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Defect production by pure phase twist injection as Aharonov-Bohm effect
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In this paper we demonstrate that new phase defects of the Gross-Pitaevskii equation (GPE) can be produced
as a Aharonov-Bohm effect resulting from pure phase twist injection on existing defects. This is a phenomenon
that has physical justification in the hydrodynamic interpretation of GPE. Here we give an analytical proof
of its effects by using Fermi-Walker transport and Biot-Savart induction law. An analytical derivation of the
dispersion relation is derived from the superposition of phase twist on the fundamental state. Since the extra
twist corresponds to a topological change of the total linking number of the system, we show that the production
of new defects is just another manifestation of the Aharonov-Bohm effect. We propose a laboratory experiment
for Bose-Einstein condensates to test this phenomenon and to show that it can have useful applications in science

and technology.

DOI: 10.1103/PhysRevE.100.023107

I. INTRODUCTION

In recent papers Zuccher and Ricca [1,2] examined the ef-
fect of twist superposition on the dynamics and interaction of
phase defects (quantum vortices) under the three-dimensional
(3D) Gross-Pitaevskii equation. Phase twist, defined in terms
of the rotation of the isophase surface of the wave function,
was shown to have physical, measurable effects in terms
of the production of new defects [2], but no rigorous proof
was given. Here we demonstrate analytically that indeed the
superposition of an isophase twist determine the production of
new defects. Spontaneous generation of new defects through
phase twist induction is an interesting, novel phenomenon
that deserves further attention for its potential in theory and
applications. In this paper we provide an analytical proof
and a physical explanation of the direct relationship between
extra twist and production of new defects in Bose-Einstein
condensates (BECs). For this let us consider the 3D Gross-
Pitaevskii equation (GPE) [3,4], given by

Y i vt (gup - 2w 1
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where i = /=1, i = h/2m (h Planck’s constant), m is the
boson’s mass, g the coupling constant, ¥ = W(x, ¢) the com-
plex wave function and x denotes the position vector of a point
in the ambient space and ¢ time. By standard rescaling [5]
the equation above reduces to the nondimensional GPE in
standard form, given by
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for the complex wave function ¥ = V¥ (x, t), assuming back-
ground unit density p = |/|> — 1 as |x|] — oo. In this con-
text defects emerge as singularities of the wave function ¥
(nodal lines). By using the Madelung transformation ¥ =
/P exp(ix), where x (action) denotes the phase of ¥, the real
and imaginary parts of (2) are mapped to a momentum and a
continuity equation of a fluidlike medium of density p and
velocity u = Vx, allowing a macroscopic interpretation of
GPE in terms of standard hydrodynamics [5]. In this context a
phase defect is identified with a vortex line given by a closed
space curve L of total length L and quantized circulation
(per unit of mass) I' = 2zn (n = 1, 2, .. .) that represents the
topological charge of the vortex. Quantization of circulation
arises from the line integration of u = Vx over a simple
loop encircling £ and the multivaluedness of x. Alternatively,
I = 2mrn can be regarded as the strength of a star-type defect
of n wavefronts departing from the singularity line [6]—a case
also well exemplified by the multiarms scroll waves observed
in reaction-diffusion systems of excitable media [7]. Vorticity
w is singular on £, being everywhere zero except on the vortex
line.

Quantum vortices move in space according to Eulerian
dynamics [8] and the relationship between vorticity @ at X* =
X*(s) (s arc-length on £) and induced velocity u at x # X* is
thus governed by the Biot-Savart induction law, given by

ds, 3)

r [ TX* x x-—X*)
T J, |x — X*|

where T(X*) denotes the unit tangent to £ at X*. The integral
above is a global geometric functional of vorticity with effects
on the induced velocity field u. Kinetic helicity, a conserved
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FIG. 1. (a) Initial condition at# = 0 given by a planar vortex ring visualized by the isodensity tubular surface p = 0.1, the arrow indicating
vorticity direction. (b) Twist Tw = 1 is superposed by prescribing a full rotation of an isophase y as shown by the phase contour in the
(v, z) plane. (c) The presence of twist induces an instantaneous production of a new, central defect, here shown at time r = 20 (adapted from

Ref. [2]).

quantity of Euler equations classically defined by

H=| u wdX*, 4)
QU®)

where Q(w) denotes the domain of definition of vorticity, is
by the Noether theorem also conserved in the GPE context.
However, since vorticity is singular, (@) has measure zero
(in distributional sense), so that by definition of circulation
and by Eq. (4) we have

H:F%uw{X*:F%V}(-dX*:O (5)
L L

at all times, a result confirmed by several numerical experi-
ments (see, for example, Refs. [1,9]). As for the classical case,
the helicity of a collection of N distinct vortex lines admits
topological interpretation in terms of linking numbers [10,11],
given by

M=) DLk + Z r2SL;, (6)
i#]

where Lk;; is the (Gauss) linking number between £; and
L;(i#]j,i,j=1,...,N)and SL; the (Cilugdreanu-White)
self-linking of each vortex. As shown by Salman [12] in his
derivation of self-linking from helicity, the decomposition
SL; = Wr; + Tw; in terms of writhe Wr; and twist Tw; of
each vortex, holds true also for quantum defects. Zuccher and
Ricca [1] showed that twist can indeed be identified with the
rotation of the isophase surface around the nodal line. Recent
work [2] has also shown that the superposition of twist on an
existing defect [Fig. 1(a)] has the dramatic effect of producing
a new, secondary phase defect in the system [Fig. 1(c)]. To
elucidate how a localized twist disturbance can generate a new
defect far afield in the system we shall consider the induced
effect of phase twist perturbation on the fundamental state. As
we shall see, the production of new defects by twist induction
can be justified by hydrodynamic reasoning and explained by
purely topological arguments. Since the new phase twist is
a manifestation of a change of topology in the system, the
production of a new defect can thus be interpreted as a result
of a Aharonov-Bohm effect.

II. TWIST DEFINITION AND HYDRODYNAMIC
INTERPRETATION

For a proper definition of twist in the GPE context let us
introduce the mathematical ribbon R(X*, X™) given by the
base curve £ defined by X* and its push-off X on an isophase
x = X = const. Let (r, 6, &) be local cylindrical coordinates
centered on £ with & directed along T, % the isophase defined
by a given value of 8, and X = X*(s) + efl(s); the ribbon
width ¢ is taken small with respect to the typical length scale
of the defect and U(s) is a unit vector normal to the defect
and directed to a neighboring point on j. The ribbon is then
identified by the portion of )} bounded by the defect and its
¢ push-off X*. Total twist is standardly defined by the rate of
rotation of U around £ integrated along the defect line, i.e.,

1 . dU\ .
Tw=— (U X —U> -Tds, @)
r d

21 s

and measures the total rotation of the isophase x around L
(see also Ref. [12]). Twist admits decomposition in terms of
normalized total torsion 7" and intrinsic twist A [10], i.e.,

_ 7§f<s)d+ﬂ_T+N, ®)

where 7(s) is the local torsion of £, [®], the total rotation
angle of U around L, and [®];/27 = N the number of full
rotations. If £ is a straight line of length L, then uniform
twist is given by the uniform rotation of U around £ with
N/L = m/L the number of full rotations per unit length [see
Fig. 2(a)].

The physical effect of twist is made explicit by considering
a stationary, straight defect £ in isolation represented by the
straight ribbon of Fig. 2(a), and the velocity interpretation of
the phase gradient V y = u, decomposed locally in cylindrical
polar components (u,, ug, ug). If the isophase surface x is
not twisted it simply coincides with the coordinate plane 6 =
const, with gradient wy = (I'/27wr)€y given by the classical
rectilinear vortex solution. In this case the family of isophase
surfaces hinged on a straight axis foliate the ambient space by
a fan of 0 planes (forming an “open-book decomposition”),
with streamlines planar circles centered on the straight axis
L and lying on concentric cylinders. When local twist is
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FIG. 2. (a) Uniform twist visualized by the uniform rotation of
the ribbon spanwise unit vector U around the ribbon straight axis.
(b) Frenet frame {’i‘, N,ﬁ} on a base space curve (thick, black
liPe)} (g) parallel transport frame {T, f’, Q}; (d) phase twist frame
{T,U, V}.

different from zero the isophase surfaces are no longer planar,
forming helical surfaces hinged on £, now with a nonzero
axial velocity ug along L.

It has been already observed that an m-phase perturbation
acquired by a wave function of the fundamental state implies
the generation of wavefront dislocations as a Aharonov-Bohm
effect [13]. Hence the superposition of an m phase on an n-star
defect is expected to induce the production of a secondary
singularity of strength m [6]. This is exactly what has been
observed in Ref. [2]. Since the n-star wavefronts are related
to the action of an azimuthal velocity uy around £, similarly
the induced twist due to an m-phase perturbation along L is
associated with an axial velocity u; along the defect; thus,
the n-star wavefronts are led to rotate around the original
defect and, as we shall demonstrate below, this gives rise to a
secondary vortex of strength m (mod 27). The corresponding
additional axial velocity uz changes the momentum from P
to P + ug, with the free part of the GPE Hamiltonian given
(per unit of mass) by Hgee = (V + ug)?/2. This is in analogy
with the Hamiltonian of an electron under the influence of
a magnetic field, where u; plays the role of the magnetic
vector potential A, as in the original Aharonov-Bohm experi-
ment [14].

III. PROOF OF TWIST EFFECTS
AND PRODUCTION OF NEW DEFECT

Here we determine the analytical condition for the pres-
ence of a phase twist and its physical consequence. First, we
need to establish the pointwise condition for having (nonzero)
twist on a nodal line through the ribbon spanwise unit vector
U; second, by identifying a portion of isophase with the
ribbon, we determine the local effect of twist in hydrodynamic
terms; finally, by using topological arguments, we prove how
new topological defects must emerge.

A. Twist condition

Since twist is locally detected by the rotation of 4]
around £, we need to determine the twist condition in full

generality, i.e. in a nonrotating, noninertial frame. This condi-
tion is provided by Fermi-Walker (FW) transport [15,16]. For
a generic triad {T, P, Q} (Q =T x P) on X*, FW-transport of
P is governed by the equation

DewP  dP o . df (f, dT) R

P T. )

Thus [see Fig. 2(¢c)]:

Definition 1 (Zero-twist condition): The unit vector P does
not rotate along L if and only if it is Fermi-Walker-transported
along L, that is,

Dpw P
W2 0, VseX* (10)
Ds

Let us consider the standard Frenet frame {’i‘, N, ﬁ} with N
and B the usual normal and binormal unit vectors to X* [see
Fig. 2(b)] and apply Eq. (9) to the ribbon spanwise unit vector
0. Using Frenet-Serret equations, with ¢ curvature of £, a first
computation gives

DewU  dU PO
Ds = ds c(B x U). (11)
Taking U = cos G(S)N + sin Q(S)ﬁ a second computation
gives the pointwise twist condition for U along L, i.e.,
Dewll _ (o 4008, (12)
Ds
where 6’ = d6/ds and & the azimuthal unit vector around
L. This means that a ribbon is twisted iff U rotates with
rotation rate given by the sum of two contributions, T due to
the rotation of the Frenet-Serret triad with respect to the FW
frame and 6’ given by the rotation of U in the Frenet-Serret
system. The isophase twist is thus determined by the twist
condition (12) on U, made here explicit by the Fermi-Walker
derivative.

Since the rotation of U is also governed by the equation of

rigid body rotation, we have

DwU

Ds
Now locally—in a FW frame—we can identify the ribbon
spanwise unit vector U with the portion of the isophase

surface close to the nodal line, given (in general) by ¢'X: thus,
from (12) and (13) we have

=Q; x U=Q(T x0). (13)

/ dX )
T+0=Q=—=Vy T, (14)
ds

which identifies the rotation rate of the isophase (through
U) with its tangential component along the nodal line. The
velocity field interpretation of the phase twist rate given by
Hinninen et al. (see their Eqs. (14) and (15) in Ref. [17]) is
thus proved by Madelung transform.

B. Twist effects

If twist is superposed by a uniform twist rate of 27wm/L,
then, using (13), we have

Dpwﬁ A A 2mm ~
= (TxU)=—"—¢,. 15
Ds 7 (T xU) 7 G (15)
By equating (12) with (15), we have a relation between local
geometry and uniform twist, i.e., T + 6’ = 2m/L. Moreover,
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FIG. 3. Hydrodynamic interpretation of the phase twist on a
vortex ring. (a) Generation of a secondary, central flow field without
singularity by the action of a pure azimuthal velocity u, on the vortex
ring; (b) generation of a new singularity along the ring axis by the
combined action of an azimuthal and an axial velocity field us and
u; along the ring centreline.

by equating (11) with (15), we can determine the standard
rotation rate of U, given by

% = 2”7’"69 4o x U) = Z”Tmée —ccos0T. (16)
Using the Madelung transform again, we can interpret the
two contributions on the right-hand side above in terms of an
azimuthal flow @iy = (27m/L) &, around the defect line and
an axial flow i = —ccos0 T along the line. This proves the
hydrodynamic consequence of twist.

C. Topological constraint

Now let us turn our attention to the production of new
defects. Proof of this is simply based on topological argu-
ments. The simultaneous presence of the two terms above
for the production of a new defect is a necessary topological
condition. Indeed since the GPE helicity is always zero, by
equating (5) to (6) (and setting circulations equal to 1) we
must have that the sum of all linking numbers must be zero,
too.

In the case of a single vortex ring in isolation exemplified
by Fig. 3(a) we have Lk;; =0 and SL; = Wr; +Tw; =0.
However, if superposition of twist gives Tw; = +1 (with
pure azimuthal flow), since for a plane circle Wr; = 0, then
we have a contradiction with the zero helicity requirement.
Indeed, from (6), we have

H/F:SL1=07éWr1+Tw1=+1

The situation can only be rectified by the presence of a new,
secondary defect (a straight vortex line in the center) with
Wr, = 0and Tw, = +1, so that by (5) and (6) we have

H=0=2Lkpp+Tw +Tws =2(—1)+1+1=0. (17)

It is this topological condition that makes the physical produc-
tion of the new defect a manifestation of the Aharonov-Bohm
effect.

D. Production of new defect by twist induction

As an example, consider the test case of Fig. 1(a), where
c = R is the curvature of the vortex ring. The decompo-
sition (16) that corresponds to the simultaneous generation

of an azimuthal and an axial flow is essential to understand
the formation of a new singularity on the central axis of the
ring; using the Biot-Savart law (3) we evidently see how the
induction of a pure azimuthal flow uy [assuming for the mo-
ment uz = 0; see Fig. 3(a)] can only generate pure axial flow
along the central axis, without creating any circulation around
it and hence no new defect. The production of a new defect
can only take place when there is also circulation around the
z axis and this, by the Biot-Savart law, can be achieved when
u; # 0 along the vortex ring as shown in Fig. 3(b). This is
in good agreement with what has been observed in numerical
experiments [2].

IV. TWIST INDUCTION BY PHASE PERTURBATION

A direct relation between twist effects and phase perturba-
tion is obtained by considering the superposition of a pertur-
bation | onto the GPE fundamental state v, i.e., ¥ = ¥ +
¥ (¥ ] < Yol < 1). In absence of twist, perturbations are
known to generate Kelvin waves. Indeed, by substituting the
new ¥ into (2) and retaining linear terms in v, we recover the
Schrodinger equation for ;. With reference to the vortex ring
case and by taking (R, ¢, z) cylindrical coordinates centered
on the ring central axis at z = 0, we have

Y1 = A ®RD 3| = const < 1, (18)
where v is the perturbation frequency, k the wave vector, and

R the perturbed vector position. The dispersion relation for
Kelvin waves is given by

v= 3k —1), (19)
from which we can see that the group velocity Vv is linear in
k = |k|.

Let us consider the presence of twist. This corresponds
to superpose a shifted phase increment on the ground-state
wave. Let w = 6/¢ be the winding number given by the
ratio of poloidal to toroidal angles. The superposition of total
twist through w full rotations on the ring defect (no torsion)
generates a new unperturbed state:

Yo — Yo’ wel. (20)

Since GPE is not locally phase invariant, we get a new equa-
tion where the phase twist plays the role of a new potential,
i.e.,

ot 2

By perturbing this new, fundamental state, we have

,(p — eiw¢,(//0 4 )uei(k-R7VI),

o iw_ \2 i 2
Mo _ -<v+?e¢> Yo+ 51— WoPwo. @D

|A] = const <« 1; 22)

and by linearizing we obtain the new equation for ¥, given
by

W _ (g, 21# iy 23)
—_— == —@ —y1.

a2 R )TN
This equation is very similar to that of Aharanov-
Bohm [13,14,18], where the additional term (iw/R)&, plays
the role of the vector potential created by a singular magnetic
field at the origin. Note that (w/R)&s = (I'/27R)&4 can in-
deed be interpreted as the velocity field induced by the central
straight vortex. By substituting the plane-wave form of ¥r; and
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considering steady conditions in cylindrical coordinates, we
obtain the new dispersion relation

1 w, \2 1
V= z(k + E0¢) 5, (24)
where now the group velocity depends linearly also on w.
Note that the same result can be obtained by direct pertur-
bation of the fundamental state governed by the standard

GPE (2) through a linear perturbation that encapsulates also
a phase-shift contribution.

V. VORTEX DEFECTS IN BOSE-EINSTEIN CONDENSATES
A. Production and manipulation of BECs defects

Bose-Einstein condensates are usually created and ma-
nipulated by trapping and cooling atoms (typically »*Na or
87Rb) by magnetic devices and laser techniques. Magnetic
traps [19] are more efficient than laser cooling and are realized
by combining two magnetic fields, one uniform in a given
direction (say along z) and one (due to quadrupole magnets)
harmonic and perpendicular to the former. The resulting field
has thus a minimum at the center. Since particles with high
magnetic moments have minimum energy in low-magnetic-
field regions, only these particles (the so-called low field
seekers) get trapped at the center, while the others (the high
field seekers) are expelled from the trap, hence cooling down
the system.

There are many different methods to create and visual-
ize vortex defects in BECs [20-24]. One earlier, ingenious
method to imprint vortices [25] is to induce a Berry phase onto
the atoms of the condensate. This is done by inverting the z
component of the magnetic field of a Ioffe-Pritchard magnetic
trap and by doing so induce a rotation of the atoms’ angular
momentum (see Ref. [25] for technical details). To visualize
and reconstruct vortex dynamics one can then use the recent
technique proposed by Serafini ef al. [26] by collecting a series
of laser scans of the BECs sample.

A fundamental technique to manipulate BECs defects is
based on the use of optical tweezers given by laser beams. A
common method to transfer angular momentum and spin to
defects is by using Gauss-Laguerre beams [27]. Polarization
of the beam modifies the spin state of the atoms, while orbital
angular momentum (OAM) modifies the phase. A Gauss-
Laguerre beam in the state LG, is characterized by two
integers p and w: p + 1 denotes the number of nodes of the
beam and w the winding number. So, in general, LG? beams
can transfer an azimuthal phase ¢ to BECs. An example of
an LG) transfer is that given in Ref. [21], taking

2
2 r -3% i
LG) = ﬁge el (25)
where ry is the radius of the beam from its center (with
singularity at ro = 0) and /28, is the peak-to-peak beam
diameter. This mode transfers an OAM of 7 units to each

atom of the defect. A singularity is thus created by a Raman
transition, exciting the atoms hit by the beam to acquire a
higher spin state.

B. Proposed experiment

To create a vortex ring with phase twist we propose to
use a toroidal trap as in Ref. [28] and injection of twist
by the Berry phase technique used in Ref. [25]. First, the
orthogonal quadrupole field for the magnetic trap must be
modified in order to produce a variation of the rotation axis
of the atoms’ angular momentum along the toroidal direction
¢ of the trap (see Ref. [25] for details). This can be achieved
by prescribing a field with twist given by a combination of
toroidal and poloidal components as in Ref. [29]. By doing
so we will imprint the generation of a vortex ring defect and,
simultaneously, a superposed phase twist given by the rotation
axis of the atoms’ angular momentum. This rotation will now
be subject to the combined effects along the toroidal direction
¢ and the poloidal direction 6, responsible for the phase twist
along ¢. As a result the induced velocity will have a toroidal
component along the vortex ring (absent in the case of zero
phase twist) that will generate the straight vortex defect at
the center of the torus. By perturbing the vortex ring thus
generated one can then measure the Kelvin waves propagation
as done in [22] and compare the dispersion relation with our
Eq. (24).

An alternative method to generate phase twist is to use LGY
beams to induce an OAM on the atoms near the torus nodal
line. The defect phase should then acquire a winding number
around the nodal line induced by the LG, beam. Again, by
measuring the dispersion relation one can get information
on the group and phase velocity of the perturbation, and
by Eq. (24) determine the relationship between the wave
frequency and the winding number w of the LG}] beam. A
secondary straight defect of topological charge proportional
to w (in units of circulation) should appear at the center of
the vortex ring. Since this will presumably be dynamically
unstable [30], we expect its decay to a number of singly
charged defects, orderly self-organized in the central region
of the trap. We conjecture that if we make interfere a BEC in
a rotational “twisted” state with a nonrotational (or counter-
rotating) state, the interference is likely to produce a forklike
pattern identical to that observed in the standard Aharonov-
Bohm effect. In reconstructing the images from the relative
interference patterns the two effects will be presumably indis-
tinguishable.
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