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Periodic solutions and chaos in the Barkley pipe model on a finite domain

K. Y. Short*

Center for Nonlinear Science, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 10 May 2019; published 28 August 2019)

Barkley’s bipartite pipe model is a continuous two-state reaction-diffusion system that models the transition
to turbulence in pipes, and reproduces many qualitative features of puffs and slugs, localized turbulent structures
seen during the transition. Extensions to the continuous model, including the incorporation of time delays and
constraining the system to finite open domains—a trigger for convective instability—reveal additional solutions
to the system, including periodic solutions and chaos unseen in the original 1 + 1-dimensional system. It is
found that the nature of solutions depends strongly on the size of the domain under study as well as choice of
boundary conditions: on a finite domain for a particular window of parameter space, period doubling and chaos
are observed.
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I. INTRODUCTION

The subcritical transition to turbulence in canonical fluid
flows sees two different behaviors at two different scales: fast
turbulent (chaotic) fluctuations on a small spatial scale and
long-lived alternating laminar-turbulent patches on a larger
spatial scale (spatiotemporal intermittency). Recent results
suggest that transitional turbulence is a chaotic transient with a
superexponential distribution of lifetimes [1,2] consistent with
the dynamical systems view of transient turbulence arising
from a chaotic saddle in state space [2–6]. As the laminar so-
lution for plane Couette flow is known to be linearly stable for
all Reynolds numbers [7]—and numerical and experimental
evidence suggests that this is likewise true for pipes [8–10]—
the emergence of transient chaos (transient turbulence) must
derive from a mechanism other than perturbation of the lami-
nar flow [2]. For example, the following hypothesized chain of
events can lead to the formation of a chaotic saddle that could
sustain transient turbulence: Two steady states are created in
a saddle node bifurcation. Linear stability analysis shows that
the upper branch state is initially linearly stable. Next, a stable
periodic orbit is created at a Hopf bifurcation. Eventually
the orbit undergoes a period-doubling cascade and a chaotic
attractor emerges. A boundary crisis destroys the attractor,
after which it becomes a chaotic saddle that supports transient
turbulence [3].

On a spatial scale much larger than that of chaotic fluc-
tuations, the transition in pipes sees large-scale spatially in-
termittent puffs and slugs—localized turbulent structures—
coexisting with quiescent background (laminar) flow [10].
Paradigmatic two-dimensional flows see localized structures
analogous to those in pipes: regular spiral bands are ob-
served in Taylor-Couette flows [11], and turbulent spot and
stripe phases coexisting with a laminar background in plane
Couette flow [12,13], forming Turing-like patterns evocative
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of those seen in Swift-Hohenberg systems and in several
two-dimensional reaction-diffusion-advection systems. Man-
neville postulated that patterns observed in plane Couette flow,
in particular, derive from a Turing instability, and remarks
generally “[p]attern formation is indeed often an obliged stage
in the transition to turbulence” [14].

Spatiotemporal patterns in fluid systems could result from
Turing or Turing-Hopf instabilities. Barkley [15] proposed a
minimal pipe model that reproduces many of the key features
of puffs and slugs seen in numerical simulations and in
experiments. Barkley’s original model consists of two parts,
each part addressing one of the two scales. First is a con-
tinuous reaction-diffusion model described by two coupled
partial differential equations, whose dynamics we explore in
this paper in hopes of identifying a telltale pattern-forming
instability. The complement to the continuous system is a
discrete model with a chaotic map that is invoked in the
excited regime of parameter space to mimic the small-scale
chaotic fluctuations seen in experiments and direction numer-
ical simulations (DNS); a later version of the model replaces
the discrete chaotic map with a continuous additive Gaussian
noise [16]. Though Barkley’s model is successful in predict-
ing the transition to turbulence, it either invokes a discrete
chaotic map to produce the requisite chaos [15] or introduces
stochasticity to supply small-scale random fluctuations [16].
The success of the model, as well as its relative accessibility,
compels further investigation.

In this paper, we show that chaos—including a route to
chaos akin to that described in [3]—can be triggered in
Barkley’s continuous model with the inclusion of a small time
delay and/or confining the dynamics to a finite open domain
without need to resort to a complementary (chaotic) tent map.
Additional new solutions emerge at a Hopf bifurcation to give
rise to time-periodic states unseen in Barkley’s original model.
Further, it is argued that extending the model to two spatial
dimensions (2D) (with zero flux boundary condition on the
other dimension) should lead to stripes and spots, the hallmark
Turing patterns seen in 2D systems.
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A. Models

Barkley’s original continuous pipe model is

∂q

∂t
+ U

∂q

∂z
= q[u + r − 1 − (r + δ)(q − 1)2] + ∂2q

∂z2
+ ηqσ,

∂u

∂t
+ U

∂u

∂z
= ε1(1 − u) − ε2uq − ∂u

∂z
,

where q is turbulence intensity and u ∈ [0, 1] is the centerline
velocity along the pipe axis ẑ relative to the mean axial
speed of the bulk U . The η term is the adjunct Gaussian
white noise introduced in [16] and σ the noise strength. The
parameter r is analogous to the Reynolds number seen in the
nondimensionalized Navier-Stokes equations.

In this paper, we follow Barkley’s lead and transform to
the U = 0 frame that comoves with the steady bulk flow and
replace the additive noise with fast dynamics h so that the
system under study is

∂qMF

dt
= f (q(t ), q(t − τ ), u(t ), u(t − τ )) + ∂q(x, t )

∂z2
,

∂uMF

dt
= g(q(t ), q(t − τ ), u(t ), u(t − τ )) − ∂u(x, t )

∂z
,

∂h

∂t
= [fast dynamics]. (1)

where

f = f (q(t ), q(t − τ ), u(t ), u(t − τ ))

= q[uτ + r − 1 − (r + δ)(q − 1)2] + εh

g = g(q(t ), q(t − τ ), u(t ), u(t − τ ))

= ε1(1 − u) − ε2uqτ . (2)

Here qMF and uMF are regarded as time-averaged mean field
variables operating on a slow timescale, h as small-scale devi-
ations from the mean field whose dynamics occur on a faster
timescale, and τ is the time delay—which may or may not be
set to zero—so that qτ = q(t − τ ) and uτ = u(t − τ ). Focus
is given to the large-scale behavior of q and u; consequently,
we will set h = 0 and postpone fast timescale dynamics until
the Discussion section.

The paper is organized as follows: numerical procedure;
general results, including a discussion of the new periodic
and chaotic solutions; a discussion of timescales in relation
to percolation dynamics and the possibility of pattern-forming
bifurcation in 2D.

B. Numerical procedure

For z ∈ (0, N ), the system under study is

dq

dt
= f (q(t ), q(t − τ ), u(t ), u(t − τ )) + ∂2q(x, t )

∂z2
,

du

dt
= g(q(t ), q(t − τ ), u(t ), u(t − τ )) − ∂u(x, t )

∂z
,

∂h

∂t
= 0 (3)

initialized with

qo(φ) = φ(θ )
uo(ψ ) = ψ (θ )

}
for θ ∈ [−τ, 0], (4)

where qo(φ), uo(ψ ) ∈ [0, 1] represent the initial turbulent and
laminar intensities introduced into the inlet of the pipe. The
dynamics are confined to a finite computational domain de-
scribed by boundary conditions

q(0, t ) = q(N, t ) = 0

u(0, t ) = u(N, t ) + q(N, t )

}
for t ∈ [0, T ], (5)

henceforth referred to as the smooth-inlet boundary condi-
tions (SIBC).

The finite-difference method with N ∈ (50, 1000) was
used, where N is the number of spatial grid points in the
domain, taken to be the length of the pipe under consideration,
with spatial grid size �z = 0.2. Time steps of �t = 0.05 are
default, but larger (e.g., �t = 0.1) and smaller (e.g., �t =
0.025) time steps were taken, too, as a check of the stability of
the code. The linear portion of equations is solved implicitly
to ensure numerical stability; the nonlinear portion is solved
explicitly with Courant number C < 1. To accommodate a
nonzero time delay τ �= 0, the system was solved at t − τ and
the unphysical solutions found for t < 0 were discarded.

Stability of code was checked by (1) varying �t and �z
and observing consistent behaviors with no amplification or
waves; (2) comparing SIBC in a long pipe against periodic
boundary conditions (PBC); it is observed that SIBC →
PBC solutions for long enough domain; and (3) comparing
solutions early in the time evolution before a boundary is
encountered. As N → ∞, periodic solutions destabilize and
asymptotically approach the solutions seen in Barkley’s orig-
inal PDE model.

Smooth-inlet boundary conditions (SIBC) described in
Eq. (5) were introduced as a proxy for constant mass flux
boundary conditions in finite open pipe used in DNS and
generated in laboratory settings: all flux leaving the domain,
regardless of being in state q or u, is matched with an equal
flux entering the domain as smooth flow u.

Parameter values ε1 = 0.04, ε2 = 0.2, and δ = 0.1 are the
same as those used by Barkley [15] and are fixed throughout.
The parameter r is generally unrestricted, but focus is on the
region of parameter space 0.7 � r � 1.

II. RESULTS

The role of disturbances in the inlet of the simulated
pipe was the motivation for the particular type of boundary
condition used in this study. Smooth inlet boundary conditions
(SIBC) were used here because it was felt they were truer to
real pipes than periodic boundary conditions. Since intermit-
tency depends on inlet conditions even in very long pipes [17],
experimentalists aim for smooth flow in the entrance of the
pipe so that the size of any perturbation can be known and
controlled [1,10]. Further, real pipes are finite in length; fluid,
be it turbulent or laminar, must advect out of the open end of
a real pipe eventually. In a sense, the SIBC is a kind of model
in and of itself, aiming to reflect pipe flows in real laboratory
conditions.
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FIG. 1. Solution space at N = 140 as a function of time delay τ

and r, where τ is number of time steps �t . In this length of domain
a variety of solutions is observed. A Hopf bifurcation first occurs in
the undelayed system near (τ, r) = (0, 0.71); with increasing τ , the
Hopf bifurcation occurs at increasing values of r, establishing a curve
that defines the critical value τc above which periodic solutions are
observed. Near r = 0.839, independently of τ , a final saddle-node
bifurcation takes place whereby periodic solutions are destroyed and
a homogeneous steady state (HSS) emerges (Fig. 2).

While invoking SIBC, it is observed that solutions depend
strongly on the length of the numerical domain N , in addition
to the parameters r and τ . As the domain size N impacts
the nature of the solutions, it may be treated as an implicit
bifurcation parameter (see [18] for a treatment of domain
length as an explicit bifurcation parameter). Thus the variable
bifurcation parameters are r(N ) and τ (N ). Houghton and
Knobloch [19] discussed the role of boundary conditions in
the Swift-Hohenberg equation subjected to finite domains:
the system admits spatially periodic structures when subject
to periodic boundary conditions (PBC), but sees large am-
plitude filling states when Neumann boundary conditions are
imposed. The SIBC used here may be regarded as a hybrid of
the two: absorbing for q(z = N ), periodic with an additional
source for u(z = 0).

With time delay and SIBC incorporated into Barkley’s
model, chaos is seen in a range of domain lengths at differing
values of time delays—or, in the case of N ≈ 150, at zero
time delay—suggesting that the length of the domain plays
a larger role in the observed solutions than does time delay.
Figure 1 demonstrates the solutions that emerge at one set of
parameters. For domains N ≈ 150, a route to chaos follows
a sequence of events remarkably similar to those thought to
lead to transient turbulence in pipe [3]: Two coexisting steady
states—a trivial “laminar” steady state with q → 0, u → 1,
and a nontrivial excited steady state with q �= 0, u �= 1—are
created at a saddle node bifurcation; the value of r for which
this occurs depends on the amount of q introduced into the
inlet of the system in analogy to a minimum perturbation
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FIG. 2. Near the saddle-node bifurcation at rc ≈ 0.839, the fre-
quencies of oscillation for q increase in accordance with the universal
inverse square-root scaling law for saddle-node bifurcations. Shown
is the best fit curve frequency = a + b(rc − r)−0.501, where a = 1520
and b = 50.6. This figure was drawn using data from N = 500.

amplitude required to transition from laminar flow [20]. Next,
a Hopf bifurcation leads to sustained oscillations between
the two coexisting steady states; no further perturbation or
triggering beyond the initial condition is required to sustain
the oscillations (Fig. 3). These periodic solutions are not
observed in Barkley’s original system. With increasing r and
N , the amplitude of the stable limit cycles grows. Eventually,
the periodic orbits undergo a period-doubling cascade (Figs. 4
and 5), followed by the emergence of a chaotic attractor
(Fig. 6). With increasing r the chaotic structure disappears,
and the stable periodic solutions give way to unstable periodic
orbits that asymptotically decay to a nonlaminar steady state.
As r is further increased for N ∼ 140, chaos reemerges, this
time accompanied by canard explosions (“bursts”): jumps
from localized- to globally turbulent solutions that rapidly,
but briefly, fill the whole domain; such solutions are unseen
in the chaotic region at lower r. Beyond this, large amplitude
oscillations are observed until the system undergoes another
saddle-node bifurcation at r ∼ 0.839 for all values of N stud-
ied, in agreement with Barkley’s observation that the system
undergoes a change somewhere between r = 0.823 and r =
0.85. Here, all periodic states are destroyed and only two
homogeneous steady states—the trivial laminar and a large
amplitude q steady state—remain. This regime is bistable and
is identified with spreading puffs and global turbulence. The
destruction of all stable periodic solutions occurs with the
onset of the final saddle-node bifurcation. Beyond this point,
the amplitude of q drops sharply before increasing again. Just
before this final saddle-node bifurcation, the frequencies of
the limit cycles approaches a “bottleneck,” leading to increas-
ing oscillation frequencies as the saddle-node bifurcation is
approached [21]. We observe the universal inverse square root
scaling law is obeyed, confirming the saddle-node bifurcation
at r = 0.839 (Fig. 2).

All four behaviors—the two homogeneous steady states
(HSS) and decaying and sustained oscillations—may be ac-
companied by initial transients. Long chaotic transients are
most likely to be seen in the region between sustained
oscillations and the slug HSS for r � 0.84. These four
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FIG. 3. Spacetime evolution of q(z, t ) in the U = 0 comoving frame with the spatial variable z on the horizontal axis and time t on the
vertical. The inlet of the pipe (z ∼ 0) can show relatively large initial turbulent transients. (a) Periodic solutions at r = 0.8274, N = 500,
τ = 0. In a shorter domain, these same parameters result in canards (see Fig. 8). (b) A chaotic trajectory at r = 0.82, N = 140, τ = 21.

behaviors are seen elsewhere, for example, by Vanag and
Epstein [22]. This is not too surprising given that Barkley’s
system, like Vanag and Epstein’s, is a modified reaction-
diffusion system. Further, as 2D reaction-diffusion systems
often give rise to striping and other pattern formations, we
suspect that Barkley’s model can be extended to two spatial
dimensions to model transitional stripelike structures seen in
plane Couette and plane Poiseuille flows [23].

A. Periodic solutions

With SIBC, the modified Barkley model undergoes a Hopf
bifurcation in every finite domain studied. Smaller domains
(e.g., N ∼ 140) see two sets of periodic solutions: a small-
amplitude limit cycle at smaller r that eventually undergoes
a period-doubling cascade and chaos, and a larger-amplitude
limit cycle at larger r. Large domains (e.g., N > 300) see
large-amplitude limit cycles very soon after the initial saddle-
node bifurcation, and only transient chaos. These “pulsating”
[24] or “breathing” solutions are seen in domains with and
without time delays, including N = 1000, the largest domain
studied here, and are reminiscent of breathing spots seen in
2D reaction-diffusion systems [25]. As N → ∞, the periodic
solutions grow unstable and we recover the asymptotic steady
state solutions reported by Barkley [15].

The role of time delays in triggering Hopf bifurcations
in 1 + D-dimensional systems and in Turing-Hopf transitions
in 2D reaction-diffusion-advection systems has been studied
previously. For example, Sen et al. [26] investigated the effect
of small time delays in a pigmentation fish model and the
chlorine dioxide-iodide-malonic acid (CDIMA) system, and
Zhang and Zang [27] analyzed large delays in the extended
Rosenzweig and MacArthur model with zero flux boundary
conditions. Both groups observed a critical value of τ for the
emergence of sustained Turing patterns. We make similar ob-

servations: there is a critical time delay τc above which insta-
bility sets in and below which the homogeneous steady states
remain stable and no oscillations are observed. See Fig. 1.

B. Chaos

For finite domains subjected to SIBC, two sets of time-
periodic solutions may be seen: a small-amplitude limit cycle
(stable at lower r and N , unstable at larger r and N) and a
large-amplitude limit cycle (unstable at small r and N). The
former sees long-lived chaos, as well as chaotic transients,
while the latter sees only chaotic transients, at least for the
values of N and τ investigated in this paper. A period-doubling
cascade and chaos is first encountered when a fixed-point
solution collides with the small-amplitude periodic orbits,
e.g., the onset of chaos near r ≈ 0.7873, and τ = 14 for
N = 140. The crisis destabilizes the small-amplitude orbits,
and the now-unstable periodic solutions decay asymptotically
towards a nonlaminar steady state (however, at other values of
N , chaos may still be observed at the same values of τ and r;
see e.g., Fig. 7). As r increases further, another round of period
doubling and chaos takes place. Interestingly, this time the
chaotic solutions include canards and large-amplitude chaotic
bursts: jumps from locally- to globally turbulent solutions
that rapidly, but briefly, fill the whole spatial domain, perhaps
analogous to random puff splitting events seen in pipes; such
solutions are unseen in the earlier chaotic region at lower
r. Other chaotic trajectories include visits to both coexist-
ing orbits (see Fig. 8) and mixed-mode oscillations. Soon
after, the small-amplitude limit cycles are destroyed, while
the large-amplitude limit cycles stabilize. Consequently, the
bifurcation diagram shows an abrupt jump to large-amplitude
periodic orbits.

We note that the chaos described here is independent of any
ad hoc chaotic tent maps; any fast timescale dynamics h(t )
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FIG. 4. Period-doubling route to chaos demonstrated in phase
space, with q on the horizontal axis and q̇ on the vertical. N = 142,
τ = 7, and (a) r = 0.780, (b) r = 0.787, (c) r = 0.789, and (d) r =
0.79035.

superimposed or added to the system, including small-scale
deviations from the mean-field values of q and u, will fluctuate
chaotically due to the the chaos of the underlying slow system
regardless of whether or not the fast dynamics described by
h(t ) are chaotic.

III. DISCUSSION

The initial focus of this investigation was to understand
the circumstances under which a pattern-forming instability
and/or chaos could appear in Barkley’s model, including the

FIG. 5. Period-doubling route to chaos demonstrated in phase
space with u on the horizontal axis and u̇ on the vertical. N = 142,
τ = 7, and (a) r = 0.780, (b) r = 0.787, (c) r = 0.789, and (d) r =
0.79035.

roles of boundary conditions and time delays known to affect
pattern formation in other reaction-diffusion systems.

Pipe flow, like the Barkley model subject to the boundary
conditions discussed in this paper, is an open system, and
issues related to convective instability must be raised, includ-
ing the possible presence of noise-sustained structures and
concomitant spatiotemporal intermittency. For example, the
transition from convective instability to absolute instability
with increasing Reynolds number describes a mechanism by
which a localized puff can become a spreading slug. As
Deissler notes, any open system with nonzero group velocity
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FIG. 6. Bifurcation diagram for the strongly chaotic region at
N = 140; initial conditions are q(t = 0) = 0.70.

will be convectively unstable for some range of parame-
ters [28]. Above the onset of an instability, the upstream and
downstream front speeds of the localized perturbation will
have the same sign as the group velocity, and a turbulent patch
(“puff”) will advect down the pipe, growing in the comoving
frame of reference U = 0.

Further, the open system can grow convectively chaotic,
leading to the spreading of the turbulent structure (“slug”).
For example, in the Ginzburg-Landau equation, when the
amplitude of a perturbation near the fronts grows sufficiently
large (“pops” into the chaotic basin of attraction), the slug will
spread randomly in time. As the convectively chaotic fluc-
tuations are effectively random, the information describing
spreading slugs must be considered in the aggregate. Barkley
et al. make an accordant observation of their data that the “bi-
furcation scenario predicted by the model is only recovered in

FIG. 7. Top: A chaotic time series at r = 0.8176 and τ = 22 for
N = 140. Bottom: The corresponding phase portraits: (q, q̇) (red,
bottom left) and (u, u̇) (blue, bottom right).

average quantities” [29]. Barkley et al. acknowledge that the
models—both the original form here as well as the amended
form—fail to capture the stochastic fluctuations in the down-
stream front as well as the spatiotemporal intermittency in
the whole of the domain (“intermittent laminar pockets”).
Intermittency, too, can be ascribed to noisy fluctuations in
convectively unstable systems, as noted by Deissler in an
earlier paper [30].

Convectively unstable systems are especially sensitive to
noise, and even small fluctuations can trigger large amplitude
spatiotemporally varying structures and pattern formation in
the whole domain [28]. Stochasticity—the random small scale
variations that fluctuate the puffs, slugs, and their laminar-
turbulent fronts—must be inserted into Barkley’s model as
an additional component operating at a faster timescale than
q and u, but it is precisely these faster, smaller amplitude
fluctuations that a convectively unstable system is sensitive
to. Mullin, citing Waleffe [31], notes in his review that pipe
flow becomes more sensitive to background disturbances as
Reynolds number increases. Specifically, for a finite pertur-
bation of amplitude ε, the minimum amplitude required to
trigger turbulence scales with Reynolds number according to

ε = O(Reγ ) (6)

as Re → ∞ and γ < 0; that is, turbulence can be triggered
with smaller and smaller amplitude disturbances as Reynolds
number increases [10].

One approach proposed to describing small scale fluctu-
ations h(z, t ) treats a turbulent patch—a puff or slug—as a
directed percolation field. Experimental studies of the transi-
tion to sustained turbulence in Couette flow and in Waleffe
flow was found to be consistent with a directed percolation
process [32], and it is speculated that pipe flow, too, would fall
into the directed percolation universality class [33]. With the
directed percolation rules shown in Fig. 9 the resulting mean
field equation for the percolating cluster is

∂qMF

∂t
∼ [λ(Re) − γ )q − (k + λ(Re)]q2 + Dz

∂2q

∂z2
, (7)

where a generic mean-field expression for q may be written
down by balancing diffusion (with streamwise-directed dif-
fusion coefficient Dz), the turbulence coagulation rate k, the
reproduction/branching rate λ, and the q → u turbulent decay
rate γ . Small fluctuations about qMF would map to the faster,
small-scale dynamics h(z, t ) in Eq. (1).

The appearance of the diffusion term in the percolation
process is notable. (Barkley’s original model neglected dif-
fusion, effectively leaving Dz = 1, but his amended model
incorporates a nonunit diffusion coefficient, e.g., Dz = 0.13
[29].) In general, the diffusive term inhibits short-wavelength
perturbations; however, expanding the system to additional
spatial dimensions may introduce pattern-forming instabili-
ties, including diffusion-driven instability (Turing instability).
In two dimensions with the bulk of the flow moving in the
streamwise direction z and no net flow in the spanwise direc-
tion x, the two diffusivities would vary, with the Dz showing
a streamwise bias and Dx without, setting up a situation ideal
for pattern formation in 2D.

Diffusion through a percolating cluster, e.g., puff, differs
from diffusion in a homogeneous medium. For a fractal
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FIG. 8. Coexistence of small- and large-amplitude solutions at r = 0.8274, N = 150, τ = 0. Canard behavior is observed when a trajectory,
initially following the small-amplitude limit cycle, undergoes a fast excursion to the large-amplitude limit cycle before returning to the original
orbit. (a) The spacetime evolution of q(z, t ); and the (b) phase space diagrams of (q, q̇) (top) and (u, u̇) (bottom) during the canard cycle. (c) A
canard cycle in (u, q) space demonstrating orbits around the small-amplitude limit cycle with a quick excursion to a large-amplitude relaxation
cycle. The small-amplitude limit cycle is destroyed at the saddle-node bifurcation at r ≈ 0.839.

cluster or otherwise disordered medium, diffusivity depends
on distance from percolation threshold pc. Above the thresh-
old (p > pc) the cluster is effectively homogeneous and dif-
fusion is regular, i.e., follows Fick’s law 〈R2(t )〉 ∼ t2/dw with
diffusion exponent dw = 2. At criticality (p = pc), however,
the cluster is statistically self-similar at all length scales and
the diffusion is anomalous with dw > 2. Below criticality, p <

pc the clusters are of finite size on the order of the correlation
length ξ (p) so that with 〈R(t )〉2 ∼ ξ 2(p), where 〈R(t )〉2 is the
mean-squared displacement as t → ∞ [34].

The percolation process here would be biased in the di-
rection of the applied pressure gradient that is pushing the
fluid through the pipe. There are two primary effects of this
directional bias. First, the diffusion might show a nonzero
drift velocity relative to the bulk velocity U [34]. Second,
the pressure gradient may “trap” turbulent structures q at the
boundaries of the cluster. To expand the turbulent cluster,
the fluid particle must overcome the energetic barrier asso-
ciated with the pressure gradient; that is to say, the particle
must meet or exceed an energetic threshold in order for the
turbulent structure to spread. Thus the spreading of puffs
can be connected to Barkley’s u → q transition rate so that
ε2(r)qτ must be analogous to a “threshold for excitation” and

FIG. 9. Nearest-neighbor reaction-diffusion dynamics from time
step t (top row) to t + dt (bottom).

further connected to Goldenfeld’s extremal fluctuations [35].
Since ε2 is a function of r (or, in the directed percolation
picture, the branching rate depends on Reynolds number)
the fraction of the pipe filled with turbulence increases with
Reynolds number. But percolation is not the only mechanism
by which the turbulent structures can spread; convectively
chaotic structures spread randomly, too.

SIBC were used here because it was felt they were truer
to real pipes than periodic boundary conditions. Since inter-
mittency depends on inlet conditions even in very long pipes
[17], experimentalists aim for smooth flow in the entrance of
the pipe so that the size of any perturbation can be known and
controlled [1,10]. Further, real pipes are finite in length; fluid,
be it turbulent or laminar, must advect out of the open end of
a real pipe eventually. In a sense, the SIBC is a kind of model
in and of itself, aiming to reflect pipe flows in real laboratory
conditions.

While implementing boundary conditions, both smooth
inlet boundary conditions (to model finite pipes) and periodic
boundary conditions (to model an infinite pipe) were applied
to see how solutions vary with finite domain size. When
lengthening the domain while enforcing SIBC, we recover
the solutions seen with periodic boundary conditions (PBC)
and those found by Barkley. Consequently, one may view the
new solutions—the time-periodic “pulsating” solutions and
chaotic solutions, akin to those in [24]—to be additional sets
of solutions seen in the limit of finite domains. That these
time-periodic solutions grow unstable only at very large N
suggests that SIBC induces a Hopf instability in the system,
perhaps one that will interact with a Turing instability to bring
about stripes in a two-dimensional extension of the model.

In addition, time-delayed coupling between u and q played
less of a role in the set of observed solutions in this 1D model
than did SIBC. However, the delay may play a bigger role in
a two-dimensional extension of the model in accordance with
literature on time-delay-induced Turing instabilities. One may
anticipate that an extension of the model to 2D will generate
spots and stripes like those seen in plane Couette flow, and
similar to those described by Manneville [14].
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IV. SUMMARY

We were able to find previously unknown periodic so-
lutions and generate chaos in Barkley’s pipe model with
two physically motivated modifications: by admitting a time-
delayed coupling between q and u, and by introducing SIBC.
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