiles, ρn vs s, for τ0 = 1/5. Solid line: Becker solution; long dashed line: hard-sphere model; dashed line: Maxwell
model; dotted line: σ = 2.

using the Navier-Stokes-Fourier constitutive equations leads
to normalized density profiles that are narrow when compared
to the experimental values; see Fig. 2. The Chapman-Enskog
method provides a methodology to go beyond the previous
constitutive equations, they are called Burnett [12,25,26] and
super-Burnett equations [27], but the presence of bifurcations
for the Burnett equations in the case of shock waves limits
their applications [28,29]. Alternatives to the Burnett and
super-Burnett equations exist but perhaps they are ad hoc to
shock waves [30–34].

In the case of Grad’s method, or moments method in
general, the situation is in a sense worst due to the presence
of singularities, they imply the non existence of solutions
even for small Mach numbers (≈1.65) like the 13-moment
approximation [15] though theories with several thousands
of moments have been used [35]. Also, regularizations to
the moments method, like R-13, have been considered in

the literature and behave better than the original Grad’s
13-moment equations since they are able to provide shock
structure for Mach numbers about 10 [36–38]. For other theo-
retical approaches using the moments method, see Ref. [39].

Apart from the attempts mentioned, two-fluid, two-
velocity, two-temperature, or multiple temperature theories
have been proposed with different degree of success. We refer
the interested reader to the literature here provided [40–43].

Our objective is to study exact implicit, or explicit when
feasible, solutions to the Navier-Stokes-Fourier (NSF) hydro-
dynamic equations for the soft-sphere model when the Prandtl
number is equal to 3/4. Some authors have claimed that such
a value for the Prandtl number is not realistic [13], while
others say that for air or other systems the Prandtl number
is about 3/4 [10]. For monatomic gases a more realistic value
is 2/3 [12,18,19] but in these cases exact solutions are still
lacking.
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FIG. 2. (a) Normalized density profiles for M = 8, ρn vs sA, obtained by solving Eq. (24) with initial condition v(0) = 134/323 for different
values of σ . Circles: Experiments by Steinhilper [50]; solid line: solution for σ = 0.92; dotted line: solution for σ = 1/2; dashed line: solution
for σ = 1; open circles: ab initio calculations. (b) Orbits, τ vs v, for M = 8 and different Prandtl numbers. Except for Pr = 3/4 the orbits were
obtained by solving Eqs. (10) with �1 = 1 and �2 = 15/(8 Pr). Solid line: Pr = 3/4, see Eq. (21); dotted line: Pr = 2/3; long dashed line:
Pr = 1/10; dashed line: Pr = 2; circles: direct simulation Monte Carlo method for σ = 0.68.

The structure of this work is as follows; after this Introduc-
tion, in Sec. II we consider the conservation equations for the
shock-wave problem and write the differential equations to be
solved without a restriction on the Prandtl number. In Sec. III
we provide implicit exact solutions for a Prandtl number of
value 3/4 with a number of models, whereas in Sec. IV we
discuss implicit and explicit exact solutions, and in Sec. V
some concluding remarks are given. The Appendix gives a
detailed derivation of the shock-wave equations.

II. THE CONSERVATION EQUATIONS

The description of fluid behavior in the continuum ap-
proach starts with the fluxes conservation of mass, momen-
tum, and energy expressions across the shock wave. They
will be written in a reference system along the propagation
direction which will be taken as the x axis, in such a case the
shock wave is seen as steady. Then they look as follows:

ρ u = c1, (1a)

ρ u2 + Pxx = c2, (1b)

ρ u

(
e + Pxx

ρ
+ u2

2

)
+ q = c3. (1c)

In these equations, the variables (ρ, u, e) are the mass
density, the speed along the propagation direction x, and
the specific energy, respectively. The fluxes (Pxx, q) are the
xx component of pressure tensor and the heat flux in the x
direction. The fluid flow in which the shock wave occurs is
characterized by the fact that in one direction, when x → ∞,
a thermodynamic equilibrium state where no gradients are
present is reached. Also, when x → −∞, a different thermo-
dynamic equilibrium state is obtained. The constant quantities
(c1, c2, c3) in Eqs. (1) are calculated in the following way. We
call ρ0, u0, and T0 the conditions at the equilibrium state that
has lower temperature (the cold part of the shock or up-flow)

and ρ1, u1, and T1 the conditions at the other equilibrium state
(the hot part of the shock or down–flow). It follows that these
different conditions are related by Eqs. (1) giving place to
the well-known Rankine-Hugoniot jump conditions that take
the form

c1 = ρ0 u0 = ρ1 u1, c2 = ρ0 u2
0 + p0 = ρ1 u2

1 + p1,

c3 = ρ0 u0

(
e0 + p0

ρ0
+ u2

0

2

)
= ρ1 u1

(
e1 + p1

ρ1
+ u2

1

2

)
, (2)

where p is the hydrostatic pressure. For an ideal fluid, char-
acterized by the lack of any type of viscosity and thermal
conductivity, the two equilibrium points are not joined by
a continuous curve but for a viscous and conducting fluid
sometimes a differentiable curve joins the equilibrium states
(an heteroclinic curve in the mathematical jargon), researches
refer this as saying that the shock wave has structure.

Notice that Eqs. (1) contain more unknowns than equations
and must be supplemented by the state and the caloric equa-
tions in terms of local variables. In addition, the constitutive
equations for the “fluxes,” which can be given in terms of
gradients or relaxation type equations like in Grad’s moments
method.

Here, the constitutive equations will be the Navier-Stokes-
Fourier equations written for the one-dimensional case,

Pxx = p − 4η

3

∂u

∂x
− ζ

∂u

∂x
, (3a)

q = −κ
∂T

∂x
, (3b)

where η is the shear viscosity, ζ is the bulk viscosity, and κ

is the thermal conductivity. The shear viscosity and thermal
conductivity will be modeled by the soft-sphere model, for
which

η ∝ T σ and κ ∝ T σ , (4)
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where we will call σ the temperature-viscosity index or sim-
ply the viscosity index. However, it is usually assumed that for
dilute monatomic gases the bulk viscosity is zero, a hypothesis
which we will also adopt in this work. It must be said that to
our knowledge there is at least a work in which the author has
introduced a bulk viscosity for this case [44].

To go further, we found convenient to work with a reduced
variables velocity, density, temperature and distance defined
as follows:

v ≡ u

u0
, ρ∗ ≡ ρ

ρ0
, τ ≡ kB T

m u2
0

, s ≡ x

λ
, (5)

where kB is the Boltzmann constant, m is the molecular mass,
and λ is a characteristic length, which is left unspecified
for the moment since different values for it are used in the
literature. Then, for an ideal fluid and according to the NSF
constitutive equations with no bulk viscosity, the reduced
forms of Pxx and q are written as

P∗
xx ≡ Pxx

ρ0 u2
0

=
ρ kB T

m − 4
3 η du

dx

ρ0 u2
0

= τ

v
−

(
4 η0

3 λ ρ0 u0

)
η∗ dv

ds
,

q∗ ≡ q

ρ0 u3
0

= −
(

κ0 m

kB λ ρ0 u0

)
κ∗ dτ

ds
, (6)

where η∗ = η/η0 with η0 a reference viscosity and κ∗ = κ/κ0

with κ0 a reference thermal conductivity. Substitution of the
previous reduced xx component of the pressure tensor and
the reduced form of the heat flux into the integrated forms
of momentum and energy conservation, see Eqs. (1), leads to

τ

v
−

(
4 η0

3 λ ρ0 u0

)
η∗ dv

ds
= (1 + τ0) − v, (7a)

[
5

2
τ −

(
4 η0

3 λ ρ0 u0

)
v η∗ dv

ds
+ v2

2

]

−
(

κ0 m

kB λ ρ0 u0

)
κ∗ dτ

ds
= 5

2
τ0 + 1

2
. (7b)

Notice that we have taken the ideal gas law p = ρ kB T/m
and for specific internal energy the value e = 3 kB T/2m that
are true for a monatomic gas.

The dynamical system

Now we discuss the previous implicit differential equations
obtained for an ideal monatomic gas using the NSF constitu-
tive equations. In matrix form the implicit dynamical system
given by Eqs. (7) takes the form,

(
�1 η∗ 0

�1 v η∗ �2 κ∗

)⎛
⎜⎜⎝

dv

ds
dτ

ds

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

τ + v2 − (1 + τ0) v

v

5 (τ − τ0) + v2 − 1

2

⎞
⎟⎟⎠,

(8)
where

�1 =
(

4 η0

3 λ ρ0 u0

)
and �2 =

(
κ0 m

kB λ ρ0 u0

)
. (9)

Noting that the 2 by 2 matrix that appears in the left hand of
Eq. (8) has an inverse, the system can be solved to obtain the
following result:

dv

ds
= τ + v2 − (1 + τ0)v

�1 v η∗ , (10a)

dτ

ds
= −v2 + 2 v (τ0 + 1) − 5 τ0 + 3 τ − 1

2 �2 κ∗ . (10b)

Numerical methods are usually necessary to solve
Eqs. (10) once the values of ρ0, u0, η0, κ0, m, and λ are given.
However, there are some results that readily follow without
numerically solving the equations. First, the critical points
of the dynamical system Eqs. (10) are obtained immediately
when both derivatives are zero, their coordinates follow in a
direct way,

Pup ≡ (v0, τ0) = (1, τ0) and Pdown ≡ (v1, τ1)

=
(

1 + 5 τ0

4
,
−5 τ 2

0 + 14 τ0 + 3

16

)
, (11)

that can be shown to be the Rankine-Hugoniot jump condi-
tions, see Eqs. (2), expressed in terms of reduced variables.
Second, the trajectories in the phase space (v, τ ) can be
obtained, in particular the heteroclinic one, which gives τ as
a function of v between the two critical points, called as the
“orbit” is obtained as

dτ

dv
= v[−v2 + 2 v (τ0 + 1) − 5 τ0 + 3 τ − 1]

τ + v2 − (1 + τ0)v

4

15
Pr

η∗

κ∗ ,

(12)

where �1
2�2

= 2
3

η0 kB

κ0 m = 4
15 Pr and the Prandtl number at up-

flow is given as Pr = 5
2

kBη0

mκ0
. A first conclusion is that the

orbit is independent of λ. Second, if η = η0 f (τ/τ0) and κ =
κ0 f (τ/τ0) with f (1) = 1, then it follows that η∗ = κ∗ as
happens for the soft-sphere model. As a consequence, the orbit
equation as written in Eq. (12) only depends on the Mach
and Prandtl numbers. The form of the orbits for different
Prandtl numbers is provided in Fig. 2(b) for M = 8 and they
can have very different behavior. In principle, if experimental
information for the orbits were available, it could discriminate
what would be the Prandtl number, for a given Mach number,
that is consistent with the experiments. In the absence of such
information the DSMC method provides a clue, from Fig. 2(b)
we infer that neither Pr = 3/4 nor Pr = 2/3 are consistent
with the DSMC information and also that the orbits for such
Prandtl numbers are not too different. We emphasize that in
this case the orbit does not depend on the viscosity index.
Actually, these results can be generalized when the transport
coefficients also depend on the density as the reader can show.
Such set of characteristics provides a testable prediction that
can be used to verify the numerical methods.

A solution to the shock wave is a boundary value problem
consisting in finding a solution to Eqs. (10) and (12) that
joins the critical points given by Eqs. (11) (this is called an
heteroclinic trajectory or orbit in the mathematical jargon). To
obtain an approximation to it the Gilbarg–Paolucci method is
usually used, it consists in appropriately perturbing slightly
down-flow to reach up–flow, detailed explanations are avail-
able in the literature [13]. Incidentally, the existence proof
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of shock-wave solutions for the NSF hydrodynamic equations
was given by Gilbarg in 1951 [45].

In our case we use as a perturbation (v1 + 10−10, τ1) and
perform the numerical integration. In the following section we
provide the results of numeric computations and compare with
experimental data. In addition to the election of λ to reduce
the distance the election of the origin to measure x can be
different, this also can be taken into account when comparing
with the experimental information.

III. EXACT SOLUTIONS

To describe the shock-wave structure as given in Eqs. (10)
we usually require numerical methods due to their nonlinear-
ity and the presence of the boundary conditions we mentioned
above. In the search for solutions, there are some papers
which have done a lot of effort to find exact solutions even
for specific cases as was mentioned in the Introduction. In
particular, when one of the constant transport coefficients is
zero, the viscosity or the thermal conductivity, exact solutions
are available as was shown by Taylor [3,46]. Another exact
solution is the one by Becker [4,7] for constant transport
coefficients with a Prandtl of value Pr = 3/4. Johnson [8,9]
found explicit solutions for constant transport coefficients in
the limits Pr → 0 and Pr → ∞, Myong [10] gave a solution
to the Maxwell and hard-sphere model and, Hamad [47] found
closed-form solutions for the soft-sphere model when there is
not thermal conductivity.

Now let us take the characteristic length to reduce the
distance and the Prandtl number as

λ = 4

3

η0

ρ0u0
, Pr = 5

2

kBη0

mκ0
, (13)

in this case

�1 = 1, �2 = 15

8Pr
, (14)

and we consider that the temperature dependence in the
viscosity and the thermal conductivity is the same, so that
η∗ = κ∗ then Eqs. (10) can be rewritten as follows:

η∗ dv2

ds
= 2[τ + v2 − (1 + τ0)v], (15)

5η∗ dτ

ds
= 4

3
Pr[2v(1 + τ0) − (1 + 5τ0) − v2 + 3τ ], (16)

adding the previous two equations we obtain

η∗ d

ds
(v2 + 5τ ) = 2v(1 + τ0)

(
4

3
Pr − 1

)
+ v2

(
2 − 4

3
Pr

)

+ τ (2 + 4Pr) − 4

3
Pr(1 + 5τ0), (17)

then it is clear that the special value Pr = 3/4 reduces Eq. (17)
to a complete integral that satisfies the following differential
equation,

d

ds

(
v2

2
+ 5 τ

2

)
− 1

η∗

(
v2

2
+ 5 τ

2

)
= − 1

η∗

(
1

2
+ 5 τ0

2

)
.

(18)

It was noticed by Libby and Morduchow [7] that the integral
of Eq. (18) comes mainly from the energy equation, in fact

it gives the sum of the kinetic energy per unit mass and the
specific enthalpy in the system as a function of s,

g(s) ≡ 1
2 v(s)2 + 5

2 τ (s) = C1 exp[φη(s)] + 5
2 τ0 + 1

2 , (19)

where we will keep the s dependence for clarity in what
follows and φη(s) is a primitive of 1/η∗:

dφη(s)

ds
= 1

η∗(s)
. (20)

There is no need to determine φη(s) since as Morduchow and
Libby noticed; if one is interested in a shock wave one must
choose C1 = 0, otherwise the solution will not go to a constant
as s → ±∞, this can be easily verified for σ = 0 because
in this case φη(s) = s + C2. Therefore, for a shock wave we
have that

τ (s) = 1

5
+ τ0 − v(s)2

5
. (21)

It is worth noticing that in the phase space (v, τ ), Eq. (21)
represents the orbit in such a plane. It shows that the orbit
is a parabola for any value of the Mach number M and it is
not necessary to solve any differential equations to calculate
it. This exact result is clearly consistent with the fact that if
η∗ = κ∗, the orbit should be independent of the viscosity as
mentioned previously.

Going further we substitute Eq. (21) into the equation for
conservation of momentum, the first one of Eqs. (10) and it
leads to

dv(s)

ds
= 4 v(s)2 − 5 τ0 v(s) − 5 v(s) + 5 τ0 + 1

5 η∗(s) v(s)

⇒ 5 dv(s)
ds η∗(s) v(s)

4 [v(s) − 1] [v(s) − v1]
= 1, (22)

recall that v1 = (5 τ0 + 1)/4. For the soft-sphere case,

η∗(s) = (τ/τ0)σ =
[

1
5 + τ0 − v(s)2

5

]σ

τ σ
0

= 1

5σ τ σ
0

[1 + 5 τ0 − v(s)2]σ = 1

5σ τ σ
0

[4 v1 − v(s)2]σ .

(23)

Then, for the soft-sphere model Eq. (22) takes the form
dv(s)

ds [4 v1 − v(s)2]σ v(s)

[v(s) − 1] [v(s) − v1]
= 4

5
5σ τ σ

0 . (24)

To obtain implicit solutions in terms of elementary functions
we find a primitive of the left hand side of the previous
Equation. In other words, if Fσ (s) satisfies

dFσ (s)

ds
=

dv
ds [4 v1 − v(s)2]σ v(s)

[v(s) − 1] [v(s) − v1]
, (25)

then

Fσ (s) = 4
5 5σ τ σ

0 (s − sσ ) (26)

is a solution to the differential Eq. (24) where sσ is an
integration constant that in some cases can be taken equal to
zero.

To exhibit implicit solutions for the soft-sphere model
when σ ∈ N ∪ {0} first we prove the following statement:
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Proposition 1. Let

Jn[v1, v(s)] ≡ v2 n+1
1

v1 − 1
ln[v(s) − v1] − ln[1 − v(s)]

v1 − 1

and Pn(v1, v) =
2 n∑

k=1

cn,k (v1)
v(s)k

k
, (27)

where

cn,k (v1) = v2 n+1−k
1 − 1

v1 − 1
with n ∈ N. (28)

Then, if

Gn(v1, v) ≡ Pn(v1, v) + Jn(v1, v), (29)

the derivative of Gn with respect to s satisfies,

dGn

ds
=

dv
ds v2 n+1

(v − 1) (v − v1)
. (30)

Proof.

dGn

ds
= dPn

ds
+ dJn

ds
=

dv
ds

v1 − 1

{[
2 n∑

k=1

(
v2 n+1−k

1 − 1
)
v(s)k−1

]
+ v2 n+1

1

v(s) − v1
+ 1

1 − v(s)

}
. (31)

But

2 n∑
k=1

v2 n+1−k
1 v(s)k−1 = v2 n

1

2 n∑
k=1

[
v(s)

v1

]k−1

= v2 n
1

{
v2

1

v(s)[v(s) − v1]

[
v(s)

v1

]2 n+1

− v1

v(s) − v1

}
= v1 v(s)2 n

v(s) − v1
− v2 n+1

1

v(s) − v1
, (32)

and

2 n∑
k=1

v(s)k−1 = v(s)2 n

v(s) − 1
− 1

v(s) − 1
. (33)

Substitution of Eqs. (32) and (33) into Eq. (31) gives

dGn

ds
=

dv
ds

v1 − 1

[
v1 v(s)2 n

v(s) − v1
− v2 n+1

1

v(s) − v1
− v(s)2 n

v(s) − 1
+ 1

v(s) − 1
. + v2 n+1

1

v(s) − v1
+ 1

1 − v(s)

]

=
dv
ds v(s)2 n

v1 − 1

[
v1

v(s) − v1
− 1

v(s) − 1

]
=

dv
ds v(s)2 n

v1 − 1

v(s) (v1 − 1)

[v(s) − 1][v(s) − v1]
=

dv
ds v2 n+1

(v − 1) (v − v1)
, (34)

which completes the proof. �
We are now in position to find solutions to the soft-sphere model when σ ∈ N. If σ ≡ n ∈ N, then we use the binomial

theorem in Eq. (24) to obtain that

dv
ds [4 v1 − v(s)2]n v(s)

[v(s) − 1] [v(s) − v1]
=

n∑
l=0

(
n

l

)
(4 v1)n−l (−1)l

dv
ds v(s)2l v(s)

[v(s) − 1] [v(s) − v1]
=

n∑
l=0

(−1)l

(
n

l

)
(4 v1)n−l dGl

ds
= 4

5
5σ τ σ

0 . (35)

Integration of the last equality with respect to s leads to the implicit solution

Fn(s) = (4 v1)n G0(v1, v) +
n∑

l=1

(−1)l

(
n

l

)
(4 v1)n−l Gl (v1, v) = 4

5
5n τ n

0 (s − sσ ), (36)

where sσ is an integration constant and G0 is given by Eq. (38). Then, using Eqs. (27), (28), and (29), we have that

4

5
5σ τ σ

0 (s − sσ ) =
n∑

l=1

(−1)l

(
n

l

)
(4 v1)n−l

{
v2 l+1

1

v1 − 1
ln[v(s) − v1] − ln[1 − v(s)]

v1 − 1
+

2 l∑
k=1

v2 l+1−k
1 − 1

v1 − 1

v(s)k

k

]

+ (4 v1)n

v1 − 1
[v1 ln[v(s) − v1] − ln[1 − v(s)]} (37)

is an implicit solution of Eq. (24) for σ = n ∈ N. Equation (37) provides implicit solutions for any σ = n ∈ N, of course for
large values of n the expression has a large number of terms and can be difficult to handle. The number of implicit solutions
found is a countably infinite set.
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IV. EXPLICIT AND IMPLICIT SOLUTIONS

We now illustrate some solutions obtained from Eq. (37)
when we take some particular values for the viscosity index.

(1) Let us begin with the case σ = 0, which corresponds
to Becker’s solution for constant transport coefficients. In this
case, the solution can be obtained directly by the integration
of Eq. (24) or by means of the application of Eq. (37) with the
convention that P0(v1, v) = 0. Then

G0(v1, v) = F0(s) = v1 ln[v(s) − v1] − ln[1 − v(s)]

(v1 − 1)
. (38)

Moreover,

F0(s) = 4
5 (s − s0), (39)

then, the implicit solution is given as

v1 ln[v(s) − v1] − ln[1 − v(s)]

(v1 − 1)
= 4

5
(s − s0), (40)

where s0 can be chosen to satisfy the condition that the
normalized density, defined below, has a specific value at
s = 0,

ρn(s) = [1/v(s) − 1]

[1/v1 − 1]
, ρn(s = 0) = 1/2, (41)

as it is usual.
When we take the value τ0 = 1/5 so that v1 = 1/2, and s0

with its corresponding value, Eq. (40) drives to the implicit
Becker’s solution which can be solved for v(s) to obtain its
explicit expression [4,5,14],

1

2

ln(v(s) − 1/2)

1/2 − 1
− ln[1 − v(s)]

1/2 − 1
= 4

5
(s − s0). (42)

From which we obtain

v(s) = 1 + 1

2
e

4 (s−s0 )
5 ± 1

2

√[
e

4 (s−s0 )
5

]2 + 2 e
4 (s−s0 )

5
. (43)

The root corresponding to the minus sign should be chosen
since it is the one that provides the asymptotic conditions for
a shock wave,

lim
s→∞ v(s) = 1

2 and lim
s→−∞ v(s) = 1. (44)

Therefore, the explicit shock-wave solution for the example
considered is

v(s) = 1 + 1
2 e

4(s−s0 )
5 − 1

2

√[
e

4(s−s0 )
5

]2 + 2 e
4(s−s0 )

5 , (45)

where the constant s0 = −(5/4) ln 2
3 is determined according

to Eq. (41).

Johnson [9] showed that for some cases Becker’s implicit
solution gives rise to a polynomial in v(s) and analyzed the
conditions under which Becker’s implicit solution can be
inverted to provide explicit solutions. Since Abel (1802–1829)
and Galois (1811–1832) proved the impossibility of obtaining
the roots of any polynomial of degree five in terms of radicals
(called the insolubility of the quintic) [48], presumably he
looked for conditions under which Becker’s implicit solution
gives rise to a polynomial of degree less than five that can
be solved in terms of radicals. However, it is in principle
possible to find other exact solutions when the degree of
the polynomial is greater than four. Johnson’s results were
expressed in terms of the compression ratio R ≡ ρ1/ρ0 =
1/v1 = 4/(1 + 5τ0), a quantity that some researchers prefer to
use when dealing with shock waves. In terms of τ0, Johnson’s
results are the following: For τ0 = 1/15(R = 3) or 1/3(R =
3/2), Becker’s solution gives rise to a polynomial of third
degree, for τ0 = 0(R = 4) or 2/5(R = 4/3), the polynomial
is of fourth order as the reader can verify. The particular case
considered here and below, τ0 = 1/5, corresponds to a two
fold compression (R = 2).

(2) The Maxwell model is obtained with σ = 1, the im-
plicit solution follows from Eq. (37) when σ = n = 1 and,
it can also be obtained by means of the direct integration
in Eq. (24) as it was done by Myong in 2014 [10]. We
obtain that

−v(s)2

2
− (1 + v1)v(s) +

( − v3
1 + 4v2

1

)
v1 − 1

ln[v(s) − v1]

+ (−4v1 + 1)

v1 − 1
ln[1 − v(s)] = 4τ0(s − s1), (46)

as the reader can verify. It is a particular case of an implicit
solution found by us for σ ∈ N as discussed above; see
Eq. (37). In this case, as well as in other situations, the process
of obtaining the explicit solution from the implicit one can be
more difficult than the case illustrated for constant transport
coefficients for τ0 = 1/5 as was done above. If we take the
values given for the first case ( τ0 = 1/5, v1 = 1/2, M =√

3), then Eq. (46) drives to

− 1
2v(s)2 − 3

2v(s) − 7
4 ln[v(s) − 1/2]

+ 2 ln[1 − v(s)] = 4
5 (s − s1), (47)

where the integration constant is s1 ≈ 0.3548. Now, the solu-
tion must be obtained numerically as it is shown in Table I.

(3) The hard spheres (σ = 1/2) case was considered by
Thomas [6] to criticize Becker’s conclusion that the Boltz-
mann equation is inadequate to treat strong shocks. He did
not obtain a solution for this case but Myong provided the
solution in 2014 [10]. In this case the implicit solution is

4

5
(5 τ0)1/2(s − s1/2) =

√
4 v1 − v(s)2 −

v1

√
4 v1 − v2

1

v1 − 1
ln

⎡
⎣2

√
4 v1 − v2

1

√
4 v1 − v(s)2 − 2 v1 [v(s) − 4]

v(s) − v1

⎤
⎦

+
√

4 v1 − 1

v1 − 1
ln

[
8 v1 − 2 v(s) + 2

√
4 v1 − 1

√
4 v1 − v(s)2

1 − v(s)

]
− arctan

[
v(s)√

4 v1 − v(s)2

]
(1 + v1), (48)
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TABLE I. Numerical values of the shock wave for v and ρn at τ0 = 1/5 (M = √
3), Pr = 3/4 for different values of σ .

σ = 0, Eq. (45) σ = 0, Eq. (42) σ = 1, Eq. (47) σ = 1/2, Eq. (49)
s v ρn v ρn v ρn v ρn

−10.0 0.990 0.011 0.990 0.011 0.978 0.023 0.985 0.015
−9.0 0.984 0.016 0.985 0.016 0.968 0.329 0.978 0.022
−8.0 0.977 0.024 0.977 0.024 0.954 0.048 0.968 0.033
−7.0 0.996 0.035 0.996 0.035 0.936 0.069 0.954 0.049
−6.0 0.950 0.052 0.950 0.052 0.912 0.097 0.934 0.071
−5.0 0.928 0.078 0.928 0.078 0.881 0.135 0.907 0.103
−4.0 0.896 0.116 0.896 0.116 0.845 0.184 0.872 0.147
−3.0 0.854 0.313 0.854 0.171 0.803 0.246 0.828 0.207
−2.0 0.799 0.251 0.799 0.251 0.758 0.320 0.777 0.286
−1.0 0.735 0.361 0.735 0.361 0.711 0.406 0.722 0.385
0.0 0.667 0.500 0.667 0.500 0.667 0.500 0.667 0.500
1.0 0.605 0.653 0.605 0.653 0.626 0.597 0.617 0.621
2.0 0.559 0.789 0.559 0.789 0.592 0.687 0.577 0.735
3.0 0.530 0.887 0.530 0.887 0.565 0.770 0.547 0.827
4.0 0.514 0.944 0.514 0.944 0.544 0.837 0.528 0.895
5.0 0.507 0.974 0.507 0.974 0.530 0.888 0.516 0.938
6.0 0.503 0.988 0.503 0.988 0.519 0.925 0.509 0.965
7.0 0.501 0.994 0.502 0.995 0.513 0.951 0.505 0.980
8.0 0.501 0.998 0.501 0.998 0.508 0.968 0.503 0.989
9.0 0.500 0.999 0.500 0.999 0.505 0.980 0.502 0.994
10.0 0.500 0.999 0.500 1.000 0.503 0.987 0.501 0.997

which is more readily shown using computer algebra to verify Eq. (24) for σ = 1/2. The hard-sphere implicit solution given in
Eq. (48) for τ0 = 1/5 is written as√

2 − v(s)2 +
√

7

2
ln

[√
7

√
2 − v(s)2 + 4 − v(s)

v(s) − 1/2

]
− 2 ln

[
4 − 2 v(s) + 2

√
2 − v(s)2

1 − v(s)

]

− 3

2
arctan

[
v(s)√

2 − v(s)2

]
= 4

5
(s − s1/2), (49)

where the constant is s1/2 ≈ 0.1192. Obviously, the solution
is obtained numerically, see Table I.
The particular case of a twofold compression shock wave
(τ0 = 1/5, M = √

3) has been considered to show that
Becker’s implicit solution ( f (s, v) = 0) can be solved to
provide v as a function of s but that for the rigid sphere and
Maxwell models apparently this is not feasible so that they
must be solved numerically. For M = √

3, we have provided
numerical values for the explicit and implicit solutions of
Becker’s case in Table I. In Figs. 1(a)–1(c) we compared
the explicit or implicit solutions with the numerical solution

of the differential equations from which the exact solutions
were derived. For M = 8 we found that for the Maxwell
model there are cases in which we have been unable to obtain
numerical values to the implicit exact solution in some cases,
but the numerical solution to the differential equations can be
obtained; see Table II.

(4) Implicit solutions for σ ∈ N are given by Eq. (36)
in terms of a function Gn defined in Proposition 1, see
Eqs. (29), (27), and (28), the result is synthesized by Eq. (37).
Apparently this result has not been considered in the literature.
As an example we provide the implicit solution for σ = 2:

16
v2

1[v1 ln(v − v1) − ln(1 − v)]

v1 − 1
− 8v1

[(
v2

1 − 1
)
v

v1 − 1
+ v2

2
+ v3

1 ln(v − v1)

v1 − 1
− ln(1 − v)

v1 − 1

]
+

(
v4

1 − 1
)
v

v1 − 1

+ 1

2

(
v3

1 − 1
)
v2

v1 − 1
+ 1

3

(
v2

1 − 1
)
v3

v1 − 1
+ 1

4
v4 + v5

1 ln(v − v1)

v1 − 1
− ln(1 − v)

v1 − 1
= 20τ 2

0 (s − s2). (50)

(5) More solutions can be obtained using computer al-
gebra, for example the primitives for several cases such as
σ = 3/2, 5/2, 7/2, 9/2, 11/2 have been obtained as we did
for the hard-spheres model (Maple or Mathematica are able to

find the corresponding primitives), though they are somewhat
cumbersome and do not report them here. In cases like σ =
1/3 both computer algebra programs failed to provide the
primitive.
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TABLE II. Numerical values for v and ρn using the implicit solution, or Eq. (24), at τ0 = 3/320 (M = 8), Pr = 3/4, and different values of
σ . Eq. (40) is the exact implicit solution for σ = 0, Eq. (48) is the exact implicit solution for σ = 1/2, Eq. (24) is solved for σ = 0.92, Eq. (46)
is the exact implicit solution for σ = 1, and Eq. (50) is the exact implicit solution for σ = 2. The results within parentheses correspond to the
numerical solution of the first-order one-dimensional differential for v, Eq. (24), with initial condition v(0) = 134/323 so that ρn(sA = 0) =
1/2. They are included when the solution to the implicit solution for a given value of sA cannot be obtained, in all other cases the solution to
the differential equation agrees with results from the implicit solution. ρE

n are the experimental values reported by Steinhilper [50] for Argon.

Eq. (40) Eq. (48) Eq. (24) Eq. (46) Eq. (50)

sA ρE
n v ρn v ρn v ρn v ρn v ρn

−8.0 0.001 1.000 0.000 1.000 0.000 1.000 0.000 (1.000) 0.000 0.458 0.420
−7.0 0.002 1.000 0.000 1.000 0.000 1.000 0.000 (1.000) 0.000 0.452 0.430
−6.0 0.006 1.000 0.000 1.000 0.000 1.000 0.000 (1.000) 0.000 0.446 0.440
−5.0 0.013 1.000 0.000 1.000 0.000 1.000 0.000 (0.979) 0.008 0.441 0.446
−4.0 0.028 1.000 0.000 1.000 0.000 0.966 0.013 0.883 0.047 0.435 0.470
−3.0 0.062 1.000 1.000 1.000 0.000 0.847 0.064 0.763 0.110 0.430 0.460
−2.0 0.133 1.000 0.000 0.995 0.002 0.699 0.152 0.638 0.201 0.425 0.480
−1.0 0.266 0.997 0.001 0.840 0.068 0.548 0.292 0.519 0.329 0.420 0.490
0.0 0.500 0.415 0.500 0.415 0.500 0.415 0.500 0.415 0.500 0.415 0.500
1.0 0.735 0.262 1.000 0.264 0.987 0.324 0.740 0.339 0.692 0.410 0.510
2.0 0.892 0.262 1.000 0.262 1.000 0.281 0.906 0.295 0.849 0.405 0.520
3.0 0.962 0.262 1.000 0.262 1.000 0.267 0.973 0.274 0.939 0.401 0.530
4.0 0.989 0.262 1.000 0.262 1.000 0.263 0.993 0.266 0.976 0.396 0.541
5.0 1.000 0.262 1.000 0.262 1.000 0.262 0.998 0.263 0.992 0.392 0.551
6.0 1.006 0.262 1.000 0.262 1.000 0.262 1.000 0.262 0.997 0.387 0.561
7.0 1.009 0.262 1.000 0.262 1.000 0.262 1.000 0.262 0.999 0.383 0.571

In Tables I and II numerical results for the explicit and
implicit exact solutions for different values of σ and M are
provided. They can be used to verify solutions obtained by
other means.

Graphs for the implicit and explicit solutions are shown in
Fig. 1 for τ0 = 1/5, for the implicit solution we provide only
the points that a computer algebra program is able to plot.
It should be pointed out that there are two singularities for
the implicit solutions corresponding to v = 1/2 or 1, probably
this is the origin of the problem. However, solving the differ-
ential equation given Eq. (24) provides an alternative method
that is free from these problems and provides the solution for
the cases in which solving the implicit solution is very diffi-
cult. Numerical solutions to Eqs. (15) and (16) are also given,
notice that they provide a two-dimensional first-order system
of differential equations but that the Morduchow and Libby’s
complete integral reduces them to the one-dimensional first-
order system given by Eq. (24). It should be pointed out, as
the example shows, that there is no guarantee that any of
the implicit solutions found (there can be several solutions)
gives a shock-wave solution. The existence of the shock-wave
solution should be demonstrated by other means when explicit
shock-waves solutions cannot be found. Actually, the proof
of existence of shock-wave solutions for the NSF constitutive
equations was proved, under rather general conditions, by
Gilbarg in 1951 [45].

In Fig. 2 the normalized density profiles, ρn versus sA,
for different values of σ at M = 8 are provided, where sA is
the distance reduced by Alsmeyer’s mean free path [49]. Its
relation to the reduced distance considered here [52] is

s = 12

5
√

2 π τ0
sA. (51)

For the more realistic case of Pr = 2/3 we have been unable
to find exact solutions, either implicit or explicit, in terms
of elementary functions or special functions. In this case the
numerical solution to the differential Eqs. (15) and (16) seems,
up to now, the better alternative.

In addition, the orbits for different Prandtl numbers are
shown, as we mentioned above they depend only on the
Mach and Prandtl numbers. The direct simulation Monte
Carlo (DSMC) method calculations have been shown to
have an insight about how they compare with NSF constitutive
equations for the soft-sphere model [51,52].

Entropy change

The entropy change for this problem can also be calculated
from the local equilibrium hypothesis along the shock consis-
tently with the ideal gas equation of state, then

S∗(sA) = m

kB
[S(sA) − S0] = ln

{[
τ (sA)

τ0

]3/2
v(sA)

v0

}
, (52)

where S(sA) is the entropy along the shock and S0 is the
entropy at upflow. Recall that τ0 = 3

5M2 and v0 = 1. It is clear
that the entropy change value depends on the Mach number
through the τ0 dependence. However, either the reduced tem-
perature or the speed can be eliminated by the substitution
of the orbit equation written in Eq. (21). As a consequence
the entropy change is only a function of one variable and the
Mach number, when expressed in terms of the speed it reads

S∗(sA) = ln

{
v(sA)[3 + M2 − M2v(sA)2]3/2

33/2

}
. (53)
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TABLE III. Entropy change profile for M = √
3 and different

values for the viscosity index. All of them were obtained with the
differential equation given by Eq. (24).

sA σ = 0 σ = 1/2 σ = 1 σ = 3/2

−10.0 0.000 0.000 0.000 0.001
−9.0 0.001 0.001 0.001 0.002
−8.0 0.001 0.002 0.003 0.004
−7.0 0.003 0.004 0.006 0.010
−6.0 0.007 0.010 0.014 0.023
−5.0 0.016 0.022 0.032 0.049
−4.0 0.035 0.049 0.068 0.095
−3.0 0.076 0.099 0.127 0.159
−2.0 0.148 0.175 0.200 0.222
−1.0 0.234 0.245 0.253 0.258
0.0 0.257 0.257 0.257 0.257
1.0 0.199 0.213 0.224 0.232
2.0 0.159 0.172 0.187 0.202
3.0 0.149 0.154 0.164 0.178
4.0 0.147 0.148 0.153 0.163
5.0 0.146 0.147 0.149 0.154
6.0 0.146 0.146 0.147 0.150
7.0 0.146 0.146 0.147 0.148
8.0 0.146 0.146 0.146 0.147
9.0 0.146 0.146 0.146 0.147
10.0 0.146 0.146 0.146 0.146

It should be noticed that the speed expression and the cor-
responding values of the entropy change S∗(sA) along the
shock wave depend on the viscosity index value. Such values
can be obtained explicitly when σ = 0 as was shown in the
previous section, all other cases will correspond to the speed
implicit values. The entropy change S∗(sA) as given in
Eq. (53) can be calculated numerically as a function of the
distance sA as shown in Table III and Fig. 3. Its values have a
maximum value at the speed v∗ =

√
3+M2

2M , which corresponds
to different values of sA according to the σ value.

V. SUMMARY AND FINAL REMARKS

The search for exact solutions about the shock-wave struc-
ture even in the NSF regime has been a huge challenge in the
literature. The efforts to advance along this line began with
Taylor’s studies and have gone over numerous steps, giving
place to somewhat specific solutions in particular cases. The
Becker’s results correspond to a Prandtl number 3/4, where
a complete integral is found allowing some exact explicit and
implicit solutions. The results in this paper point toward the
study of models that go beyond the usual exact solutions,
which have considered constant transport coefficients, hard
spheres, and Maxwell molecules. We have found a way to
consider the soft-spheres model with a viscosity index being
any natural number. In particular, for Pr = 3/4 we have shown
that there is a countably infinite set of implicit solutions when
the viscosity index is zero or a natural number, they include
Beckers’s (σ = 0) and the Maxwell model (σ = 1) implicit
solutions as particular cases. For larger values of σ (σ =
2, 3, · · · ) these implicit solutions produce wider normalized

FIG. 3. Entropy change for M = √
3 (τ0 = 1/5) and different

values for the viscosity index. Solid line: Explicit solution for σ = 0;
dashed line: solution to Eq. (24) for σ = 1/2; long dashed line:
solution to Eq. (24) for σ = 1; pointed line: solution to Eq. (24)
for σ = 3/2. Its maximum value is the same for all values of σ and
it is given as S∗

max = 0.261, however the sA− values where they
occur are: sA = −0.277 (σ = 0), sA = −0.343 (σ = 1/2), sA =
−0.424 (σ = 1.0), sA = −0.524 (σ = 3/2).

density profiles as is exemplified for σ = 2 in Table II and
Fig. 1(d). Other implicit solutions, which can be obtained
with computer algebra, were mentioned but their explicit form
has not been provided. A characteristic of the implicit exact
solutions found is that they are valid for any Mach number.

Up to the authors knowledge, the previous results were
never compared with experiments for the normalized density
profiles. Here we illustrate such comparison in the particular
case of M = 8 as shown in Fig. 2(a) and Table II for Argon.
It is interesting that the Maxwell model provides a relatively
good agreement with experiments for such a Mach number
though the Prandtl number is equal to 3/4, the hard-sphere
model predicts normalized density profiles that are narrow
when compared to the experiment. However, a better agree-
ment is obtained when the viscosity index is equal to 0.92
as shown in Fig. 2(a). For comparison we have included a
numerical solution to the NSF equations for Pr = 2/3 using
a cubic spline to fit the values of the viscosity and thermal
conductivity obtained by means of an ab initio potential for
Argon [23,24]. It is clearly shown in Fig. 2(a) that the NSF
equations, with realistic values for the transport coefficients,
do not provide an accurate description of the shock-wave
profiles as mentioned in the introduction.

Our considerations have been restricted for the steady case
but the introduction of time is an important issue, for example
in the problem of hydrodynamic stability, and we end by
briefly commenting something about this. With respect to
the hydrodynamic stability of a plane shock wave the work
done by D’yakov and also by Kontorovich in the earlies 1950
must be mentioned [53,54]. As Landau [55] pointed out;
they showed that plane shock waves are stable for ripples in
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the front shock (sometimes referred as corrugation stability).
However, in some cases perturbed nonideal shock waves
can become unstable by emitting sound and entropy vortex
waves as was shown by Bates and Montgomery for the van
der Waals equation, this is now referred to as the D’yakov-
Kontorovich instability [56]. At about the same time work
done at the National Advisory Committee for Aeronautics
(NACA) by several authors, see for example the work done
by Moore in 1954 [57], considered also the stability of plane
shock waves to perturbation of sound and vorticity that look
similar to the corrugation perturbations treated by D’yakov
and Kontorovich. This work, initiated at NACA, has been
recently explored further in the works by Velikovich and
collaborators [58,59] who have reported an analytic linear
theory for the interaction of a plane shock wave with ei-
ther acoustic or turbulent vorticity fields. When the work
done at Los Alamos National Laboratory was declassified it
became apparent that studies on shock-wave stability were
done as early as 1945 [60]. Apart from this, there is a
work by Morduchow and Paullay [61] who concluded that
plane waves are stable according to the linearized stability
theory. For those who are interested in going beyond linear
hydrodynamic stability, due to its restrictions, we bring to
their attention the mathematical works by Liu on nonlinear
stability [62] and end by mentioning the exact nonsteady sim-
ilarity shock-waves solutions found by Iannelli in 2013 [63].
The previous issues on the hydrodynamic stability of the NSF
hydrodynamic model are outside the objectives of this work
but constitute a branch that some researchers may want to
explore.

ACKNOWLEDGMENTS

The authors thank the referees for useful suggestions to
improve the paper.

APPENDIX

The continuum approach to describe fluid behavior starts
with the mass, momentum and energy balance equations,

which are written as [46,55]

∂ρ

∂t
+ ∇ · (ρ u) = 0, (A1a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ · P, (A1b)

ρ

(
∂e

∂t
+ u · ∇e

)
= −P : ∇u − ∇ · q, (A1c)

where the local variables are ρ ≡ ρ(r, t ) the mass density,
u ≡ u(r, t ) the hydrodynamic velocity, e(r, t ) the internal
energy per unit mass, P ≡ P(r, t ) the pressure tensor and
q(r, t ) the heat flux, all of them may depend on position and
time, r and t . The term P : ∇u ≡ Pi j∂ jui represents the full
contraction of the involved tensors, where Einstein convention
is used.

Now, we consider the particular case of the hydrody-
namic Eq. (A1c) for a longitudinal wave that propagates
with constant velocity c, in the specific direction î. We
use similarity ideas and take the ansatz u(r, t ) = u(x − c t )î,
ρ(r, t ) = ρ(x − c t ), P = Pxx(x − c t )î î, e(r, t ) = e(x − c t ),
and q(r, t ) = q(x − c t )î, where r = x î + y ĵ + z k̂ [64]. Sub-
stitution of it in Eqs. (A1a), (A1b), and (A1c) leads to

−c ρ ′ + (ρ u)′ = 0, (A2a)

ρ (−c u′ + u u′) = −P′
xx, (A2b)

ρ (−c e + u e′) = −Pxx u′ − q′, (A2c)

where the prime denotes the derivative with respect to
ξ ≡ x − c t . Here we will be interested in an steady shock
wave in which the equations are independent of time. In this
case Eqs. (A2) simplify by means of the choice of a reference
system in which the speed c is equal zero. The resulting
one-dimensional differential equations can be integrated to
yield the well-known constant fluxes of mass, momentum, and
energy for a shock wave, as written in Eqs. (1).
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