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Molecular simulation of thin liquid films: Thermal fluctuations and instability
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The instability of a thin liquid film on a solid surface is studied both by molecular dynamics simulations (MD)
and a stochastic thin-film equation (STF), which models thermal fluctuations with white noise. A linear stability
analysis of the STF allows us to derive a power spectrum for the surface fluctuations, which is quantitatively
validated against the spectrum observed in MD. Thermal fluctuations are shown to be critical to the dynamics
of nanoscale films. Compared to the classical instability mechanism, which is driven by disjoining pressure,
fluctuations (a) can massively amplify the instability, (b) cause the fluctuation wavelength that is dominant to
evolve in time (a single fastest-growing mode does not exist), and (c) decrease the critical wavelength so that
classically stable films can be ruptured.
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I. INTRODUCTION

The spontaneous rupture and dewetting of thin liquid films
deposited on substrates is of broad engineering interest due
to a myriad of applications in coatings [1,2], lubricants [3],
chemical sensors [4], and microfluidics [5]. Dewetting ex-
periments of polymeric [6–10] and metal films [11] have
revealed three different instability mechanisms [12]: spinodal
dewetting due to undulation growth, thermal nucleation of
random holes, and heterogeneous nucleation around defects.
While the rupture of a film can be influenced by all three
modes simultaneously [13], the breakup of relatively thin
films, where the disjoining pressure is strong, is dominated by
the spinodal dewetting mode [6–9]. In this regime, thermally
excited capillary waves can be amplified by the disjoining
pressure, but in competition with the restoring force of surface
tension, such that only disturbances above a critical wave-
length grow. The presence of unstable modes can be used as
an indication that spinodal dewetting is the primary dewetting
mechanism for a particular liquid film [6,10,11,13].

Thin film flows, though complicated by their free surface,
can usually be described relatively simply by the thin-film
equation (TF), a lubrication approximation to the Navier-
Stokes equations (NS) [14]. Williams and Davis [15] derived
the TF equation by treating the disjoining pressure as a body
force on the film. Later, Oron [16] and Becker [17] obtained
numerical solutions to this equation and found good agree-
ment with experiments for the evolution of dewetting patterns.
A linear stability analysis of the TF equation reveals a fastest
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growing mode and a critical wavelength (perturbations with
a wavelength larger than this value grow) [15]. The critical
wavelength is often used to predict whether a film of a
particular size is stable, and the fastest growing mode is used
to estimate the rupture time and number of holes or drops after
film rupture [6,13].

As the thickness of thin liquid films reaches the nanoscale,
thermal fluctuations may play an important role in the insta-
bility process. In fact, their importance in many kinds of free-
surface flows at small scales has been generally recognized.
For example, Moseler and Landman [18] found a double-cone
rupture profile for nanojets in molecular dynamics (MD) sim-
ulations, in contrast to the long-thread profile predicted by the
classical lubrication equation simplified from NS equations.
It was shown that the deficiency of this lubrication equation
for describing nanojet dynamics can be remedied by adding a
noise term of appropriate strength to the equation [18]. Later,
based on this equation, Eggers found thermal noise leads to a
self-similar profile that describes the most probable breakup
mode and dominates the pinch-off of nanojets [19]. Recently,
Zhao et al. [20] derived a spectrum for growing surface
waves of a nanojet due to the Rayleigh-Plateau instability,
modified by the inclusion of thermal fluctuations, and found
good agreement with MD simulations. Experimentally, Aarts
et al. [21] were able to observe capillary waves driven by
thermal fluctuations by using mixtures that create ultralow in-
terfacial tension. Davidovitch et al. [22] studied the spreading
of drops on solids under the influence of thermal noise and
showed that it increased contact line speeds.

In terms of the thin-film flows studied here, Grün et al. [23]
derived a stochastic variant of the thin film equation (STF)
and their numerical solutions demonstrated that noise can
accelerate the rupture of thin films. In later work, Mecke and
Rauscher [24] derived a spectrum for the capillary waves in
thin-film flows and showed that noise can shift the spectrum
from exhibiting an exponential to a power law decay with
increasing wave numbers for large wave vectors. This find-
ing was later investigated in experiments on the dewetting
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of thin polymer films [25]. However, due to experimental
limitations, a direct comparison between the theoretical and
the experimental spectrum could not be made. Nesic et al. [26]
conducted detailed numerical solutions of the STF equation
and found that thermal fluctuations reduce the number of
formed droplets and lead to larger variability in their size
and spatial distribution. Diez et al. [27] considered the noise
to be spatially correlated and found that, to produce close
agreement between their theoretical spectrum and experimen-
tal data for metal films, different correlation lengths for the
nonwhite noise had to be employed.

So far, experimental studies on the effects of thermal
fluctuations on thin film flows are limited due to the techni-
cal difficulties associated with the spatiotemporal scale. As
such, MD simulations are a natural and convenient tool to
investigate the thin-film problem. Whilst there have been
previous MD studies of thin-film rupture [13,28], they have
concentrated on the nonlinear stage of instability with the aid
of classical theory (no fluctuations).

In this paper, we conduct MD simulations of the rupture of
liquid films on substrates and focus on the influence of thermal
fluctuations on the initiation of instability. MD results are
compared to a power spectrum derived from the STF equation
in order to establish the applicability and usefulness of the
STF at the nanoscale. While MD simulations are molecularly
accurate, their computational intensity is restrictive for sim-
ulating most physical systems. This motivates the study of
the STF, which also incorporates thermal fluctuations, as an
efficient simulation tool for studying the dewetting of liquid
films at the nanoscale.

This paper is organized as follows. In Sec. II, the MD
model of a nanoscale liquid film on a solid surface is in-
troduced. In Sec. III, the stochastic governing equation is
presented and the power spectrum for the surface modes of the
liquid film is derived. The spectra from MD simulations, along
with comparison with the analytical solutions, are shown in
Sec. IV. We conclude our findings in Sec. V.

II. MOLECULAR DYNAMICS SIMULATIONS
OF A THIN LIQUID FILM

Molecular dynamics simulations are used to simulate the
rupture of a liquid film on a substrate. These simulations
are performed in LAMMPS [29]. The domain contains three
phases with the liquid bounded by the vapor above and the
solid below, as shown in Fig. 1(a). The liquid of the film is
argon, simulated with the standard Lennard-Jones (LJ) 12-6
potential:

U (ri j ) = 4εll

[(
σll

ri j

)12

−
(

σll

ri j

)6
]
, (1)

where ll denotes liquid-liquid interactions and i j represents
pairwise particles. For argon, the energy parameter εll , the
length parameter σll , and atomic mass are 1.67 × 10−21 J,
0.34 nm, and 6.63 × 10−26 kg, respectively [30]. The temper-
ature of this system is kept at T = 85 K or T ∗ = 0.7εll/kB

(* henceforth denotes LJ units and kB is the Boltzmann con-
stant). At this temperature, the mass density of liquid argon
is 1.40 × 103 kg/m3 and number density n∗ = 0.83/σ 3

ll [31].

FIG. 1. Snapshots of a section of a thin liquid film on a substrate
simulated in MD; (a) initial configuration, (b) undulation growth, and
(c) rupture. Lx is the film length and h is the film thickness (y is into
the page).

The number density of the vapor phase is 1/400n∗ [31]. As
such, in the continuum model of Sec. III, the vapor is assumed
to be dynamically passive and has no effect on the rupture of
the liquid film. The substrate is platinum with a face centered
cubic (fcc) structure and its 〈100〉 surface in contact with the
liquid. The platinum mass density is 21.45 × 103 kg/m3 with
an atomic mass of 3.24 × 10−25 kg [32]. The solid substrate is
assumed to be rigid, which saves considerable computational
cost. The liquid-solid interactions are also modeled by the
same 12-6 LJ potential with εls = 0.7εll and σls = 0.8σll ,
which creates partial wetting of argon on the substrate. The
cutoff distance, beyond which the intermolecular interactions
are omitted, is chosen as rc

∗ = 5.5σll .
In order to compare with the predictions of a continuum

model, the transport properties of liquid argon are calculated
by simulating the thermal motion of a thick layer of liquid
argon. It is found that the surface tension γ = 1.52 × 10−2

N/m (obtained from the virial expression [31]) and the dy-
namic viscosity μ = 2.44 × 10−4 kg/(ms) (obtained from the
Green-Kubo relation [33]).

The initial dimensions of the liquid film (Lx, Ly, h) in
Fig. 1(a) are chosen so that Lx � Ly, with Lx = 313.90 nm
and Ly = 3.13 nm, making the 3D MD simulations quasi-
2D, which allows us to consider large aspect ratio films
and compare to 2D theories. Three cases with different film
thickness h0 = (a) 1.18 nm, (b) 1.57 nm, and (c) 1.96 nm are
considered. Thus Lx is also much larger than h, enabling the
system to be described by lubrication theory. The lateral size
of the substrate is the same as that of the liquid film and has a
thickness hs = 0.78 nm (composed of five layers of platinum
atoms). The vapor above the liquid film has a thickness of
15.70 nm.

We initialize each MD simulation as follows. First, the
liquid film and vapor are equilibrated separately in periodic
boxes at T ∗ = 0.7εll/kB. The liquid film is then deposited on
the substrate and the vapor on top of the film. After assembly,
the positions and velocities of the liquid and vapor atoms are
updated with a Nosé-Hoover thermostat. Periodic boundary
conditions are applied in the x and y directions of the system,
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while vapor particles are reflected specularly in the z direction
at the top boundary of the system (see Fig. 1).

To obtain the position of the liquid-vapor interface, we first
locate all liquid molecules by calculating the number density
within one sphere radius of each molecule. The threshold
density for defining a liquid molecule is chosen as 0.5n∗ as
the interface molecules have half of their spherical volume in
vapor and half in liquid. Liquid molecules are then subdivided
into columns and the molecules with the highest z coordinate
in each column are found; this defines the liquid-vapor inter-
face. After determining the 2D interface, we average over the
y direction (since these simulations are expected to be quasi-
2D). Thus the final interface is 1D and allows comparison with
the STF equation.

After defining the interface h(x, t ), the undulations δh
are obtained by subtracting the initial thickness h0 from h.
Then we perform a discrete Fourier transform of the data and
average over a number of realizations [70, 50, and 30 times
for cases (a)–(c)] to obtain the spectra presented in Sec. IV.

III. STOCHASTIC THIN-FILM EQUATION

The hydrodynamics of a macroscopic thin liquid film on
a substrate can be captured by the thin-film equation [14]:
a well-known approximation to the NS equations. This ap-
proximation is based on a long-wave assumption, namely,
h/λ � 1, where h/λ is the ratio of the film thickness h to
film characteristic length λ [14]. At the nanoscale, thermal
fluctuations lead to a stochastic stress tensor added to the
NS equations, which is described by Landau-Lifshitz Navier-
Stokes (LLNS) [34] equations. Applying the same lubrication
approximation to LLNS, the one-dimensional stochastic thin-
film equation (STF) can be derived (for details, see [23]):

∂h

∂t
= 1

μ

∂

∂x

[
1

3
h3 ∂

∂x

(
φ − γ

∂2h

∂x2

)]
+ 1

μ

∂

∂x

∫ h

0
(h − z)ψ dz.

(2)

Here, φ is the disjoining pressure and ψ is the random stress
tensor component, which has the form of uncorrelated white
noise, both in time and space. The average of this noise ψ

satisfies 〈ψ〉 = 0 and its covariance is given by

〈ψ (�r, t )ψ (�r′, t ′)〉 = 2μkBT

Ly
δ(�r − �r′)δ(t − t ′), (3)

where μ is dynamic viscosity, δ is the Dirac delta function,
and �r = (x, z). Notably, the noise amplitude differs from the
form usually presented, with a factor 1/Ly reflecting that the
noise is an averaged value in the y direction and our MD
simulations are quasi-2D [22]. The noise term in Eq. (2) is a
stochastic integral, which makes the STF equation complex to
solve. Grün et al. [23] simplified the problem considerably by
proving Eq. (2) is equivalent to a stochastic partial differential
equation

∂h

∂t
= 1

μ

∂

∂x

[
1

3
h3 ∂

∂x

(
φ − γ

∂2h

∂x2

)]
+ 1

μ

∂

∂x

(√
1

3
h3ψ ′

)
,

(4)
where ψ ′ is white noise with zero mean and covariance,

〈ψ ′(x, t )ψ ′(x′, t ′)〉 = 2μkBT

Ly
δ(x − x′)δ(t − t ′). (5)

A. Disjoining pressure

There are many forms of disjoining pressure reported in
literature and different choices of disjoining pressure cause
different flow behavior in a thin film [35,36]. The disjoining
pressure for the system considered here is the classical φ =
A/(6πh3), obtained by integrating the attractive part of 12-6
LJ potential over a semi-infinitely extended substrate (the
repulsive part makes a negligible contribution to the linear
stability growth), where A is the Hamaker constant equal to
the difference between the Hamaker constant of the liquid
film itself and the liquid-solid interactions, i.e., A = All −
Als [28,37]. A simplistic explanation for this form is that a
liquid film will rupture itself due to the attraction of its two
surfaces, but the substrate will hinder this by attracting the
bottom surface of the film. Finally, due to the finite thickness
of the substrate in MD, the disjoining pressure takes the form

φ = All − Als

6πh3
+ Als

6π (h + hs)3 . (6)

This is because the top surface of a liquid film, which is
located at h from a semi-infinite substrate, has the pressure
φ1 = Als/(6πh3) and if located at h + hs away from the
substrate, the pressure is φ2 = Als/[6π (h + hs)3]. Thus the
contribution from a substrate with thickness hs should be
φ1 − φ2. Added to the disjoining pressure of the liquid film
itself, we arrive at Eq. (6). The Hamaker constant All is
4.5 × 10−20 J, from the expression 4π2εllσ

6
llρl

2, and Als is
2.61 × 10−20 J, from the expression 4π2εlsσ

6
lsρlρs (ρl and ρs

are number density of liquid and solid in SI units) [38]. Then,
in the conventional theory, which contains disjoining pressure
but no thermal fluctuations, the critical wavelength and fastest
growing wavelength are λc =

√
−4π2γ /(∂φ/∂h) and λmax =√

−8π2γ /(∂φ/∂h), respectively [15]. For the thickest film
[case (c)], which has the largest critical wavelength and fastest
growing wavelength, λc is evaluated to be 48.33 nm and
λmax = 68.35 nm. Thus the chosen length of the film Lx is
long enough to contain multiple waves of the fastest growing
wavelength for all the cases, and the chosen width of the
film Ly is small enough to suppress any wave growth in the
y direction for all the cases, ensuring the simulations remain
quasi-2D.

B. Spectra of surface waves

To compare the surface waves in our MD simulations with
those of the STF equations, it is convenient to investigate them
in Fourier space. Thus it is natural to derive the spectrum of
the surface waves for the liquid film from the STF equations.
We start by rewriting Eq. (4) and Eq. (5) in terms of uncorre-
lated Gaussian white noise N :

∂h

∂t
= 1

μ

∂

∂x

[
1

3
h3 ∂

∂x

(
φ − γ

∂2h

∂x2

)]

+
√

2kBT

μLy

∂

∂x

(√
1

3
h3N

)
, (7)

where the mean of N is zero and autocovariance

〈N (x, t )N (x′, t ′)〉 = δ(x − x′)δ(t − t ′). (8)
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We linearize Eq. (7) using h = h0 + δh, with the assumption
that δh represents small deviations from the initial film thick-
ness h0 and the noise amplitude is also assumed to be small,
as explained in [24]. By expanding Eq. (7) to first order and
combining with Eq. (6), the linearized STF equation is

∂δh

∂t
= 1

3μ
h3

0
∂

∂x

{
−γ

∂3δh

∂x3
−

[
A

2π

1

h4
0

+ · · ·

+ Als

2π

1

(h0 + hs)4

]
∂δh

∂x

}
+

√
2kBT h3

0

3μLy

∂N

∂x
. (9)

Taking the Fourier transform of Eq. (9) using

δ̂h =
∫ ∞

−∞
δh(x, t )e−iqxdx, (10)

N̂ =
∫ ∞

−∞
N (x, t )e−iqxdx (11)

leads to

∂δ̂h

∂t
= ω(q)δ̂h + i

√
2kBT h3

0

3μLy
qN̂ . (12)

Here ω(q) is the dispersion relation of the deterministic TF
equation:

ω(q) = − γ

3μ
h3

0q4 +
[

A

2π

1

h4
0

+ Als

2π

1

(h0 + hs)4

]
h3

0q2

3μ
. (13)

The solution of Eq. (12) can be represented as the linear
superposition of two contributions

δ̂h = δ̂hdet + δ̂hflu, (14)

where δ̂hflu is the contribution purely caused by thermal
fluctuations and δ̂hdet is the solution to the deterministic part
of Eq. (12), i.e., ∂δ̂h

∂t = ω(q)δ̂h, obtained as below:

δ̂hdet (q, t ) = δ̂h(q, 0)eω(q)t , (15)

where the initial disturbance is δ̂h(q, 0); here this is the
Fourier transform of the liquid surface found in MD simu-
lations at t = 0.

To find the contribution of the fluctuating component to
the spectrum, we determine the impulse response of the linear
system ∂δ̂h

∂t = ω(q)δ̂h through

∂δ̂h

∂t
= ω(q)δ̂h + δ. (16)

Performing a Laplace transform of Eq. (16) using g(q, s) =∫ ∞
0 δ̂h(q, t )e−tsdt with zero initial disturbance δ̂h(q, 0) = 0

gives

g = 1

s − ω(q)
, (17)

so that from the inverse Laplace transform, the impulse re-
sponse is simply

H = δ̂h = eω(q)t . (18)
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FIG. 2. Spectra of MD simulations (dashed lines) and Eq. (23)
(solid lines) at different times for (a) h0 = 1.18 nm (t = 0.086, 0.171,
and 0.428 ns), (b) h0 = 1.57 nm (t = 0.086, 0.257, and 0.852 ns),
and (c) h0 = 1.96 nm (t = 0.086, 0.857, and 3.428 ns). The inset
shows the deterministic spectrum for h0 = 1.18 nm.
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FIG. 3. Dominant wave number as a function of time for (a) h0 = 1.18 nm, (b) h0 = 1.57 nm, and (c) h0 = 1.96 nm. Solid red lines are
from Eq. (23). Triangular symbols are MD data and dashed black lines are from the deterministic spectrum Eq. (15). tr is the film rupture time
when the first dry-spot appears on the solid, averaged over a number of realizations [70, 50, and 30 times for cases (a)–(c)].

Now with thermal fluctuations i
√

2kBT h3
0

3μLy
qN̂ as the input, we

find

δ̂hflu = i

√
2kBT h3

0

3μLy
q

∫ t

0
N̂ (q, t − τ )H (q, τ )dτ. (19)

As δ̂h is both a random and complex variable, the root
mean square (rms) of its norm is sought, which, from Eq. (14),
is given by

|δ̂h|rms =
√

|δ̂hdet + δ̂hflu|2 =
√

|δ̂hdet|2 + |δ̂hflu|2 (20)

(as the average of δ̂hflu is zero), where from Eq. (15)

|δ̂hdet|2 = |δ̂h(q, 0)|2e2ω(q)t , (21)

and from Eq. (19)

|δ̂hflu|2 = 2kBT h3
0q2

3μLy

∣∣∣∣i ∫ t

0
N̂ (q, t − τ )H (q, τ )dτ

∣∣∣∣2

= 2kBT h3
0q2

3μLy

∫ t

0
|N̂ (q, t − τ )|2H (q, τ )2dτ

= 2kBT h3
0q2

3μLy
Lx

∫ t

0
H2dτ = kBT h3

0q2

3μLyω(q)
Lx[e2ω(q)t −1].

(22)

Here we have used |N̂ (q, t )|2 = Lx, due to finite length of the
discrete Fourier transform used in MD simulations. Thus we
derive the spectrum of surface waves of bounded film flow as

S = |δ̂h|rms

=
√

|δ̂h(q, 0)|2e2ω(q)t + kBT h3
0q2

3μω(q)

Lx

Ly
[e2ω(q)t − 1]. (23)

A similar expression for the surface wave spectrum can
be found in Refs. [24,27], but the derivation provided here
is potentially more intuitive. We note that, from capil-
lary wave theory, the average magnitude of each mode
of waves can be determined from equipartition theorem

|δ̂h|2 ∼ kBT
(γ q2−∂2�/∂h2 ) [21,39]. Here � is the interface en-

ergy related with disjoining pressure by φ = −∂�/∂h. For

large wave numbers ω(q) < 0 and, in the long-time limit

t → ∞, Eq. (23) simplifies to |δ̂h|rms =
√

− kBT h3
0q2

3μω(q)
Lx
Ly

=√
kBT

γ q2+∂φ/∂h
Lx
Ly

and thus |δ̂h|2 = kBT
γ q2−∂2�/∂h2

Lx
Ly

, which is con-

sistent with capillary wave theory.

IV. RESULTS AND DISCUSSION

In this section, the surface undulation spectrum obtained
from MD simulations is compared with the analytical spec-
trum derived above.

Figure 1 shows an MD simulation of a flat liquid film [case
(a)], in which perturbations spontaneously grow [Fig. 1(b)]
and subsequently rupture the film [Fig. 1(c)].

Figure 2 shows the rapidly growing amplitude of certain
low wave number disturbances in MD simulations, which
suggests that the rupture of these liquid films is mainly due to
the spinodal instability. Notably, the analytical spectra (solid
red lines in Fig. 2) compare very well with MD simulations.
In Fig. 2(a), the inset shows the deterministic spectrum for
h0 = 1.18 nm. As can be seen, the amplitude of waves in
the deterministic spectrum is far below that of MD results,
showing that conventional models cannot be relied on at such
scales. On the other hand, the stochastic spectrum agrees
well with MD, suggesting thermal fluctuations substantially
amplify the underlying instability and promote the rupture
process.

The deterministic spectrum in the inset of Fig. 2(a) in-
dicates that the dominant wave number qmax (wave number
with peak amplitude) is constant over time, while both MD
simulations and the stochastic spectra show clearly that this
evolves. The dominant mode at different times is extracted
from MD simulations and plotted in Fig. 3 (triangles) along
with values obtained from the stochastic spectrum (solid red
lines) and the deterministic spectrum (dashed black lines).
The results demonstrate that thermal fluctuations induce a
dominant wave number much higher than classical predictions
and that this gradually decreases to the classical result over
time, but in these cases, not before rupture of the film. It is also
interesting to note that, while the stochastic spectra are strictly
only valid in the early linear stages of the rupture process, the
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FIG. 4. Rupture of three short films with their lengths inside
classic critical wavelength λc in MD simulations (a) h0 = 1.18 nm,
(b) h0 = 1.57 nm, and (c) h0 = 1.96 nm.

dominant wave number matches well with MD results even
close to rupture.

Apart from wave amplitude and the dominant wave num-
ber, thermal fluctuations can also affect the critical wave
number below which waves grow. From the classic theory,
the critical wave number (wavelength) for the bounded film

studied here is given by qc =
√

− 1
γ

∂φ

∂h (λc = 2π
qc

) and it is

0.35 × 109 (17.95 nm), 0.2 × 109 (31.41 nm), and 0.13 × 109

(48.33 nm) for cases (a)–(c), respectively. We perform here
MD simulations with a film length considerably smaller (i.e.,
conventionally stable): 13 nm, 24 nm, and 36 nm for cases
(a)–(c), respectively. Interestingly the result in Fig. 4 shows
that a spontaneous rupture still occurs so that the critical
wave number has been significantly altered. To identify wave
numbers which grow in time we consider the critical wave
number q′

c to be defined by dS
dt |q=q′

c
= 0 and find that

q′2
c = qc

2 + kBT

γ

Lx

Ly|δ̂h(q, 0)|2 , (24)

where |δ̂h(q, 0)|2 is the initial condition of the film and
kBT
γ

is the square of thermal length which premultiplies the
new term due to thermal fluctuations. The expression in-
dicates that, as observed in Fig. 4, thermal noise will in-
crease the critical wave number, making liquid films of a
certain thickness more susceptible to rupture by shorter-wave
undulations. The parameters |δ̂h(q, 0)| = 0.0977 × 10−18 m2,

0.1328 × 10−18 m2, and 0.1625 × 10−18 m2 are directly
obtained from MD simulations for cases (a)–(c), respectively,
to find that q′

c = 5.80 × 109 (λ′
c = 1.08 nm), 5.79 × 109

(λ′
c = 1.08 nm), and 5.79 × 109 (λ′

c = 1.08 nm). Therefore,
it is seen that at the nanoscale the critical wave number
can become independent of film height as thermal fluctua-
tions [second term in Eq. (24)] overwhelm the conventional
instability mechanism of disjoining pressure [first term in
Eq. (24)]. Given the consistency between the MD results and
the theoretical analysis, we can have some confidence that
thermal fluctuations have the potential to rupture convention-
ally stable film geometries.

V. CONCLUSIONS

Thermal fluctuations play an important role in different
types of free-surface flow at the nanoscale. In this article,
we investigate their effects on the instability of a thin liquid
film on a substrate using MD simulations as an experimental
probe and, analytically, solving stochastic thin film equation
(STF), to provide a deeper insight into the underlying physics.
While thermal fluctuations are intrinsically captured in MD
simulations, the STF equation models these fluctuations us-
ing an appropriately scaled white noise. To facilitate the
comparison between MD simulations and the STF equation,
we derive a stochastic spectrum of surface waves and show
close agreement between the analytical result and MD. By
comparison with a deterministic (fluctuation-free) result, we
conclude that thermal fluctuations are critical to the nature
of the instability of thin-film flows: they significantly inten-
sify the amplitude of undulations, render the dominant wave
number time dependent, and decrease the critical wavelength.
Thus our work indicates that the consideration of thermal
fluctuations is essential when investigating the behavior of liq-
uid films at the nanoscale. A potentially related phenomenon
occurs in the study of water transport in carbon nanotubes
(CNT), where recent experiments show continuous flowing
water in a channel tends to break up and form a consecutive
void-water structure [40]. The current work reveals the effects
of thermal fluctuations on the initial stages of instability
growth; however, there are also abundant interesting flow
dynamics in the later stages of the process where thermal
fluctuations could play a role. For example, future research
could consider the coarsening dynamics after the film has
ruptured into droplets [41,42].
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