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Identifying the pattern of breakdown in a laminar-turbulent transition via binary sequence statistics
and cellular-automaton simulations
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The laminar-turbulent transition induced by two-dimensional steplike roughness is investigated focusing on
the pattern of breakdown. The statistics of the turbulent burst rate is found to be significantly different from
the prediction of the classical theory. A systematic investigation of the pattern of breakdown is motivated by
this phenomenon. It is identified with heuristic analysis that a pattern of distributed breakdown is responsible
for the deviation, in contrast to the concentrated breakdown hypothesis in the classical theory. The pattern
indicates that the steps probably induced a bypass transition in present experimental setup, which is different
from the current understanding about the step-induced transition. Cellular-automaton simulations are carried
out to validate the heuristic analysis. The influences of quasiconcentration and non-Poisson process in spot
generation on the breakdown statistics are also discussed based on the simulation results.
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I. INTRODUCTION

As the fluid flows over a surface, a boundary layer is
formed due to the viscosity of the fluid. The boundary layer
will be either laminar or turbulent depending on the flow
environment (e.g., the Reynolds number, the surface rough-
ness, and the free-stream turbulence). Under proper condi-
tions, the boundary-layer transition from laminar to turbulent
occurs with significant changes in flow properties. Generally,
a complete transition process consists of three stages. First,
the disturbances (instability waves) are generated inside the
laminar boundary layer through the receptivity mechanism
[1]. Then, the disturbances grow via the modal [2] or the
nonmodal approach [3] due to the instability of the boundary
layer. Finally, the nonlinear growth of the disturbance leads to
the generation of the three-dimensional flow structure which
quickly evolves into a small patch of turbulence now known as
the turbulent spot [4]. The turbulent spots grow and merge into
the fully turbulent boundary layer. The process of spot gener-
ation, growth, and merger is also referred as the breakdown of
the laminar flow. Although the specific physical mechanisms
are different, the three stages of transition are closely related.
The laminar-turbulent transition is an intriguing problem in
fluid dynamics, and it is also very important in aerospace
engineering due to its significant influence on skin friction and
heat transfer.
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Recently, there is a growing interest in the transition of
the boundary layer distorted by the surface roughness. The
low-profile step is one of the representative two-dimensional
roughness, which leads to the flow separation at the sharp
edge [5–7]. If the flow remains laminar, its original state
would be gradually recovered far downstream the step [7,8].
Generally, the interaction between instability modes and
the distorted base flow would give rise to a destabiliz-
ing effect on the boundary layer [5,6,8]. Edelmann and
Rist [6] used an additional amplification factor for the
Tollmien-Schlichting (TS) wave to characterize the step in-
fluence on the stability of the boundary layer, and this idea
can be used to improve the eN method for the transition
prediction [9].

The understanding of the influences of steps is still far
from complete. Worner, Rist, and Wagner [10] first noticed
that the forward-facing step tends to stabilize the TS waves,
and they attributed this effect to the thinner boundary layer
developing on the step. The theoretical work of Wu and
Hogg [11] indicates that the rapid distortion caused by the
localized roughness will result in acoustic radiation of the
instability wave, and they proposed a transmission coefficient
to characterize the change in the energetics of the TS wave.
The numerical studies of Xu et al. [12] confirmed the local
stabilizing effect of the localized isolated roughness, but they
also concluded that the overall effect is destabilizing. Xu,
Lombard, and Sherwin [13] found that the effect of a smooth
step depends on the step height. They showed that the desta-
bilized effect would dominate when the step height is more
than 20% of the local boundary-layer thickness, but the steps
with smaller heights (5% and 12% of the local boundary-layer
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thickness) can effectively delay the H-type transition and even
completely suppress the K-type transition.

Most existing studies on the step-induced transition are
numerical and limited to the growth of the instability waves.
The detailed experimental results have rarely been reported so
far. From an experimental point of view, the measurement to
capture the growth of the disturbance around the step is much
more difficult than that in a typical boundary layer because of
the flow separation and the small step height. Alternatively,
the pattern of breakdown (see in Sec. II) is useful and impor-
tant to reveal the transition mechanism [14,15]. Nevertheless,
the investigation about the breakdown statistics has received
much less attention, and almost nothing is known about the
breakdown region in a step-induced transition.

In this paper, we present the detailed analysis of the pattern
of the breakdown in a step-induced transition process based
on experimental data. We demonstrate that the breakdown
is significantly different from the assumptions of the current
literatures [14,16]. In addition, numerical simulations for the
breakdown processes of various patterns are carried out using
a cellular-automaton model [14]. It has been shown that the
simulation with a simplified model can provide macroscopic
statistics of the transition process in convincing agreement
with data obtained from experiments or high-resolution nu-
merical simulations [17–21]. The cellular-automaton simu-
lation is shown to be an efficient tool to investigate the
breakdown of laminar flow since their computational costs are
very low.

The remainder of the paper is organized as follows. In
Sec. II, the different patterns of breakdown are briefly in-
troduced. In Secs. III and IV, the details of the wind-tunnel
experiments and the cellular-automaton simulations are intro-
duced. In Sec. V, the experimental results are presented in
comparison with existing theories. In Sec. VI, the breakdown
process is analyzed from a probabilistic view to identify the
pattern of breakdown. In Sec. VII, the cellular-automaton sim-
ulation results are presented to validate the heuristic analysis.
In Sec. VIII, two special breakdown scenarios are discussed.
In Sec. IX, a summary and conclusion of our study is pro-
vided.

II. PATTERN OF BREAKDOWN

Generally, the pattern of breakdown is about the statistical
characteristics of the formation of the turbulent spots. Once
a turbulent spot is generated in the boundary layer, it would
move downstream at a constant velocity and its streamwise
and spanwise size would grow at a constant rate [16,22,23].
The self-similar evolution of a spot is shown in Fig. 1(a). The
longer time the spot exists, the larger size it would become.

The intermittency factor (γ ) is one of the key parameters to
characterize the transition, and it is defined as the probability
to be turbulent at a streamwise position. The classical theory
of breakdown (see the review of Narasimha [16]) aimed
at finding a universal model to reproduce the experimental
results of the growth curve of γ in the breakdown region.
Emmons [4] proposed a theory that the distribution of γ can
be derived from the spot generation rate, which is defined
as the number of turbulent spots generated per unit space
and per unit time. It was found that the prediction of γ
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FIG. 1. Sketch of the patterns of breakdown (the red triangular
areas represent the turbulent spots which are moving from the left
side to the right side, the dashed line is the transition starting location,
the coordinates x and z represent the streamwise and spanwise
directions): (a) self-similar evolution of a single spot at different
moments T1 < T2 < T3, the dashed-dotted lines are the envelopes
of the spot; (b) concentrated breakdown; (c) regular breakdown (K
type); (d) distributed breakdown. (b)–(d) The snapshots of a part of
the breakdown region.

can well match most of the experimental results only when
the formation of spots is assumed to be concentrated at
a preferred streamwise location but randomly in time and
uniformly distributed in spanwise direction. This is called
the hypothesis of concentrated breakdown. In a real flow, the
preferred streamwise location represents a narrow band whose
width is small compared to the entire breakdown region [16].
If the presence of a spot is assumed to have no effect on
the generation or propagation of any other spots, then the
random spot generation is a Poisson process. A snapshot of
the concentrated breakdown is shown in Fig. 1(b). Note that
all the spots are generated at the dashed line, and the smaller
turbulent spots are always nearer to the line and the larger ones
are always further downstream.

Despite some success, the classical theory based on the hy-
pothesis of concentrated breakdown is found to be not always
accurate in various transition scenarios. Johnson and Fashifar
[17] noticed that their experimental data (the free-stream
turbulence level Tu = 1%) cannot be well approximated by
the classical theory, and they proposed a new model with
a recovery period adjacent to the existing spots. Recently,
Kreilos et al. [18] reported that the concentrated breakdown
hypothesis cannot accurately reproduce their bypass transition
data (Tu = 3%–4%) obtained through the direct numerical
simulations.

Other examples of transitions that do not follow the clas-
sical theory are the K- and H-type transitions [24–26]. In the
K- and H-type transitions, the �-shaped vortices are formed
periodically in an aligned and staggered manner, respectively,
after the exponential growth of the TS waves. Thus, the
breakdown occurs in a regular pattern since the turbulent spots
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are evolved from the regularly spaced � vortices. A sketch
of the K-type regular breakdown is shown in Fig. 1(c). Note
that all the spots are aligned. With this observation, Vinod
and Govindarajan [14,15] argued that the spot birth might not
be completely random in time and uniformly distributed in
the spanwise direction. They found that the regular pattern
is more likely to occur in a flow dominated by a strong
instability mode like the highly decelerating flow, otherwise
the breakdown is probably a mixture of the regular and the
stochastic pattern. It should be noted that the theory of Vinod
and Govindarajan [14,15] is still based on the assumption that
the spot formation is concentrated at a preferred streamwise
location.

Aside from the intermittency factor, Vinod and Govindara-
jan [14] proposed the other two macroscopic parameters to
characterize the pattern of breakdown, i.e., the burst rate and
the laminar persistence time. At a given location, the burst
rate (B) is defined as the number of switchovers from laminar
to turbulent flow per unit time, and the laminar persistence
time (LPT) is the duration of the laminar flow between the
successive switchovers. The differences between the regular
breakdown and the stochastic breakdown can be observed
more easily with these statistics.

As will be shown later, the present experimental results
are significantly different from the prediction based on the
hypothesis of concentrated breakdown, and the theory of
regular breakdown does not work either. Therefore, we in-
troduce a new pattern, the distributed breakdown, as shown
in Fig. 1(d). The distributed breakdown is such a pattern that
the generation of the turbulent spots is scattered in the entire
breakdown region rather than a preferred streamwise location.
For simplicity, we assume that the spot generation process
consists of multiple Poisson processes. At each streamwise
location, the random spot generation is an independent Pois-
son process in time and uniformly distributed in spanwise
direction. As shown in Fig. 1(d), a distinct difference between
the distributed and the concentrated breakdown is that the
small newly generated spots can be found far downstream
since these spots are not formed at the transition starting
location.

III. WIND-TUNNEL EXPERIMENTS

The present experiments are performed in the closed-
circuit wind tunnel at Beihang University [27]. The tunnel has
a nozzle with the contraction ratio of 9:1 and a test section of
2.5 meters long with a square cross section of 1 m × 1 m. The
tunnel can be operated at the inflow velocity of 0–80 m/s and
the variation of the free-stream velocity is kept within ±1%.
In present experiments, the inlet free-stream velocity (U∞) is
first carefully adjusted to obtain a reasonably long breakdown
region, and finally fixed at about 4.5 m/s. The free-stream
turbulence intensity (Tu) is less than 0.5%, which is lower
than the typical level (Tu > 2%) for the bypass transition. The
power spectrum of the free-stream velocity signal measured at
300 mm above the leading edge of the flat plate is shown in
Fig. 2. Two peaks at 1.6 and 2.3 Hz are observed due to the
low-frequency unsteadiness of the wind tunnel.

A finely polished aluminium flat plate (1 m wide) with
an asymmetric leading edge is installed horizontally at the

FIG. 2. Power spectrum (PSD) of the velocity signal measured
in free stream at x = 0 mm, y = 300 mm.

center of the wind tunnel for the boundary-layer transition
experiments. The plate is inclined to a small negative angle of
attack to eliminate the potential leading-edge separation and a
mild favorable pressure gradient is attained with the Falkner-
Skan acceleration parameter m = (x/U∞)/(dU∞/dx) = 0.5
(the mean velocity profile could be found in Ref. [8]). A
two-dimensional low-profile step with a rectangular cross
section of 2.4 mm × 25 mm is placed on the flat plate at x =
150 mm from the leading edge to trigger the laminar-turbulent
transition, as shown in Fig. 3. The Reynolds number based
on the step height and the free-stream velocity (Reh) is 739,
and the ratio of the step height and the local boundary-layer
thickness (h/δ99) is about 0.68.

The measurements are carried out at 10 equally spaced
stations from x = 550 mm to 1000 mm in the streamwise
direction to cover the breakdown region. At each station,
20–35 measurement points are scattered in the wall-normal
direction throughout the boundary layer. For each point, the
streamwise velocity signal is acquired with a DANTEC hot-
wire anemometry system using a miniature boundary-layer
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FIG. 3. Sketch of the wind-tunnel experiments of the step-
induced boundary-layer transition, (a) top view, (b) side view.
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FIG. 4. A snapshot for the cellular-automaton simulation of a
stochastic breakdown. The red areas represent the turbulent spots.

probe (55P15). Each hot-wire signal is digitized at a sampling
rate of 10 kHz in a duration of 60 s.

IV. CELLULAR-AUTOMATON SIMULATIONS

The simulations of the laminar breakdown processes are
performed using a cellular-automaton model proposed by
Vinod and Govindarajan [14]. This model is based on the
observation that the turbulent spots would remain self-similar
and grow in a linear way as propagating toward downstream
[16,22]. It has been shown that, even when the free stream
is accelerated in the breakdown region (just like in present
experimental setup), the spot propagation is hardly affected
[23]. The two-dimensional arrowhead-shaped spots observed
in previous experiments [28] are simplified to be triangular.
Once generated, each spot would continuously evolve until
approaching the end of the simulation region and adjacent
spots would not affect each other even if the spot merger
occurs. Thus, the statistical characteristics of the breakdown
depends only on the pattern of spot generation.

Specifically, the breakdown is considered in a two-
dimensional rectangular region which is discretized into a grid
of Lx × Lz = 200 × 400 points in streamwise and spanwise
directions. On each grid point, the state of the flow is assigned
an integer, either 0 or 1, to represent the flow is laminar or
turbulent. In each time step, the spot moves downstream for
one grid location, and expands for one grid point in both the
streamwise direction and two lateral sides. The different spot
propagation parameter under various flow conditions [14,16]
can be obtained by different aspect ratio of the grid. The
periodic boundary condition is used on the two lateral sides
in the spanwise direction. A snapshot of the simulation for a
stochastic breakdown process is shown in Fig. 4. The turbulent
spots (the red region) are evolving from left to right and finally
merging into the fully turbulent region. In each simulation, the
spot statistics throughout the breakdown region are obtained
over 106 time steps to achieve statistical convergence.

The simulations are focused on various patterns of stochas-
tic breakdown, and the parameters of the simulations are listed
in Table I. For clarity, in naming the simulation cases, C is
short for concentrated breakdown, D is short for distributed
breakdown, and E stands for exponential distribution of the in-
terarrival time in spot generation. The interarrival time refers
to the time interval between the generation of a turbulent spot
and the subsequent generation of another spot. For instance,
D-E-01 refers to the first simulation case of the distributed
breakdown in which the turbulent spot generation process has
an exponential probability distribution of the interarrival time.
A detailed introduction of the simulation setup is as follows.

The first simulation case C-E is carried out to recover
the transition process described in the classical theory of
concentrated breakdown and Poisson process [16], and it is
also used for code validation. Specifically, in case C-E the
spot generation is a single Poisson process concentrated at
X = 1 (the upper case letters X and Z represent the discretized
streamwise and spanwise locations in the simulation region).
The cases D-E-01, D-E-02, and D-E-03 are simulated to
validate our heuristic analysis (will be presented in Sec. V)
about distributed breakdown. Particularly, a laminar-turbulent
transition consisting of multiple independent spot generation
processes at multiple streamwise locations would be referred
as a distributed breakdown, in contrast with the concentrated
breakdown of classical theory. In these simulations of dis-
tributed breakdown, at every streamwise grid location (X =
1, 2, 3, . . .), a Poisson process of spot generation is simulated
independently. The stochastic spot generation location is uni-
formly distributed in a spanwise direction in all the simulation
cases.

By definition, in a Poisson process of spot generation, the
number of the newly generated spots in a certain time interval
is random and follows a Poisson probability distribution as

Pr(k) = e−λ λk

k!
, (1)

where Pr is the probability, k is the number of spots generated
in a certain time interval (k = 0, 1, 2, . . .), and λ is the mean
and variance of spot number k. This definition is difficult to
be used directly in the simulation. Equivalently, the Poisson
process of spot generation can be interpreted as the interarrival
time (�t) following an exponential probability distribution as

Pr(�t ) = 1

β
e−�t/β, (2)

where β is the mean and the standard deviation of the inter-
arrival time �t . The average spot generation rate is inversely
proportional to β, and the progress of breakdown is controlled
by β in the simulations as shown in Table I. Specifically, β in
case D-E-01 equals to 500 at every streamwise grid location
but it is written as β = 500/X 0 to emphasize the nature of dis-
tributed breakdown. It should be noted that in the distributed
breakdown, there are multiple spot generation processes, i.e.,
at each streamwise location, there is an independent Poisson
process. Thus, we need to prescribe the parameter (β) for
each Poisson process at each streamwise location. In case C-E,
there is only one Poisson process and the spot generation rate
is zero everywhere except the streamwise grid location X = 1.
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TABLE I. Cellular-automaton simulation setup and parameters.

Simulation case Interarrival time distribution Parameter Streamwise region of spot generation (X ) Type of breakdown

C-E Exponential β = 15 1 Concentrated
D-E-01 Exponential β = 500/X 0 [1,200] Distributed
D-E-02 Exponential β = 20000/X 1 [1,200] Distributed
D-E-03 Exponential β = 300000/X 1.62 [1,200] Distributed

The exponential probability distribution (β = 15) is plot-
ted in Fig. 5 in comparison with a Poisson probability dis-
tribution (λ = 15) and a Gaussian distribution (mean μ =
15 and variance σ 2 = 15). In simulations, we used discrete
approximations to the exponential and Gaussian distributions.
It should be noted that a Poisson distribution for the inter-
arrival time is different from a Poisson process for the spot
generation.

V. EXPERIMENTAL RESULTS

A. Turbulent spot identification

The characteristics of the velocity signals changes a lot
during the transition process because of the generation and
propagation of turbulent spots, as shown in Fig. 6. Near the
starting position of the transition (x = 550 mm), only sporadic
high-frequency spikelike fluctuations can be observed, which
is usually interpreted as the generation of coherent vortices
resulting from the nonlinear evolution of instability waves
[2,29]. At down-stream stations (x = 650 and 750 mm), these
strong coherent motions persist for longer time, and appear
more frequently but still intermittently. Approaching to the
end (x = 850 and 950 mm), the quiescent laminar flow gradu-
ally disappears until the whole signal is occupied by the strong
turbulent fluctuations due to the propagation and merger of
turbulent spots. As shown in Fig. 4, the spots are usually small
and distant from each other in the early stage of transition,
but become large enough in the late stage so that spot merger
would be inevitable.

FIG. 5. Typical exponential, Poisson and Gaussian distribution
for the interarrival time of turbulent spots in various patterns of
breakdown.

To obtain the statistical properties of the breakdown pat-
tern, the turbulent spots should be identified from the velocity
signals first. A typical technique for turbulent spot identifi-
cation is based on the instantaneous time derivatives of the
velocity [30]. The accuracy of the turbulent spot identification
can be evaluated from the probability distribution of the
velocity derivatives [31].

The method used herein is adopted from Volino, Schultz,
and Pratt [32], which has been proved to be effective and
accurate for boundary-layer flows [8,32]. Generally, when
the first- or second-order time derivative of the velocity is
above a certain threshold, the instantaneous flow is identified
as turbulent, and the intermittency function 	(t ) is set to 1,
otherwise the flow is laminar and 	(t ) is set to 0. Finally, a
binary sequence of 	(t ) is obtained from the velocity signal

FIG. 6. Typical velocity signals throughout the transition at the
same wall normal distance (y ≈ 1 mm) and different streamwise
stations (from top to bottom: x = 550, 650, 750, 850, and 950 mm).
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which would be used in the following discussion about the
pattern of breakdown.

The detailed procedure is as follows. First, the time series
of velocity is high-pass filtered before the time derivatives
are calculated. Generally, the high-pass filter eliminates the
low-frequency fluctuations especially in the laminar flow. The
large-scale structures (the low-frequency fluctuations) exist in
both the laminar and turbulent flow, while the intensive small-
scale coherent motions (the high-frequency fluctuations) only
pertain to the turbulent flow. The high-pass filtered velocity
signal uhp(t ) is obtained by

uhp(t ) =
∫

û( f )e2π i f t H ( f − fhp)df , (3)

where f is frequency in Hz, fhp is the high-pass cutoff
frequency in Hz given by

fhp = CfhpU∞, (4)

where the free-stream velocity U∞ is in m/s and the coeffi-
cient Cfhp = 120 (1/m). H ( f ) is the Heaviside step function
as the sharp spectral filter [33], which is defined by

H ( f ) =
{

1,

0,

if f � 0
if f < 0 (5)

û( f ) is the coefficient for each Fourier mode obtained by

û( f ) =
∫

u(t )e−2π i f t dt . (6)

Since the filtered instantaneous velocity would cross the
average line in both the laminar and turbulent zones, taking a
time derivative is necessary. A first intermittency function is
determined by

	1u(t ) =
{

1,

0,

if |∂uhp/∂t | > C	1uUmU∞
otherwise (7)

where the coefficient C	1u = 8.89 (1/m), and Um is obtained
with 〈u′2〉 and 〈u′3〉 (the second- and third-order central mo-
ments of the unfiltered velocity signal), by

Um = 〈u〉 + 2〈u′3〉1/3 − 〈u′2〉1/2 (8)

when 2〈u′3〉1/3
> 〈u′2〉1/2, otherwise, Um = 〈u〉. Um is added

to compensate the decreasing fluctuation intensity in turbulent
flow close to the wall, and it is used instead of 〈u〉 in order to
prevent the threshold to decrease so quickly that 	1u(t ) goes
directly to 1.

Even if the high-frequency turbulent fluctuations are inten-
sive, the first-order time derivative of the velocity might be
close to 0 in the turbulent flow. Then, the second-order time
derivative is also used to improve the accuracy in identifying
the turbulent motions. Thus, the second intermittency function
is determined by

	2u(t ) =
{

1,

0,

if
∣∣∂2uhp/∂t2

∣∣ > threshold
otherwise.

(9)

Here, the threshold is selected automatically such that

〈	1u(t )〉 = 〈	2u(t )〉. (10)

The third intermittency function 	3u is set to 1 when either
	1u = 1 or 	2u = 1, and set to 0 when both 	1u and 	2u are 0.

FIG. 7. Example of the laminar-turbulent separation procedure
for intermittent velocity signal measured at x = 750 mm, y =
1.6 mm. From top to bottom: the original velocity signal (u), the
high-pass filtered velocity signal (uhp), and the binary intermittency
function (	).

Then, to eliminate the false turbulent points in the non-
turbulent flow, 	3u,lp is obtained by low-pass filtering from
	3u as

	3u,lp(t ) =
∫

	̂3u( f )e2π i f t [1 − H ( f − flp)]df , (11)

where flp is the low-pass cutoff frequency in Hz, and it is given
by

flp = CflpU∞, (12)

where the coefficient Cflp = 17.78 (1/m) and 	̂3u( f ) is the
coefficient for each Fourier mode obtained by

	̂3u( f ) =
∫

	3u(t )e−2π i f t dt . (13)

The final intermittency function 	(t ) is obtained by

	(t )=1

2

(
	3u,lp(t ) − 0.5

|	3u,lp(t ) − 0.5|+1

)
. (14)

By definition, 	(t ) can only be either 1 or 0 when 	3u,lp(t ) >

0.5 or not. All the parameters in the above procedure are
suggested by Volino, Schultz, and Pratt [32], and proved to
be proper for present experimental data.

The above procedure is applied to all the velocity sig-
nals measured in the breakdown region. As a typical result,
the velocity signal measured at x = 750 mm, y = 1.6 mm is
shown in Fig. 7 together with the corresponding high-pass
filtered signal and the binary sequence of the intermittency
function. The high-frequency turbulent fluctuations have been
accurately identified.

B. Binary sequence statistics

As one of the key quantities in the characterization of
the transition, the intermittency factor γ is defined as the
probability for the flow to be turbulent at a certain location,
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FIG. 8. Wall-normal and streamwise distributions of the exper-
imental results of the intermittency factor (γ ) in the breakdown
region. The region between y/δ∗ = 0.5 and 3 is marked by the
vertical dashed lines.

and it can be estimated from the binary intermittency function
by

γ=〈	(t )〉. (15)

The distribution of the experimental results of γ is shown
in Fig. 8. In the streamwise direction, the maximum γ at each
station increases from about 0 to approximately 1 as the flow
develops from x = 550 mm to 1000 mm, which indicates the
flow is gradually turning from laminar to turbulent. In the
wall-normal direction, γ close to the wall is basically un-
changed, but drops quickly at the outer edge of the boundary
layer due to the interface of the near-wall turbulence and the
laminar free stream. At the location very close to the wall, the
intermittency statistics is affected by the rapidly decreasing
mean velocity [32]. Theoretically, the intermittency factor
should be the same inside the boundary layer, so the ensemble
statistics is considered with the results between y/δ∗ = 0.5
and 3 (δ∗ = √

νx/U∞ is the characteristic length scale for
laminar boundary layer, where ν is the kinetic viscosity of
air).

In the classical theory, the growth curve of the intermit-
tency factor is believed to have a universal form [16], i.e.,

γ = 1 − exp(−0.412ξ 2), (16)

where ξ is the normalized streamwise location defined by

ξ = (x − xs)/(x0.75 − x0.25), (17)

where xs is the nominal starting position of the transition (x >

xs), x0.75 and x0.25 are the location where γ = 0.75 and 0.25.
The ensemble-averaged experimental results of the inter-

mittency factor are fitted with this universal distribution, and
shown in Fig. 9. The fitting result is generally good. Similar
process is applied to the simulation result of the stochastic
concentrated breakdown (case C-E). As shown in Fig. 9,
excellent agreement between the simulation results and the
universal distribution is observed. It should be noted that,

FIG. 9. Ensemble statistics of experimental results (black
squares) of the intermittency factor (γ ) in comparison with the
prediction of classical theory (solid line) and the simulation results
of case C-E (red circles) in the breakdown region. The corresponding
distribution of F is shown in the inset. Error bars indicate standard
deviation from the ensemble average.

unlike the simulation results, xs and x0.75 − x0.25 cannot be
accurately obtained from the experimental data.

The distribution of γ can be further examined by the
parameter F [14,16] defined as

F =
√

− ln(1 − γ ). (18)

If the data follow the universal intermittency distribution,
then F would be a linear function of ξ . Vinod and Govin-
darajan [14,15] argued that the spot merger in the late stage
of transition would lead to nonlinear growth of F due to
the additional regular pattern of spot generation. The regular
pattern refers to the orderly arranged turbulent spots which
are generated periodically, just like those in K- or H-type
transition simulated by Sayadi, Hamman, and Moin [34].

F = 0.642ξ is obtained directly from the universal distri-
bution in classical theory [i.e., Eq. (16)], and as shown in
the inset of Fig. 9, the experimental result of F is generally
close to this straight line. As for the simulation result of case
C-E, excellent agreement with the classical theory is obtained
again.

Here, it should be mentioned that since F is derived from
γ , then the uncertainty of F can be estimated by

δF = dF

dγ
δγ , (19)

where
dF

dγ
= 1

2F

1

1 − γ
. (20)

As γ approaches 1, dF/dγ → ∞, so that the uncertainty of
F would increase quickly when the transition is close to the
end, which is consistent with the increasing error bars of F
in the inset of Fig. 9. It means that the ensemble average
of F observed from experimental data should be used more
carefully.

023110-7



ZHANG, LIU, GUO, WAN, WANG, AND CHEN PHYSICAL REVIEW E 100, 023110 (2019)

FIG. 10. Wall-normal and streamwise distributions of the exper-
imental results of the burst rate (B) in the breakdown region. The
region between y/δ∗ = 0.5 and 3 is marked by the vertical dashed
lines.

Another easily measurable quantity in the transition pro-
cess is the burst rate (B), which is estimated as the number of
switchovers from 0 to 1 per unit time in the binary sequence
of the intermittency function 	. The distribution of B in the
wall-normal and streamwise directions is shown in Fig. 10.
Just like the intermittency factor in Fig. 8, the burst rate
would remain almost constant inside the boundary layer, but
change significantly at the outer edge of the boundary layer, so
similarly the ensemble statistics is considered within y/δ∗ =
[0.5, 3].

In the classical theory of the stochastic concentrated break-
down, the burst rate is found to be proportional to (1 −
γ )

√− ln(1 − γ ) [14,17]. The ensemble statistics of the ex-
perimental results of the normalized burst rate B/Bmax (Bmax

is the maximum burst rate in the breakdown region) are
shown in Fig. 11, and significant deviation from the classi-
cal theory is observed. Specifically, the burst rate obtained
from experiments is lower than the prediction of 2.33(1 −
γ )

√− ln(1 − γ ) when γ < 0.5 but becomes larger than the
prediction when γ > 0.5. (The coefficient 2.33 is added to
make the peak value of the curve to be 1.) It is noted that the
experimental results can be well fitted by a quadratic function
3.8γ (1 − 0.96γ ), and it means that the distribution is quite
symmetric. As argued by Vinod and Govindarajan [14,15], the
more regular the breakdown pattern is, the more symmetric
the burst rate distribution with respect to γ = 0.5. This sit-
uation usually occurs when the transition is dominated by a
strong laminar instability mode (e.g., K- or H-type transition).
So it is possible that the breakdown is much regular in present
step-induced transition although the symmetry axis is slightly
different from γ = 0.5.

The burst rate obtained from the simulation case C-E of
the stochastic concentrated breakdown agrees quite well with
the classical theory. It means that some hypothesis used in the
simulation is no longer true in the step-induced transition pro-
cess, and being nonstochastic is just one of the possibilities,
as well as being nonconcentrated or non-Poisson. To identify

FIG. 11. Ensemble statistics of experimental results (black
squares) of the normalized burst rate (B/Bmax) in comparison with
the prediction of classical theory (solid line) and the simulation
results of case C-E (red circles) in the breakdown region. Error
bars indicate standard deviation from the ensemble average. The
quadratic function (dashed line) fitted from the experimental data is
also plotted.

the pattern of breakdown, more details of the transition should
be examined.

If the breakdown occurs in a regular pattern, the binary
sequence of the intermittency function must show some pe-
riodicity, which probably can be detected from the power
spectrum. As shown in Fig. 12, the power spectrums of 	(t ) at
x = 700, 750, and 800 mm, which corresponds to γ = 0.33,
0.51, and 0.67, are obtained from the ensemble statistics in
a similar way with γ and B. A distinct peak at 2.4 Hz can
be observed in the spectrum at all the stations, and no higher
harmonics or subharmonics are detected. It indicates that the

FIG. 12. Power spectrum for the binary sequence of the inter-
mittency function (the data are shifted in the vertical direction for
clarity) obtained from experimental data. Error bars indicate standard
deviation from the ensemble average.
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FIG. 13. Power spectrum for the binary sequence of the inter-
mittency function (the data are shifted in the vertical direction for
clarity) obtained from cellular-automaton simulation of a stochastic
concentrated breakdown process (case C-E).

regular pattern might exist, but it is just a small part of the
breakdown. This 2.4-Hz low-frequency oscillation is probably
related to the 2.3-Hz fluctuation in the free stream because the
boundary layer can become unsteady due to the influence of
the free stream.

To contrast this periodicity, the power spectrums of the
numerical results of case C-E are plotted in Fig. 13. Here, each
time step in the simulation is assumed to be the same with
the sampling interval. As expected, no peaks in the spectrum
can be observed, which is consistent with the setup of the
completely stochastic spot generation.

In a real flow, the randomness in the environment can never
be eliminated, so the 	(t) time series would always be at
least partly stochastic. According to the power spectrum, the
proportion of the regular pattern in the step-induced transition
can be roughly estimated from the burst number in regular
pattern (multiply 2.4 Hz by 60 s which is the length of
the time series) divided by the total burst number in 	(t ).
Then, we can obtain that about 23% of the spots in regular
pattern at x = 700 mm and, similarly, 21% at x = 750 mm
and 22% at x = 800 mm. The true percentage is even lower
considering the possible spot merger. According to the results
of Vinod and Govindarajan [14], if the transition process is
a combination of concentrated regular and stochastic break-
down, the approximately symmetric distribution of B/Bmax

can be obtained when the proportion of the regularly gen-
erated spots is 90%, and considerable deviation from the
symmetric distribution can be found when the percentage
is 50%. The present experimental result is probably lower
than 50%, although the true percentage of regular pattern is
difficult to measure directly since the spanwise distribution
of the regular spot generation is unknown. Thus, it would be
helpful and necessary to examine the regularity in another
way.

As shown by Vinod and Govindarajan [14], the existence of
the regular pattern can also be examined from the probability

FIG. 14. Probability distribution of the laminar persistence time
at three stations x = 700, 750, and 800 mm corresponding to γ =
0.33, 0.51, and 0.68, and the simulation result of case C-E at
γ = 0.33. Error bars indicate standard deviation from the ensemble
average. The data are plotted in log-linear coordinates in the inset.

distribution of the laminar persistence time (LPT). The LPT
is estimated as persistence time between two subsequent
turbulent fragments in the 	(t ) time series. If the concentrated
breakdown process is completely stochastic, an exponential
decay is expected in the distribution of LPT, otherwise large
modulations or flat portions can be observed when the regular
pattern plays an important role.

The probability distributions of LPT (normalized by the
mean value) obtained in the present experiments are shown
in Fig. 14. The probability is first counted at each wall-normal
location and then averaged within y/δ∗ = [0.5, 3.0]. Similar
results are obtained at different stages of the breakdown. Gen-
erally, exponential decay is observed in the most part of the
probability distributions, as shown in the insets with log-linear
coordinates. The slight deviation from the exponential decay
might be attributed to the small amount of regularly generated
spots or the mild imperfection of the laminar-turbulent sepa-
ration technique. No distinct flat portion or large modulations
can be observed in the experimental results. It indicates that
the breakdown is mostly a stochastic process, rather than
dominated by the regular pattern. Since only existence of the
regular pattern would result in the significant variation of the
statistics in the spanwise direction (e.g., the K- or H-type
transition), the exponential decay of the probability distribu-
tion of LPT also indicates that there would be no significant
variation in the spanwise direction of the breakdown region in
a statistical sense.

Since the deviation of the experimental results from the
classical theory cannot be attributed to the regular pattern, it is
necessary to search for other possible explanations based on
stochastic spot generation process.

The probability distribution of LPT obtained from the
simulation case C-E at γ = 0.33 is also plotted in Fig. 14 for
comparison, and exponential decay is observed as expected
by the classical theory. Together with the above results of γ
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FIG. 15. Sketch of the heuristic analysis of the breakdown process. (a) The three-dimensional region projected by the two-dimensional
breakdown region considering time (t) as the vertical axis. As time goes on, the downstream evolution and propagation of the triangular
turbulent spot generated at (x0, z0, t0) forms the three-dimensional influence region. Similarly, any turbulent flow in the upstream dependence
region would pass the point (x0, z0, t0). The red triangle is a cross section at some streamwise location (0 < x < x0) upstream of (x0, z0, t0).
(b), (c) Top and side views of (a), and the straight boundary lines correspond to the linear propagation of the turbulent spots.

and B, the simulation of the concentrated Poisson stochastic
breakdown can accurately reproduce the predictions of the
classical theory of the breakdown process, which verifies the
simulation to be a reliable tool in the following discussion.

VI. HEURISTIC ANALYSIS

In this section, a heuristic analysis of the transition process
is presented from a probabilistic view following the idea of
Emmons [4]. The turbulent spot is assumed to be triangular,
which is consistent with the cellular-automaton simulation.
The propagation of the turbulent spot is considered in a three-
dimensional coordinate system, as shown in Fig. 15, where
the axes in the horizontal plane represent the streamwise and
spanwise positions in the transition zone and the vertical
axis represent the time. As time goes on, the turbulent spot
generated at the point (x0, z0, t0) would propagate downstream
and expand in both the streamwise direction and two lateral
sides, which forms a three-dimensional region influenced by
(x0, z0, t0). It means that if the flow at (x0, z0, t0) is turbulent,
the influence region would all be turbulent. Similarly, there
is a dependence region of (x0, z0, t0) at upstream locations.
If there exists a turbulent spot anywhere in the dependence
region, the flow at (x0, z0, t0) would be turbulent. The proba-
bility of (x0, z0, t0) to be turbulent (the intermittency factor γ )
can be estimated by the following procedure.

For the location x (0 < x < x0, and x = 0 represents the
leading edge of the plate), assume G(x) is the probability that
there is turbulence in the dependence region upstream of x,
so that G(0) = 0 and G(x0) = γ (x0). Then, the probability
that there is turbulence in the vertical cross section at 0 <

x < x0 is ∂G(x)/∂x, as marked by the red triangular region in
Fig. 15. On the other hand, we assume that this probability can
be described by a local integration [1 − G(x)]

∫
S g(x)dz dt ,

where S is the measure of the triangular area in the cross
section, and g(x) is the average spot generation rate per unit
time and per unit streamwise and spanwise space, which is
independent of z and t . [1 − G(x)] is multiplied to ensure that
no spots are generated before x in the dependence region, and
to avoid that one spot is counted more than once. So, we have
an equation

∂G(x)

∂x
= [1 − G(x)]

∫
S

gdz dt (21)

which is equal to

∂ ln[1 − G(x)]

∂x
= −

∫
S

gdz dt . (22)

Since G(0) = 0, we can integrate the above equation on both
sides from x = 0 to x = x0 and obtain the following equation:

ln[1 − G(x0)] = −
∫

V
gdx dz dt, (23)

where V is the entire three-dimensional dependence region of
p(x0, z0, t0). Since G(x0) = γ (x0),

γ (x0) = 1 − exp

(
−

∫
V

gdx dz dt

)
. (24)

Since it is an integration on a three-dimensional space-
time domain, Emmons [4] argued that

∫
V gdx dz dt ∝ x3

0, and
obtained

γ (x0) = 1 − exp
(−A03x3

0

)
, (25)

where A03 is a parameter depending on the spot generation
rate.

Later, the concentrated breakdown hypothesis is proposed
and it is argued that

∫
V gdx dz dt ∝ x2

0 by assuming g(x) is a
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Dirac delta function,

g =
{

gc,

0,

x = xs

x �= xs
(26)

where gc is the average spot generation rate per unit time and
per unit spanwise distance concentrated at xs [16]. So that

γ (x0) = 1 − exp
(−A02x2

0

)
, (27)

where A02 is a coefficient proportional to gc. Note that Eq. (27)
is equivalent to Eq. (16) of classical theory. This intermit-
tency growth curve is assumed to be correct for a flat-plate
boundary-layer flow. For instance, in the axial symmetrical
conical flow, it was derived by Cebeci and Smith [35] that the
intermittency curve is as

γ (x0) = 1 − exp

[
−Acone ln

x0

xs
(x0 − xs)

]
, (28)

where Acone is the spot propagation parameter, xs is the loca-
tion of the start of the transition [21].

Even for the flat-plate boundary-layer flow, it is found that
the distribution given by Eq. (27) is not always that accurate.
For instance, Johnson and Fashifar [17] noticed that Eq. (25)
is better to fit their experimental data than Eq. (27). Recently,
Kreilos et al. [18] also reported that Eq. (27) cannot accurately
reproduce the intermittency distributions in their simulation
results of the bypass transition under various high free-stream
turbulence level.

Without losing generality, for present flat-plate boundary
layer we assume that there is a starting location xs (0 < xs <

x0) where no spots are generated upstream of xs, and there
exists the spot generation rate g which satisfies the following
relation: ∫

V
gdx dz dt ∝ (x0 − xs)n. (29)

So, the intermittency distribution can be transformed into the
form

γ (x0) = 1 − exp(−Anξ
n) (30)

by introducing the normalized streamwise location ξ [defined
by Eq. (17)] and

An = {[− ln (1 − 0.75)]
1
n − [− ln (1 − 0.25)]

1
n }n. (31)

This equation can be derived based on the definition of x0.25

and x0.75. Specifically, A2 = 0.41095, A3 = 0.09412, A4 =
0.01548, and A4.62 = 0.00463.

As for the parameter F , if we continue to use the definition
F = √− ln(1 − γ ), then

F = (Anξ
n)1/2. (32)

So, F would be a linear function of ξ only when n = 2, which
recovers the result in the classical theory.

Since the spot propagation parameter is almost unchanged
in the breakdown process [14,16,22], the growth of the inter-
mittency factor can be taken as the overall effect of the growth
of each individual spot, hence the following relation can be
obtained:

dγ /dx ∝ B, (33)

FIG. 16. Experimental results of the burst rate (black squares)
in comparison with the distribution in various breakdown scenarios
predicted by the heuristic analysis (normalized by the maximum
burst rate) B ∝ [− ln (1 − γ )]

n−1
n (1 − γ ) with various n (red lines).

and further we can obtain

B ∝ [− ln (1 − γ )]
n−1

n (1 − γ ). (34)

Obviously, the distribution of the burst rate depends on g(x)
and n.

As shown in Fig. 16, the experimental results can be well
fitted using Eq. (34) with n = 4.62. As n increases from 2 to
4.62, the maximum value of the normalized burst rate would
be obtained at larger γ , and as a result, the distribution of the
burst rate becomes more and more symmetric. The growth
curve of the intermittency factor with various n are plotted
versus x instead of ξ to compare with the experimental results,
as shown in Fig. 17. Since the transition starting location (xs)

FIG. 17. Experimental results of the intermittency factor (black
squares) fitted with the distribution in various breakdown scenar-
ios predicted by the heuristic analysis: γ = 1 − exp{−An[(x − xs )/
(x0.75 − x0.25)]n} with various n (red lines).
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and the length scale of the transition region (x0.75 − x0.25)
are unknown, they are adjusted to achieve the best fitting
result. All the curves are very close and acceptable to fit
the experimental data. It indicates that the distribution of the
intermittency factor is not as sensitive as the burst rate to the
parameter n.

The pattern of breakdown can be interpreted from the
fitting results as follows. Rewrite the left side of Eq. (29) as

∫
V

gdx dz dt =
∫ x0

xs

g(x)S(x)dx. (35)

Assume that g(x) ∝ (x − xs)m, and considering that S(x) ∝
(x − xs)2, then

∫
V gdx dy dt ∝ (x0 − xs)m+3, hence, n = m +

3. So with n = 4.62, we have g(x) ∝ (x − xs)1.62. The aver-
age interarrival time in spot generation would decrease as
1/(x − xs)1.62 throughout the breakdown region. Thus, the
present step-induced transition is identified to be not concen-
trated, but a distributed breakdown. The pattern of distributed
breakdown probably indicates that this is a bypass transi-
tion, which is different from the understanding in existing
studies about the step-induced transition. The reason is as
follows.

According to previous studies on the mechanism of the
bypass transition [36], the turbulent spots would be generated
due to the secondary instability of the boundary-layer streaks
[37]. Due to the free-stream low-frequency fluctuations, the
streaks are generated by boundary-layer disturbances in
the form of streamwise vortices via the lift-up effect [38]. The
high-frequency fluctuations cannot penetrate deep enough
to perturb the flow inside the boundary layer due to the
shear-sheltering effect [39,40], but the interaction of the high-
frequency fluctuation with the streaks at the outer edge of the
boundary layer can trigger the secondary instability and lead
to the generation of turbulent spots [41,42].

Since the streak breakdown is random in both time and
space [43], the spot generation in a bypass transition is not
concentrated but distributed. The possibly existing regular
pattern might be related to a discrete instability mode gen-
erated in the flow around the step, and the interaction of the
discrete and continuous modes could also trigger the bypass
transition even if neither mode alone is sufficiently strong
[44,45]. Another possible reason for the bypass transition
could be that the boundary-layer receptivity to the free-stream
disturbances is enhanced by the step. Note that the free-
stream turbulence level in the present experimental setup
is not high enough to induce a typical bypass transition in
the flat-plate boundary layer. As mentioned by Rizzetta and
Visbal [5], the step might have two effects on the boundary
layer, one is to enhance the receptivity and the other is to
generate discrete instability modes. Most existing research is
focusing on the latter, but the results in this paper provide
experimental evidences that the former one might also be
important.

Previous studies also can provide the evidence that the
distributed breakdown is related to the bypass transition. For
instance, Kreilos et al. [18] found that the growth curves of
the intermittency factor in bypass transition (Tu = 3%–4%)
cannot be reproduced by the classical theory with concen-
trated breakdown hypothesis. Another example can be found

FIG. 18. Comparison of the growth curves of the intermittency
factor (γ ) predicted by the heuristic analysis [red lines, γ = 1 −
exp(−Anξ

n), n = 3, 4, 4.62] and the statistical results of the numeri-
cal simulations of the distributed breakdown (open symbols: D-E-01
square, D-E-02 circle, D-E-03 triangular). The distribution of γ in
classical theory [γ = 1 − exp(−A2ξ

2), dashed-dotted-dotted line] is
also plotted as a reference.

in the experimental results of Johnson and Fashifar [17], and
they proposed a new model which turns out to be a pattern of
distributed breakdown discussed above.

VII. SIMULATION RESULTS

In this section, we present the numerical simulation results
to validate the heuristic analysis. In cases D-E-01, D-E-02,
and D-E-03, the distribution of the average spot generation
rate is set according to the observation of g(x) ∝ (x − xs)m,
where m = 0, 1, and 1.62. The spot generation is assumed
to be an independent Poisson process at every streamwise
grid location. The average interarrival time (β) is inversely
proportional to the average spot generation rate, and the
distribution of β is chosen based on numerical tests to find a
proper length of the breakdown region. If the above analysis is
correct, the simulation results of D-E-01, D-E-02, and D-E-03
should be consistent with the predictions of Eqs. (30), (32),
and (34), in which n = 3, 4, and 4.62.

The growth curves of the intermittency factor obtained
from the statistical results of the distributed breakdown simu-
lations are shown in Fig. 18. Excellent agreement with the pre-
dictions of the heuristic analysis is observed. As n increases,
the deviation of the γ distribution from the prediction of the
classical theory is more and more significant. When n is large,
the growth of γ is greatly suppressed before ξ increases to 1,
and it takes a longer distance for γ to reach 0.1. This result is
reasonable since the spot generation rate would be very low
in the early stage of breakdown for the cases with large n.
Approaching to the end of the breakdown, the growth of γ

is affected by the merger of turbulent spots, which causes the
slowdown of the growth of γ . In the distributed breakdown,
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FIG. 19. Comparison of the distributions of the normalized burst
rate (B/Bmax) predicted by the heuristic analysis (red lines, B ∝
(1 − γ )[− ln(1 − γ )](n−1)/n, n = 3, 4, 4.62) and the statistical re-
sults of the numerical simulations of the distributed breakdown
(open symbols: D-E-01 square, D-E-02 circle, D-E-03 triangular).
The distribution of B/Bmax in classical theory (B/Bmax = 2.33(1 −
γ )[− ln(1 − γ )]1/2, dashed-dotted-dotted line) is also plotted as a
reference.

this situation is changed due to the newly generated turbulent
spot, and that makes γ approach to 1 more quickly.

The burst rate distributions of the distributed breakdown
process obtained from the statistics of the numerical simula-
tion results and the heuristic analysis are shown in Fig. 19,
and excellent agreement is obtained again. Although we have
the relation dγ /dx ∝ B, the derivative of γ cannot be directly
estimated especially from experimental results since the spac-
ing of the measurement stations is too large. The statistical
distribution of the burst rate as a function of γ is more reliable
to identify the pattern of breakdown than the growth curve
of γ as a function of ξ since the calculation of ξ would be
inevitably arbitrary.

All the predictions (γ , F, B) of our heuristic analysis have
been validated by the statistical results of the numerical sim-
ulations, and these results are helpful to confirm the pattern
of breakdown identified in the previous section. In addition,
the probability distributions of the laminar persistence time
(LPT) for distributed breakdown are also examined from the
simulation results. As shown in Fig. 20, exponential decay of
the distributions is observed all three cases at different stages
of breakdown (γ = 0.33, 0.51, 0.68), and this is consistent
with the experimental results shown in Fig. 14. It indicates
that the probability distribution of LPT cannot be used to
distinguish the concentrated and distributed breakdown.

VIII. DISCUSSION

Since the pattern of breakdown depends on the generation
of turbulent spots, the effects of the spatial and temporal char-
acteristics of the spot generation on the breakdown statistics
are further discussed in this section.

FIG. 20. Statistical results of the probability distribution of the
normalized laminar persistence time (LPT/LPTmean) at different
stages of breakdown (γ = 0.33, 0.51, 0.68) in the distributed
stochastic breakdown simulations (D-E-01, D-E-02, D-E-03). An
exponential distribution fitted from the simulation results is also
plotted as a reference (red line). The results are plotted in log-linear
coordinates in the inset.

A. Quasiconcentrated breakdown

The concentrated and distributed breakdown are different
in the streamwise region of spot generation. In a real tran-
sition process, the generation of turbulent spots cannot be
concentrated precisely at the same streamwise location. In
the following discussion, the breakdown will be referred as
quasiconcentrated (QC for short) if the spots are generated in
a single Poisson process and in a streamwise region of finite
size. Will the statistics of the quasiconcentrated breakdown
become close to a distributed breakdown? To answer this
question, further simulations are performed and the param-
eters are shown in Table II. The average spot generation
rate is the same in these cases, but the streamwise length of
the spot generation region is gradually increased from case
QC-E-01 to case QC-E-04. Specifically, the spot generation
region is as long as half of the whole simulation region in case
QC-E-04.

The statistical results of the intermittency factor are shown
in Fig. 21 in comparison with the prediction of the classical
theory. Generally, the growth curves of γ are coincident
with the classical theory [γ = 1 − exp(−A2ξ

2)] except for
some slight deviation at ξ < 0.5. It means that the quasi-
concentrated breakdown is significantly different from the
distributed breakdown. Note that the nominal starting location
of breakdown (xs) is set to be negative to obtain the best
fitting result. It is shown more clearly in the inset figure
that the deviation is reduced as the streamwise length of the
spot generation region decreases, and it indicates that the
concentrated breakdown hypothesis in the classical theory
would be a good approximation. Similar conclusion can be
obtained from the results of the parameter F and the burst
rate, and those results are not shown for simplicity.

023110-13



ZHANG, LIU, GUO, WAN, WANG, AND CHEN PHYSICAL REVIEW E 100, 023110 (2019)

TABLE II. Setup and parameters for the simulations of quasiconcentrated and non-Poisson-process breakdown.

Simulation case Interarrival time distribution Parameter Streamwise region of spot generation (X ) Type of breakdown

QC-E-01 Exponential β=15 [1,10] Quasiconcentrated
QC-E-02 Exponential β=15 [1,20] Quasiconcentrated
QC-E-03 Exponential β=15 [1,50] Quasiconcentrated
QC-E-04 Exponential β=15 [1,100] Quasiconcentrated
C-G Gaussian μ = σ 2 = 15 1 Concentrated
D-G Gaussian μ = σ 2 = 300000/X 1.62 [1,200] Distributed

B. Beyond Poisson process

In a previous discussion it is assumed that the spot gener-
ation is a Poisson process. However, this hypothesis has not
been used explicitly in the heuristic analysis. Will the spot
generation of non-Poisson process lead to a much different
statistical result? To answer this question, another two sim-
ulations of the concentrated and distributed breakdown (C-G
and D-G) are performed. In these two cases, the interarrival
time of spot generation is set to have a Gaussian probability
distribution, and the setup and parameters can be found in
Table II. Specifically, in cases C-G and D-G, the spot gen-
eration rate is set to be the same with that in cases C-E and
D-E-03, respectively, so the predictions of the classical theory
and the heuristic analysis are expected if the non-Poisson
process has no influence.

The statistical results obtained from the non-Poisson-
process simulations are shown in Fig. 22. The results of the
concentrated breakdown (C-G) deviate a lot from the classical
theory, and this deviation should be attributed to the different
scenarios in spot merger. As shown in Fig. 5, the probability
of the exponential distribution for Poisson process is larger
than that of the Gaussian distribution for very small and very
large interarrival time. It means that the spots generated from

FIG. 21. The statistical results of the intermittency factor (γ ,
open symbols) as a function of ξ obtained from the quasiconcentrated
breakdown simulations (QC-E-01, QC-E-02, QC-E-03, QC-E-04).
The prediction of the classical theory (red line) is also plotted for
comparison. The region in the lower left corner is plotted in the inset
for clarity.

Poisson process would be more probable to be very close
to each other, as well as very far from each other. If the
spots are very close in space, spot merger would be easy in
the early stage of breakdown, and the intermittency factor
would correspond to a larger burst number. If the spots are
very distant in space, spot merger would be difficult even
in the late stage of breakdown, and the intermittency factor
would correspond to a smaller burst number. This is consistent
with the observation that the burst rate prediction of classical
theory (Poisson process) is larger than the C-G simulation at
ξ < 0.4, but smaller at ξ > 0.4, as shown in Fig. 22.

It is also interesting to observe that the burst rate dis-
tribution of the distributed breakdown (D-G) agrees quite
well with the heuristic analysis prediction. It indicates the
spot merger is mostly affected by the newly generated spots.
More importantly for the experimental results, the transition is
identified to be a distributed breakdown no matter if the spot
generation is a Poisson process or not.

IX. SUMMARY AND CONCLUSION

In this paper, the pattern of breakdown in the step-induced
transition is investigated based on binary sequence statistics
and the cellular-automaton simulations. The main findings are
as follows.

FIG. 22. Statistical results of the normalized burst rate (B/Bmax)
obtained in the simulation of non-Poisson process of concentrated
(squares) and distributed (circles) breakdown. The predictions of the
classical theory (dashed-dotted-dotted line) and the heuristic analysis
(solid line) are also plotted for comparison.
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First, it is found that the statistics of the burst rate signifi-
cantly deviate from the classical theory of concentrated break-
down hypothesis. It is also shown that this deviation cannot be
attributed to the regular pattern of spot generation based on the
analysis of power spectrum and laminar persistence time.

Second, a heuristic analysis of the breakdown process is
performed from a probabilistic view, and it identifies that the
present step-induced transition has a pattern of distributed
breakdown. This pattern is probably related to the bypass
transition, which is different from the current understanding
about the step-induced transition. The possible reason for the
bypass transition is attributed to the discrete and continuous
modes interaction, or the boundary-layer receptivity to the
free-stream turbulence enhanced by the step. The heuristic
analysis is validated by the cellular-automaton simulations.

Third, the effects of the quasiconcentration and non-
Poisson process in spot generation on the breakdown statistics
are studied based on the simulation results. It is found that
the statistical results of the quasiconcentrated breakdown can
be well predicted by the classical theory. It indicates that
the pattern of distributed breakdown proposed in this paper

is fundamentally different from the concentrated breakdown
scenarios not only just in the location of spot generation.
Specifically, in a distributed breakdown, multiple turbulent
spots can be independently and simultaneously at various
streamwise locations of the breakdown region, while only a
single one spot generation sequence is considered in the clas-
sical theory of concentrated breakdown. It is also shown that
the results of the non-Poisson process in spot generation can
be accurately reproduced by the heuristic analysis. It indicates
that the non-Poisson process of spot generation would not
hamper the identification of the distributed breakdown.
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