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We present a molecular dynamics study of the motion of cylindrical polymer droplets on striped surfaces.
We first consider the equilibrium properties of droplets on different surfaces, we show that for small stripes
the Cassie-Baxter equation gives a good approximation of the equilibrium contact angle. As the stripe width
becomes nonnegligible compared to the dimension of the droplet, it has to deform significantly to minimize
its free energy; this results in a smaller value of the contact angle than the continuum model predicts. We then
evaluate the slip length and thus the damping coefficient as a function of the stripe width. For very small stripes,
the heterogeneous surface behaves as an effective surface, with the same damping as a homogeneous surface with
the same contact angle. However, as the stripe width increases, damping at the surface increases until reaching a
plateau. Afterwards, we study the dynamics of droplets under a bulk force. We show that if the stripes are large
enough the droplets are pinned until a critical force. The critical force increases linearly with stripe width. For
large enough forces, the average velocity increases linearly with the force, we show that it can then be predicted
by a model depending only on droplet size, contact angle, viscosity, and slip length. We show that the velocity of
the droplet varies sinusoidally as a function of its position on the substrate. However, for bulk forces just above
the depinning force we observe a characteristic stick-slip motion, with successive pinnings and depinnings.

DOI: 10.1103/PhysRevE.100.023113

I. INTRODUCTION

The wetting behaviors of liquid volumes ranging from
microliters to picoliters in microchannels are of great impor-
tance for designing droplet-based microfluidic devices [1–3],
such as DNA-chips [4], Lab On A CD [5], inkjet printing
technology [6], or in situ investigation of fibrin networks [7].
Accordingly, equilibrium and dynamic wetting behaviors of
liquid drops on smooth (ideal, homogeneous, flat), chemically
rough/structured, and topologically patterned substrates has
been studied for decades [8–17].

Furmidge [8] showed that the movement of spray liquids
on different substrates depends on the droplet’s size, inclina-
tion of the substrate, the surface tension of the drop, and the
advancing and receding contact angles. Gau et al. [10] showed
that a shape instability (a bulge state), unlike a Rayleigh
Plateau instability, can be employed for all liquids on all
striped substrates if the hydrophilic stripes’ contact angles
are small enough and if these stripes are long enough. They
mentioned that these bulge states could be used to build two-
dimensional microchannel networks and hence to construct
microbridges, microchips, and microreactors.

To date many experimental [18–24], computational, and
theoretical [25–38] studies on the dynamic wetting behavior
of droplets on textured surfaces have shown that a stick-slip
type of motion is a common behavior.

Schäffer and Wong [18] showed that surface roughness is
a key factor in pinning of water in glass capillaries. Léopoldès
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and Bucknall [19] studied the spreading of droplets on chem-
ically heterogeneous striped substrates. In an intermediate
regime, they observed a stick-slip behavior, in other words, a
sudden hopping while crossing the boundary of two adjacent
stripes with different wettability. Tavana et al. [20] investi-
gated different organic (n-alkanes) drops on two distinct poly-
meric films. They observed that on homogeneous surfaces,
all the liquids moved smoothly, whereas on heterogeneous
polymeric films, liquids which have compounds with short-
chains present stick-slip. They suggested that the cause of this
stick-slip pattern is the varying adsorption of vapor molecules
on these polymer films. Maheshwari et al. [21] observed a
pinning-depinning cyclic behavior of DNA solutions at high
and intermediate DNA concentrations. Similarly, Orejon et al.
[22] observed that the magnitude of the stick-slip motion de-
pends on the concentration of titanium dioxide nanoparticles
inside water drops on different hydrophobic substrates. Yeong
et al. [24] investigated the three-phase contact line dynamics
of water droplets on superhydrophobic substrates with regular
textured pillars. They proposed that the receding contact line
undergoes a “slide-snap behavior.” Here, the receding contact
line keeps moving on a pillar until snapping to the adjacent
pillar, in contrast to a stick-slip motion in which the contact
line stays pinned before jumping into the consecutive loca-
tions.

Computational and theoretical investigations can also be
summarized as follows. Shanahan [25] calculated the excess
free energy of an evaporating drop. The model suggests the
radius of the drop decreases smoothly on a homogeneous
surface while stick-slip can occur on surfaces with hetero-
geneities. Thiele and Knobloch [26,27] studied the dynamics
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of two-dimensional droplets on heterogeneous surfaces by
solving the Navier-Stokes equation within the long-wave ap-
proximation. They observed two kinds of pinnings can occur.
A hydrophilic defect at the back of the drop or a hydrophobic
at the front, leading to two different bifurcations. Beltrame
et al. [32] obtained similar results for three-dimensional
droplets. Kusumaatmaja et al. [28,29] studied the dynamics
of two and three dimensional droplets thanks to lattice Boltz-
mann simulations (LB) [39], they observed slip, stick, and
jumps of the contact line and important periodic variation in
the shape of the droplet. Wang et al. [30] carried on contin-
uum simulations of contact line dynamics of two immiscible
fluids between two chemically patterned substrates using a
diffuse-interface model with the generalized Navier boundary
condition. Their results suggest a oscillations in the velocity
of the contact line, with stick-slip behavior depending on the
wettability contrast. Furthermore, they observed an increase
in dissipation as the wettability contrast increases. Similar
results were reported by Qian et al. [31] with MD simulations.
Herde et al. [33] studied the depinning/pinning dynamics
of two-dimensional drops driven on surfaces with sinusoidal
wetting patterns. They solved the Navier Stokes equation
using the boundary element method with slip boundary condi-
tion. Their results suggest an increase in the minimum force to
depin the droplet with the wettability contrast. Furthermore,
after the depinning slippage at the boundary can reduce the
dissipation significantly. Sbragaglia and coworkers [34,35]
observed a stick-slip periodic behavior for liquid drops slid-
ing over substrates patterned with parallel stripes of varying
wettability degrees both experimentally and numerically in
two dimensions. They solved the diffuse-interface Navier-
Stokes equations of motion for a binary mixture thanks to
LB simulations. Their results suggest periodic increases in
the fluctuations at the contact lines leading to dissipation of
energy localized in time. Recent MD simulations on the evap-
oration of droplets on patterned surfaces also suggest a stick-
slip dynamics of the contact line [36]. Though, according to
Zhang et al. [37] one should look to the sticking as an extreme
slow down instead of a pinning. While most studies observe
some kind of stick-slip motion, it is unclear if the droplet
remains pinned or slow downs, or what is the contribution to
the dissipation of the oscillatory motion. The aim of this work
is to study these problems thanks to a coarse-grained MD
simulations and an analytical model we developed previously
for droplets on homogeneous surfaces [12].

This paper is organized as follows: In Sec. II, we describe
the details of the coarse grained model and the MD simulation
we use. Then, in Sec. III we study the equilibrium and dy-
namic properties of polymeric droplets on homogeneous and
heterogeneous surfaces. The conclusions are finally drawn in
Sec. IV.

II. THE COARSE-GRAINED MD MODEL

In this paper, we use a generic particle-based molecular
dynamics (MD) simulation technique to study the static and
dynamic wetting behaviors of polymer droplets on different
substrates [40–42]. Thanks to this coarse-grained model one
can investigate the universal wetting properties of polymeric
droplets on corrugated or smooth substrates. In this model, a

bead of a linear homopolymer chain corresponds to a group
of united molecules or atoms. The main advantage of using
polymer melts in MD simulations is due to the fact that their
vapor pressure is very low [12,43]. Hence, the number of
atoms in the vapor phase remains small permitting the study
of larger systems.

The polymer melt is modeled with bonded (intramolecu-
lar) and nonbonded (intermolecular) interactions. The bonded
interactions are between neighboring beads of a polymer, it
is modeled by the finitely extensible nonlinear elastic (FENE)
potential [40,41],

UFENE =
{− 1

2 kR0
2 ln

[
1 − (

r
R0

)2]
for r < R0,

∞ for r � R0,
(1)

where the spring constant is k = 30ε/σ 2 and the maximum
covalent bond length R0 = 1.5σ . Thanks to the FENE poten-
tial, the connectivity of the beads along the backbone chain is
obtained. In addition to the bonded potential, there is a 12-6
Lennard-Jones (LJ) potential between each pair of beads in
the system,

ULJ =
{

4ε
[(

σ
r

)12 − (
σ
r

)6]
for r < rc,

0 for r � rc,
(2)

where the cut-off distance is rc = 2 × 21/6σ . The repulsive
part of the Lennard-Jones interaction permits to enforce the
excluded volume effect while the attractive part permits to
have a liquid state. The system is prepared so that each
polymer contains Np = 10 identical atoms of mass m.

The surface is modelled by two rigid layers of face-
centered-cubic lattice. The number density of the substrate is
chosen as ρs = 2.0σ−3 [12]. Large enough so that no polymer
atoms go through the surface. The atoms of the substrate
interact with the polymeric fluid with a modified Lennard-
Jones potential [44],

Us =
{

4εs
[(

σs
r

)12 − Cs
(

σs
r

)6]
for r < rc,

0 for r � rc,
(3)

where the cut-off distance is the same as in Eq. (2). The length
and energy scales of the potential energy are fixed to σs = σ

and εs = ε, respectively. Finally, the empirical parameter Cs

quantifies the hydrophobicity of the surface. The larger Cs is,
the more attractive and consequently, hydrophilic the substrate
is. Thus, one can easily tune the wetting properties of the sur-
face. Furthermore, one can construct a simple heterogeneous
surface by alternating the type of atom by using different hy-
drophobicity parameter Cs. We prepare surfaces with increas-
ing stripe width. The hydrophobicity parameters are fixed
to Cs = 0.4 (hydrophobic surface) and Cs = 0.6 (hydrophilic
surface). All the surfaces have a total of 11520 atoms and
the dimensions Lx = 241.90489 (longitudinal to the flow),
Ly = 18.9σ (transverse to the flow). Periodic boundaries are
enforced in the x and y directions, while reflective periodic
boundaries are in effect on the top of the simulation box
in the z direction. The height of the simulation box along
the z axis is taken large enough for the droplet’s upper part
not to touch the box, therefore one can obtain a free liquid
surface, namely, Lz = 150.0σ . The equations of motion are
integrated with the velocity Verlet algorithm [45] with a time
step of �t = 0.005τ . We fix the temperature of the system to
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FIG. 1. MD simulation snapshot of a droplet at equilibrium. The
droplet of N = 50 000 atoms is on a striped surface having two types
of atoms with Cs = 0.4 (green) and Cs = 0.6 (purple). The stripes
have and equal widths of w = 7.56σ . The atoms on the left-hand side
of the figure are in the extremely low vapor phase of the polymeric
fluid.

kBT = 1.2ε for all the MD simulations, at this temperature
the density of the polymer melt is ρp = 0.788σ−3 and the
vapor density is negligible [46,47]. We prepare the polymer
droplet by first constructing a cubical lattice of polymers,
once the cube is equilibrated we place it on the substrate
and equilibrate again. We depict in Fig. 1 an equilibrated
droplet of N = 50 000 monomers on a heterogeneous surface
with stripe width w = 7.56σ . The equilibrium contact angle
of the droplet is θE = 133◦. Finally, a dissipative particle
dynamics (DPD) [12,48,49] thermostat is used to keep the
temperature of the system constant. The DPD thermostat has
the advantage of conserving the momentum locally instead
of globally as for the Nosé-Hoover thermostat [48–50]. The
damping coefficient of the thermostat is set to 0.5τ−1 in all
our simulations.

III. RESULTS

A. Equilibrium wetting properties

We calculate the equilibrium contact angles, θE , of droplets
for various strengths of the hydrophobicity parameter, Cs,
and droplet sizes, N . We focus on cylindrical droplets to
study larger liquid systems and have better statistics. We
use droplet sizes from N = 10 000 to N = 50 000 monomers
and hydrophobicity parameters in the range Cs = 0.3–0.8 to
study the equilibrium density profiles. The density profiles
are obtained by counting the number of monomers in two-
dimensional boxes of size 0.1σ in the x and z directions. We
choose the contour line as the arithmetic mean of the densities
of the polymer melt and its vapor, since the density of the
vapor is negligible, the contour line corresponds to a density
of ρp/2 = 0.394σ−3. We depict in Fig. 2 the density profiles
for increasing number of monomers with the hydrophilic
parameter set to Cs = 0.5. Becker et al. showed that the
contact angle is independent of the size of the droplet for
large enough systems, namely, N = 10 000 [51]. We can thus
evaluate the angle precisely by using drops of different sizes
and evaluate their average [12]. The geometry of cylindrical
droplets at equilibrium satisfy the following relationships,

V = R2

2
(2θE − sin 2θE )Ly, (4)

A = 2R sin θE Ly, (5)

H = R(1 − cos θE ), (6)
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FIG. 2. Density profiles for increasing number of monomers.
The surface is homogeneous with hydrophobic parameter Cs = 0.5.
The average equilibrium contact angle of these droplets is θE =
137◦ ± 1◦.

rz = R

(
4

3

sin3 θE

2θE − sin 2θE
− cos θE

)
, (7)

where V , H , A, and rz are, respectively, the volume, the
height, the area of contact with the substrate, and height of
the center of mass. The height of the center of mass is readily
available in MD simulations. Then, using the contour plots
in Fig. 2 we fit circles to the droplets to find the radius of
the droplet R. One can then solve Eq. (7) numerically to find
θE . The same procedure is applied for varying hydrophobicity
parameters Cs. We depict in Fig. 3 the density profiles of a
droplet of N = 30 000 monomers for increasing values of Cs.
As expected, increasing the strength of the attractive part of
the interaction potential results in a more hydrophilic surface,
and thus a lower contact angle. The inset of Fig. 3 depicts
the equilibrium contact angle as a function of Cs. We remark
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FIG. 3. Density profiles of droplets with N = 30 000 atoms for
increasing values of the hydrophobicity parameter Cs. The surfaces
are chemically homogeneous substrates. The inset represents the
equilibrium contact angle as a function of Cs. The contact angle is
given in degrees.
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FIG. 4. (a) Density profiles of a droplet of N = 50 000 atoms
on different striped substrates. The circles in the inset represent the
Cassie-Baxter angle, and the squares the actual equilibrium contact
angle as a function of the stripe width w. (b) Close up view of the
contact line for the different droplets, the inset depicts the length of
the droplet divided by the stripe width w as a function of w.

that the super-hydrophobic surfaces we observe for Cs < 0.6
cannot be achieved experimentally without surface roughness,
indeed it is well known that the maximum contact angle of
water on a smooth surface is approximately of 120◦ [52].
As such these results are purely numerical and cannot be
compared to experimental results directly.

We now focus on the striped surfaces. We choose the value
Cs = 0.4 (θE = 159◦) for the hydrophobic stripe and Cs = 0.6
(θE = 110◦) for the hydrophilic one. This corresponds to a
wettability contrast of 49◦, comparable to the one used by
Zhang et al. [37] (48◦) albeit with a larger contact angle in our
case. We compute the equilibrium density profile of a droplet
of N = 50 000 atoms on surfaces of varying stripe widths w =
1.26, 2.52, 3.78, 5.04, 6.30, 7.56, 8.82, 10.08, 11.34σ .
These values correspond to the stripe width to droplet length
ratios of wp = 3, 5, 8, 10, 13, 15, 18, 20, 23%. We
depict in Fig. 4 the density profiles. The inset of Fig. 4(a)
represents the equilibrium contact angles, and the contact

angle corresponding to the Cassie-Baxter equation as a
function of stripe width. The Cassie-Baxter equation [53], is
a continuum result, it predicts the equilibrium contact angle
of a droplet on a mixed surface as,

cos θCB = f1 cos θ1 + f2 cos θ2, (8)

where f1 and f2 are, respectively, the contact area fractions
of the surface of type 1 and 2, and θ1 and θ2 their respective
equilibrium contact angles. We notice that, the calculated
value θE is close to the continuum prediction θCB. Indeed, on
average we obtain θE = 131◦ ± 4◦ for the equilibrium contact
angle, while the data for the homogeneous surfaces and f1 =
f2 = 0.5 yields θCB = 127 ± 1◦. However, we notice that
the contact angle decreases with the stripe width and varies
wildly at large values of w. This is due to the fact that at
equilibrium the droplet maximizes its contact area with the
hydrophilic stripes to minimize the free energy. To achieve
this the droplets slightly deforms to be in contact with one
more hydrophilic stripe than hydrophobic stripes. In that case,
the droplet has to be in contact with an odd number of stripes.
As the stripe width increases, to accommodate an odd number
of stripes, the droplet has to deform significantly, resulting in
the important variation of the contact angle. We have depicted
in Fig. 4(b) a close up on the contact line for all the different
striped surfaces. In the inset we give the contact length to
stripe width ratio. As we see, the length of the droplet varies
as an odd number times the stripe width. In general, the
fact that there is an extra hydrophilic stripe with respect to
the hydrophobic one will make the surface effectively more
hydrophilic, and hence with a lower contact angle. As the
stripe width increases, the effect becomes more important,
thus the contact angle will decrease with w. We remark that
we have taken this effect into account while evaluating the
Cassie-Baxter contact angle in Fig. 4(a).

B. Boundary condition

Before considering the dynamics of droplets on the dif-
ferent surfaces one has to evaluate the boundary condition.
Indeed, we showed previously that for microscopic droplets
the presence of slip at the surface can significantly affect the
dynamics of the droplets. Specifically, for small droplets and
large contact angles the slipping on the surface becomes the
dominating dissipation mechanism leading to an increased
velocity [12]. In the presence of slippage at the boundary one
can use the Navier slip boundary condition [54],

η
∂vx

∂z

∣∣∣∣
zb

= λvb, (9)

where η is the shear viscosity, zb is the position of the
boundary, λ a damping coefficient quantifying the friction at
the surface, and vb the velocity of the fluid on the surface.
We previously evaluated the shear viscosity thanks to the
Green-Kubo relationship to be η = 5.3 ± 0.1 σ 2/

√
mε [12].

The damping coefficient can also be evaluated thanks to a
Green-Kubo relationship, namely [55,56],

λ = 1

kBTA

∫ ∞

0
dt 〈Fs(t )Fs(0)〉, (10)
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FIG. 5. (a) Slip length as a function of the equilibrium contact
angle for homogeneous surfaces. (b) Slip length as a function of the
stripe width. The solid lines are guides for the eyes.

where Fs is the tangential force exerted by the substrate on
the fluid, and A is the area of contact. The slip length is then
given as

δ = η

λ
. (11)

To evaluate δ we confine a fluid with N = 50 000 monomers
between two surfaces with Lx = 90.7σ and Ly = 18.9σ . The
distance between the surfaces is tuned to recover the bulk liq-
uid density far from the walls. After equilibration, we compute
the total transverse force for 4 × 106 time steps and evaluate
its time autocorrelation. Finally, the slip length is obtained
thanks to Eqs. (10) and (11). We depict the results in Fig. 5.
For homogeneous surfaces we notice a sharp increase of δ as
a function of the equilibrium contact angle θE . This result is
consistent with the constant relative atom size we consider in
this study (σr = σs/σ ) [57,58]. For all the contact angles con-
sidered we notice that the slip length is important compared
to the dimensions of the droplet. Consequently, we expect
slippage to be the dominating mechanism of dissipation on
the homogeneous surfaces. However, for the heterogeneous
surfaces for very small stripe widths we recover the value of
δ corresponding to the homogeneous case, i.e., for a contact
angle of θ ≈ 130◦ about δ ≈ 90 σ . As the stripe width in-
creases the slip length decreases and rapidly reaches a plateau
at δ ≈ 60 σ . The plateau is reached at approximately 3.5 σ ,
close to the effective size of the polymers. Indeed, the end-
to-end distance of the polymers is found to be Ree = 3.447 σ .
For very small stripe widths the stripes merge to an effective
surface with an equilibrium contact angle corresponding to
the Cassie-Baxter relation, as the stripe width increase the
polymers interacts with the two distinct surfaces, leading to
increased fluctuations at their boundaries, and consequently
increased damping λ, therefore decreased slip length δ. Once
the stripes become larger than the polymers, the increased
damping remains confined to the boundary between stripes,
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FIG. 6. Time-averaged velocity of the center of mass in the
longitudinal direction for droplets of N = 50 000 monomers as a
function of the force per atom for homogeneous surfaces. The
circles are the results of the MD simulations and the plain lines are
linear fits.

and thus a plateau is reached. A similar decrease was predicted
by Priezjev et al. by solving the Navier-Stokes equation for
a fluid confined between a homogeneous wall and a striped
wall [59]. We note that the slip length is important for both
the homogeneous and heterogeneous surfaces, this is due to
the fact that even though the striped surfaces are chemically
heterogeneous they are still smooth.

C. Dynamic wetting properties

In this section we focus on the dynamics of the cylin-
drical polymer droplets on the homogeneous and heteroge-
neous substrates. We first study the homogeneous surfaces.
We consider three different hydrophobicity parameter Cs =
0.4, 0.5, 0.6 which corresponds to the equilibrium contact
angles θE = 159◦, 137◦ , 110◦. To have a sustained motion
we apply a bulk force F in the longitudinal direction x to
all the fluid atoms. The calculations are carried out for an
equilibrated droplet of N = 50 000 monomers. We use five
different values of the bulk force per atom, namely, F =
0.00001, 0.00002, 0.00003, 0.00004, 0.00005. After 2 ×
106 time steps of equilibration, a nonequilibrium steady state
is reached. We then compute the time average of the velocity
of the center mass in the longitudinal direction, 〈vCM〉 for a
further 2 × 106 time steps. We depict the results in Fig. 6. We
showed previously [12] that the velocity profile in cylindrical
droplets can be estimated by

vx(z) = ρp

η

[(
H − z

2

)
z + δH

] F

m
, (12)

where H is the height of the droplet and δ the slip length.
Thus, the velocity of the center of mass can then be written as

vCM = ρp

η

[(
H − rz

2

)
rz + δH

] F

m
. (13)

This relationship was derived thanks to the lubrication ap-
proximation. It is valid as long as there is slippage and the
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TABLE I. Molecular dynamics simulation results for polymer
droplets of N = 50 000 atoms on chemically homogeneous surfaces
for the three hydrophobicity parameter Cs. γ corresponds to the
effective damping coefficient evaluated thanks to Eq. (13) and γMD

the one obtained from the linear fits in Fig. 6.

Cs θE rz (σ ) H (σ ) δ(σ ) γ (m/τ ) γMD (m/τ )

0.4 159◦ 31 63 364 14 6
0.5 137◦ 27 58 108 45 41
0.6 110◦ 23 52 40 112 150

droplet is not deformed significantly, i.e., for small contact
angle hysteresis. Indeed, it is well known that drops have first
to overcome the capillary force to start sliding [8,60,61]. Since
the velocity of the center of mass scales linearly with the bulk
force, to validate Eq. (13) with the MD simulations, one can
simply assume the velocity of the center of mass satisfies the
following equation of motion,

mCM
dvCM

dt
= −γMD vCM + mCM

F

m
, (14)

where the effective damping coefficient γMD comprises all the
different types of dissipation present in the droplet, namely,
viscous dissipation in the volume, frictional dissipation at the
surface, and dissipation at the contact line. At the steady state
the expectation value of the center of mass velocity can then
be written as

vCM = ρpV

γMD

F

m
. (15)

Performing linear fits on the data in Fig. 6 permits to eval-
uate the effective dissipation coefficient γMD. One can then
compare it to the prediction from Eq. (13), γ . We present the
results of the fits, and the prediction of the damping coefficient
according to Eq. (13) in Table I.

We notice that apart for Cs = 0.4 Eq. (13) gives a relatively
good approximation of the damping coefficient. Errors come
from two different approximation; first, Eq. (13) is valid only
when the contact angle is not too large, second, to evaluate the
slip length with Eq. (11) one needs the local viscosity, i.e., the
viscosity at the surface. It is known that the mobility of the
fluid in the vicinity of the substrate is affected by the substrate
and consequently its viscosity [43].

We previously looked to the size dependence of the steady-
state velocity [12]. For small droplets the dominating dis-
sipation mechanism is the friction at the surface, in that
case vCM ∼ R. However, for large droplets the dominating
dissipation mechanism is viscous dissipation in the volume,
then vCM ∼ R2. In general, the velocity increases with size.
Unfortunately, one can not write a simple scaling law for the
dependence on contact angle from Eq. (13). Instead, one can
look to the velocity at the top of the droplet z = H ,

vtop = ρpF

mη

(
H

2
+ δ

)
H. (16)

For droplets of fixed volume one can then get two limiting
cases. For small droplets or a large slip length compared to its
height the velocity at the top scales as vtop ∼ δH . While for
large droplets or a small slip length compared its size one has
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FIG. 7. Time average of the velocity of the center of mass of
droplets with N = 50 000 monomers as a function of the force
per atom for the chemically heterogeneous surfaces. (a) w =
1.26–5.04 σ and (b) w = 7.56σ and w = 10.1 σ . The symbols
correspond to the results of the MD simulations and the dotted lines
to linear fits. The arrows point to the depinning force.

vtop ∼ H2. Notice that the height of a cylindrical droplet can
be expressed as

H =
√

2V

Ly

1 − cos θE√
2θE − sin 2θE

, (17)

which is a monotonically increasing function of the contact
angle. Thus, the steady-state velocity of the droplet increases
with its contact angle. As the surface becomes more hy-
drophobic, the shape of droplet becomes more like a sphere,
which reduces the viscous damping during the rolling motion.

We now focus on the chemically heterogeneous substrates.
We consider the droplets in Fig. 4 and drive them with varying
bulk forces F . We depict the time averaged velocity of the
center mass as a function of the force per atom for the different
values of w in Fig. 7.

For the two smallest stripe widths, namely, w = 1.26 σ

and w = 2.52 σ the velocity of the center of mass is still a
linear function of the bulk force. However, as the stripe width
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FIG. 8. The depinning force per atom as a function of the stripe
width w. The circles are the results from the MD simulations and the
solid line a linear fit on the nonzero values of the depinning force
per atom.

increases we notice that a minimum force is required for a
sustained motion, in other words the droplet remains pinned.
Lets first focus on the pinned state. We notice that as the
stripe width increases the minimum force increases. Herde
et al. [33] observed the same behavior albeit for increasing
wettability contrasts instead of stripe width. Increasing stripe
width or the wettability contrast both result in increasing the
heterogeneity of the surface, and hence the energy barrier
the droplet must cross. Furthermore, experimental results by
Mirsaidov et al. [23] showed that small droplets would remain
pinned while large droplets could slide, as the droplet size
decreases, surface heterogeneities become large with respect
to the droplet size.

Using the results in Fig. 7, we depict the critical force per
atom in Fig. 8. We notice that except for very small stripe
widths, the depinning force increases linearly with stripe
width. For small widths the energy barrier the droplet must
cross is relatively small, consequently, thermal fluctuations
are enough to overcome it. Remark that for stripe widths
w � 11.34 σ the droplet can not depin without significant
contact angle hysteresis. It corresponds to stripe width to
droplet length ratios larger than 23%. However, the linear
increase of the depinning force can be explained easily by
a qualitative argument. Indeed, when the droplet is pinned
it maximizes its contact area with the hydrophilic stripes
to minimize its free energy. One can see this effect clearly
from the density fluctuations in pinned droplets in Fig. 9.
To maximize its contact with the hydrophilic stripes, each
extremity of the droplet has to be on a hydrophilic stripe.
In that case, if the droplet is in contact with n hydrophobic
stripes, then it will be in contact with n + 1 hydrophilic
ones. Since there is slippage at the surface the whole contact
area of the droplet moves instead of only the contact line.
Assuming that +Ws is the work required to move the fluid
from a hydrophilic stripe to a hydrophobic one, then −Ws

is the work for the fluid moving from a hydrophobic stripe
to a hydrophilic. Since there is an extra hydrophilic stripe
there will remain a net work +Ws to depin the droplet as
schematized in Fig. 10. The depinning work Ws depends on
the difference of surface energies �e per unit area and on

FIG. 9. Density fluctuations of a pinned droplet with a bulk force
per atom F = 0.00001 (mσ/τ 2). (a) w = 5.04 σ , (b) w = 7.56 σ

and (c) w = 10.1 σ . The contour maps correspond to the standard
deviation of the number density averaged over 2 × 106 simulation
time steps.

the area of fluid to move, thus Ws ∼ w�e. If the temperature
is large enough, kBT > Ws, then the thermal fluctuations are
enough to depin the droplet. For lower temperatures, there will
be a critical stripe width after which the droplet is pinned, and
the depinning work will increase linearly with w. We must
point out two restrictions to this simple model. First, in the
absence of slippage only the contact line moves, in that case
the energies involved when crossing from a hydrophilic to
hydrophobic stripe or the opposite would be different. Second,
as the stripe width becomes comparable to the droplet size
we expect the depinning work to become independent of the
stripe width, and converge toward the difference of adhesion
energies between the two surfaces.

We now focus on the dynamics of the droplet after the
depinning. For the two smallest stripe width, we do not ob-
serve any pinning, and 〈vCM〉 increases linearly with the bulk
force. Assuming the model for the homogeneous substrates

FIG. 10. An illustration for the depinning work Ws. A pinned
droplet is in contact with n hydrophobic stripes and n + 1 hydrophilic
stripes, the extremities must therefore be hydrophilic stripes.
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TABLE II. Molecular dynamics simulation results for polymer
drops of N = 50 000 atoms on chemically heterogeneous surfaces
for different stripe widths.

w(σ ) rz (σ ) H (σ ) δ (σ ) γ (m/τ ) γMD (m/τ )

1.26 27 59 74 60 56
2.52 27 58 64 68 96
3.78 27 59 62.5 68 81
5.04 26 57 62.5 71 83
7.56 26 57 62.5 71 71
10.08 27 58 62.5 71 57

is still valid, we perform linear fits on 〈vCM〉 and evaluate
the effective damping coefficients. We give in Table II the
results of the simulations and the value of γ obtained from
the slip lengths calculations and geometry of the droplet with
Eqs. (13) and (15). Again we notice that the dynamics is
relatively well described in terms of the model. This cor-
roborates the continuum results of Herde et al. [33] where
the velocity of the droplet is extremely sensitive to the slip
length. For small stripe widths, the fact that the substrate
is chemically heterogeneous does not alter significantly the
dynamics. Except for a smaller slip length δ, and thus a
larger effective damping coefficient. Since the velocity profile
derived for the homogenenous substrates still describes rela-
tively well the dynamics on striped surfaces, we can assume
that at least on average, the droplets motion can be described
by a combination of sliding and rotation. This is due to the
fact that while the surface is heterogeneous it is still smooth.
Similarly, for the pinned droplets, after the critical force, for
large enough force, we recover a linear regime for the velocity
of the center of mass. We observe a sinusoidal variation of
the velocity of the droplet as a function of time. Similar
modulations of the center of mass velocity were observed
in several other studies [28,30,31,33,35]. As the edge of the
droplet crosses from a hydrophilic stripe to a hydrophobic
one, the total surface energy increases since the interaction is
less attractive, and consequently, the kinetic energy increases.
We have evaluated the average velocity and surface potential
energy as a function of the position of the center of mass
with respect to the substrate. We averaged the results over
the distance of two stripes for better statistics, the results
are depicted in Figs. 11(a) and 11(b) for the two largest
stripes at a force per atom of F = 10−4 mσ/τ 2 and for w =
3.78 σ at F = 1.5 × 10−5 mσ/τ 2. When the surface energy
is minimum, the center of mass of the droplet corresponds to
the pinned position, in other words when it is in contact with
one more hydrophilic stripe than a hydrophobic one. As the
droplet crosses to a hydrophobic stripe its velocity decreases
until it is in contact with one more hydrophobic stripe than a
hydrophilic one, corresponding to the largest potential energy.
Afterwards the velocity increases again. We notice that the
modulation of the center of mass velocity does not affect
significantly its mean value. Indeed, the linear fits in Fig. 7
and the corresponding results in Table II suggest that after the
critical force the dynamics of the droplet can still be relatively
accurately described by the model. This result is in contrast
with the continuum of Sbragaglia et al. [35]. Indeed, their
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FIG. 11. (a) The surface energy per atom and (b) the averaged
velocity of the center of mass as a function of the position of the
center of mass. The energy was scaled by a factor 103. The plain
lines correspond to sinusoidal fits. The center of mass velocity for
w = 3.78σ is multiplied by 5 for better visualization. (c) Velocity of
the center of mass and position of the center of mass as a function of
time for a typical trajectory in the stick-slip regime for a stripe width
of w = 10.1 σ .

results suggest an important increase in dissipation on striped
surfaces, with the energy dissipation localized in time at the
crossing of the boundaries. However, extreme deformations
occurred during the dynamics, which does not occur for the
small droplets considered here. Moreover, slippage was not
taken into account, hence further hindering the crossing from
one stripe to the other. For droplets at the nanoscale in the
presence of slippage our results suggest that the dynamics
after the depinning can still be relatively well described in
terms of the model for homogeneous surface.

However, one would expect that for forces just above the
critical force the dynamics would be consistent with stick-
slip motion, in other words a succession of pinnings and
depinnings. In that case, for a droplet in the pinned state,
large thermal fluctuations allows to depin the droplet until
it crosses to the next stripe and is pinned again. We have
depicted such a trajectory in Fig. 11(c) for the largest stripe
width. We observe that once the droplet is in the slip state
it crosses rapidly one stripe and then becomes pinned. In the
pinned state the position of the center of mass only fluctuates
slightly, not enough to cross a stripe, after some time a large
enough fluctuation permits the droplet to slip again and so on.
We first remark that there is no need for vapor to observe
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stick-slip dynamics as previously suggested [20]. However,
we notice that the time between the successive depinnings
varies wildly. Hence, once we consider time averages or the
average on different trajectories one recovers a sinusoidal-
like variation of the velocity as for the higher bulk forces.
Since time-averaged molecular dynamics should correspond
to continuum dynamics, this might explain why continuum
studies observe an important slow down instead of a pinning
of the contact line [28,33,62].

IV. CONCLUSION

In this paper we presented coarsed-grained molecular dy-
namics simulation of the statics and dynamics of cylindrical
polymer droplets on chemically homogeneous and hetero-
geneous surfaces. The surfaces consist of two layers of fcc
lattices which interact with a modified Lennard-Jones po-
tential with the polymeric fluid. The hydrophobicity of the
surfaces is tuned with an empirical parameter weighting the
attractive term. Chemically heterogeneous surfaces can then
be defined with stripes of different hydrophobicity. We first
evaluated the equilibrium contact angle on different surfaces.
We showed that at equilibrium the droplet deforms slightly
to accommodate one extra hydrophilic stripe with respect to
hydrophobic ones. As a result, at equilibrium, the droplet has
to be in contact with an odd number of stripes. As the stripe
width increases this results in relatively large differences of
contact angle. However, on average we have observed that
the Cassie-Baxter relation gives a good approximation of the
equilibrium contact angle.

We then focused on the boundary condition, indeed at
microscopic scales the fluid can slip on the solid surface. On
smooth homogeneous surfaces this results in a combination
of sliding and rotating motion for small droplets. We previ-

ously showed that on homogeneous surfaces, the steady-state
velocity of the droplet scales linearly with the bulk force and
depends only on its geometry, i.e., contact angle and size, and
the amount of slippage at the surface [12]. For small stripe
widths, this is still true as the fluid only sees an effective
surface. Consequently, one can assume that the droplets still
have a simple sliding and rotating motion. However, as the
stripe width increases we noticed that the droplet becomes
pinned until a sufficiently large force is exerted. We showed
that the depinning force increases linearly with the stripe
width. Since at equilibrium, the droplets extremities have to
be on hydrophilic stripes, the net work required to depin
the droplet is the work to move an amount of fluid from a
hydrophilic stripe to an hydrophobic one, which in turn scales
as the surface of the stripes as long as the stripe widths are
smaller than the droplet. Once the droplet is depinned the
steady-state velocity oscillates with time, consistent with the
changes in surface energy when crossing different stripes.
The velocity profile derived for homogeneous systems still
predicts relatively well the center of mass velocity, suggesting
that even though the velocity oscillates, it does not cause
a noticeable dissipation source for the droplets we consid-
ered. Finally, between the pinned state and linear regime we
observed a characteristic stick-slip regime where during the
pinned state the position of the center of mass never crosses
stripe while in the slip state, large thermal fluctuations can
depin the droplets and permit to rapidly cross a stripe.
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