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The stability of a shear flow imposed along a diffusive interface that separates two miscible liquids (a heavier
liquid lies underneath) is studied using direct numerical simulations. The phase-field approach is employed for
description of a thermo- and hydrodynamic evolution of a heterogeneous binary mixture. The approach takes
into account the dynamic interfacial stresses at a miscible interface and uses the extended Fick’s law for setting
the diffusion transport (the diffusion flux is proportional to the gradient of chemical potential). The shear flow
is unstable to two kinds of instabilities: (1) the Kelvin-Helmholtz instability, with an immovable vortex formed
in the middle of an interface (in the vertical direction) and (2) the Holmboe instability, with traveling waves
along the interfacial boundary. The development of the Holmboe instability results in a stronger enhancement of
molecular mixing between the mixture components. Earlier, the boundaries of these instabilities were determined
using the linear stability analysis and employing the concept of a “frozen interface.” In the current work, through
the solution of full equations, we obtain the stability boundaries for several sets of governing parameters, showing
a greater variety of the possible shapes of the stability diagrams. The Kelvin-Helmholtz instability always occurs
at lower gravity effects (lower density contrasts), while the Holmboe instability occurs when gravity is stronger.
We show that for some parameters these two instabilities are separated by a zone where the shear flow is stable,
and this zone disappears for the other sets of parameters.
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I. INTRODUCTION

Mixing in liquid-liquid or gas-liquid systems can be inten-
sified by taking advantage of hydrodynamic instabilities, e.g.,
the instabilities induced by a shear flow. In the current work
we investigate the effects of a shear flow on the mixing of two
miscible liquids that are initially separated by a thin horizontal
interface and with a heavier liquid lying underneath. We
assume that the liquids are just brought into contact, so the
initial thermodynamic state of a mixture is different from
the state of thermodynamic equilibrium, which induces the
interfacial diffusion. The resultant simultaneous thermo- and
hydrodynamic changes in a heterogeneous binary mixture are
examined.

It is well known that the shear flow in a homogeneous
fluid is unstable due to the Kelvin-Helmholtz instability [1,2].
This instability was studied in numerous works, and the major
results are summarized in books [3,4]. In the current work,
we consider the shear flow in a inhomogeneous fluid; namely,
the shear flow is enforced along the interface of two liquids
of different densities. It is known that the density stratification
affects the development of the Kelvin-Helmohotz instability.
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The density stratification is traditionally determined by the
Richardson number Ri = N2/U 2, where U is the local mean
velocity and N is the Väisälä frequency:

N (y) =
√

− g

ρ

dρ

dy
. (1)

In this formula, ρ is the fluid density, g is the gravity accel-
eration, and y is the vertical coordinate. Miles and Howard
[5] found that the Kelvin-Helmholtz instability in a density-
stratified medium does not develop if the density stratifica-
tion is relatively strong, namely, when Ri > 1/4 everywhere.
Holmboe [6], however, showed that if the thickness of a
density profile is much smaller than the thickness of a shear
flow profile, then, despite the strong density stratification, the
flow is unstable due to a new instability that develops through
the growth of two traveling waves in the layer. Thus, in a
density stratified medium the shear flow may become unstable
to both the Kelvin-Helmholtz and Holmboe instabilities.

In a number of later studies the boundaries of the Kelvin-
Helmholtz and Holmboe instabilities were determined for
various density and velocity profiles [7–13], including the
cases when the central points of the density and velocity
profiles were not coincident [14,15]. The influence of other
complexities, such as surface tension [16], larger density
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contrasts [17,18], and diffusion [19,20], were also examined.
The existence of both Kelvin-Helmholtz and Holmboe insta-
bilities were also experimentally confirmed [21–23].

In the current work the evolution of a heterogeneous binary
mixture is traced on the basis of the phase-field approach. This
approach represents an interface as a transitional layer of a
finite thickness, with all variables, including density, expe-
riencing sharp but continuous changes across the interfacial
boundary. By imposing a shear flow along the interface we
obtain a classical problem of stability of a shear flow in a
density stratified medium. However, in contrast with other
studies the use of the phase-field approach allows an accurate
description of a multiphase system; namely, the approach
takes into account the effects of interfacial stresses that should
be also associated with miscible boundaries [24,25]. In addi-
tion, the approach takes into account that the classical Fick’s
law is applicable only for lower concentration gradients,
and thus the Fick’s law is not strictly valid for liquid-liquid
interfaces when the concentration gradients are large. The
phase-field approach is based on the extended Fick’s law that
states that the diffusion flux is proportional to the gradient
of chemical potential. This extension, in particular, allows
for the convenient description of the interfacial diffusion in
partially miscible liquids that are miscible until saturation
levels are reached in neighboring phases (which is an obvious
case when the Fick’s law fails, as in this case there is a strong
concentration gradient across the interface but there is no
interfacial diffusion). In addition, this extension allows for the
account of barodiffusion effect.

All these features make the problem studied in our work
different from the other studies of the Kelvin-Helmholtz and
Holmboe instabilities. In the current work the development of
the classical hydrodynamic instabilities occurs in a two-phase
system with an undergoing phase transition, while in other
studies the development of the instabilities happen either in
a single-phase stratified medium or in a two-phase immiscible
system.

The linear stability of a phase boundary in a heterogeneous
binary system is investigated in Ref. [26], where the bound-
aries of the Kelvin-Helmholtz and Holmboe instabilities are
determined. It is found that the zones of instability are larger
for thinner interfaces. The zones of instability are also en-
larged by diffusive and capillary effects. Viscosity is found
to play its usual stabilizing role. The linear stability analysis
is based on the the assumption of a “frozen interface,” i.e.,
assuming that the diffusive smearing of the interface occurs
slowly, much slower than the growth of the hydrodynamic
perturbations. The aim of the current work is to verify the
linear analysis by solving the full nonlinear equations, to
understand the differences in the flow fields that characterize
these two different instabilities, and to extend our previous
findings by examining the stability of the shear flow for
greater variety of governing parameters.

II. MATHEMATICAL MODEL

The idea of the phase-field approach is to apply one system
of the governing equations to determine the flow fields in a
whole multiphase system, including interfaces. The interfaces
are represented by transitional layers of a finite thickness.

The position of interfaces is determined from the field of
concentration, namely, the interfaces correspond to the places
with larger concentration gradients. To take into account the
surface tension effects that are associated with interfacial
boundaries, the free energy function of a mixture is redefined
by adding a new gradient term [27],

f (C,∇C) = f0(C) + ε

2
(∇C)2. (2)

Here f is the specific free energy function of a binary mixture,
f0 is its classical part, and ε is the capillary constant that
defines the strength of the capillary effects. The capillary
constant is usually so small that the second term is negligible
everywhere except for the places with large concentration
gradients, i.e., except for the interfaces.

The full hydrodynamic equations for a binary system that
is defined by free energy function (2) were derived by Lowen-
grub and Truskinovsky [28]. The full equations, however, are
too hard for direct numerical simulations, as these equations
include the full continuity equation (which is called the effect
of quasicompressibility and is explained by the dependence
of the mixture density on concentration). It was later shown
that the slower convective and diffusive evolution of a mixture
can be determined on the basis of the fully incompressible
equations, which represent the Boussinesq approximation
of the full Cahn-Hilliard-Navier-Stokes equations [29,30].
The Boussinesq approximation of the Cahn-Hilliard-Navier-
Stokes equations is numerically solved in the current work to
describe the evolution of a heterogeneous binary mixture.

The governing equations include the equations for conser-
vation of momentum, species, and mass:

∂ �u
∂t

+ (�u · ∇)�u = −∇� + 1

Re
∇2�u − C∇μ, (3)

∂C

∂t
+ (�u · ∇)C = 1

Pe
∇2μ, (4)

∇ · �u = 0. (5)

Here �u is the fluid velocity, � is the modified pressure that is
to be determined from an incompressibility constraint, t is the
time, C is the concentration that is defined as the mass fraction
of one of the components in a mixture, and μ is the chemical
potential. The Navier-Stokes Eq. (3) includes an additional
term (frequently called the Korteweg force) that takes into
account the surface tension effects on a liquid-liquid interface.
The diffusion process is driven by the gradient of the chemical
potential, which is defined by the following expression:

μ = Gr(�r · �γ ) + df0

dC
− Cn∇2C. (6)

The classical part of the free energy function, f0, is chosen
so to define the expected thermodynamic behavior of a binary
mixture. In this work, we study the evolution of a heteroge-
neous binary mixture with undergoing phase transformations.
In particular, we consider a binary mixture with the upper
critical solution temperature (that defines the position of the
so-called consolute point), when the components of a mixture
are miscible in all proportions above the critical temperature,
and only partially miscible (up to a certain solubility level)
if the mixture temperature is below the critical value. This is
the most popular type of the phase behavior among all binary
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FIG. 1. The classical part of a free energy function (a) and the shapes of the phase diagrams (b) given by formulas (8), solid lines, and
(7), dashed lines. The dots in panel (b) indicate the initial state of the mixture, and the arrows indicate the directions of the thermodynamic
transformations experienced by the mixture in the current work.

mixtures. The thermodynamic behavior of such a mixture may
be set by the Landau formula [31]:

f0 = AC2 + C4. (7)

Another choice of the free energy function is given by the
“regular solutions” function (also known as the Flory-Huggins
theory) that is frequently used for setting the thermodynamic
behavior of polymer solutions [25,27,32]:

f0 = (
A − 3

2

)
C2 + 3

4

(
1
2 + C

)
ln

(
1
2 + C

)
+ 3

4

(
1
2 − C

)
ln

(
1
2 − C

)
. (8)

Here, for simplicity, the original definition of concentration,
as the mass fraction of one of the components in a mixture
and that varies in the interval of [0 . . . 1], is modified by
a transition, C → (C − Cc). In addition, for simplicity, we
assume that the phase diagram is symmetrical about the
consolute point and Ccr = 1/2. As a result, the range of the
modified concentration is [−1/2 . . . 1/2]. Figure 1(a) depicts
the shapes of functions (7) and (8) and Fig. 1(b) depicts the
shapes of the phase diagrams, which define equilibrium states
of a mixture and which are obtained on the basis of functions
(7) and (8). One sees that the consolute point of a mixture
is determined by the coordinates (A = 0, C = 0). A mixture
is always homogeneous in equilibrium when A > 0, and a
mixture may be either homogeneous or heterogeneous (that
is, defined by the overall mass balance) when A < 0. Hence,
the nondimensional parameter A that appears in formulas
(7) and (8) plays the role of the mixture temperature. This
parameter is defined as A = a/b, where a and b are the two
standard phenomenological parameters of the Landau theory
for near-critical systems [31].

Both functions (7) and (8) produce quite similar phase
diagrams, and both phase diagrams reproduce features of
the experimentally expected thermodynamic behavior; see,
e.g., the phase diagram of isobutyric acid-water mixture in
Ref. [33]. Thus, from the point of view of matching the

experimental behavior, both functions can be successfully
used.

Nevertheless, primarily owing to computational reasons,
we select function (8) for the current study. In this work, the
range of concentrations, [−1/2 . . . 1/2], corresponds to the
interface of physically relevant values of concentrations. In
Fig. 1 one sees that function (8) coincides with the Landau
function near the critical solution point, and this function
defines a different behavior when |C| → 1/2, where over-
shooting (nonphysical values in the concentration field) are
excluded by the logarithmic terms. Free energy function (8)
was previously used in our other works where evolving het-
erogeneous binary systems were examined in the frameworks
of other physical problems [34–38].

The above equations are written in the nondimensional
form. The following scales were used to nondimensionalize
the equations:

L∗ = h, τ = L∗
u∗

, u∗ = μ1/2
∗ , μ∗ = b, �∗ = ρ∗μ∗. (9)

Here h is the height of the layer, and τ , u∗, μ∗, and �∗ are the
timescale, velocity scale, and scales of the chemical potential
and pressure; ρ∗ is the typical density that can be defined as
the density of one of components of the mixture.

The governing equations include the following nondimen-
sional parameters:

Pe = ρ∗L∗
αμ

1/2
∗

, Re = ρ∗μ
1/2
∗ L∗
η∗

, Gr = φ
gL∗
μ∗

, (10)

Cn = ε

μ∗L2∗
. (11)

These are the Péclet, Reynolds, Grashof, and Cahn numbers.
We use the standard names for the first three parameters,
although they are defined through nonstandard phenomeno-
logical parameters that are introduced within the phase-field
approach. These parameters appear in front of the correspond-
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ing terms of the hydrodynamic equations and play similar
roles in dynamic similarity of different flows.

The Péclet number sets the relative importance of diffusive
effects. The coefficient α is called the mobility coefficient,
and its value can be estimated as α = ρ∗D/μ∗, where D is
the standard diffusion coefficient. We assume that the Péclet
number is always large, which means that diffusion is rela-
tively weak, at least, on short time periods.

The Reynolds number sets the importance of the viscous
force. For simplicity we assume that the difference in the
viscosity coefficients of the mixture components is not strong,
so that the use of one Reynolds number is sufficient.

The Grashof number sets the importance of the gravity
term. We assume that the density contrast φ = (ρ2 − ρ1)/ρ∗ is
small, which is true for all liquid-liquid mixtures. The gravity
term enters the governing equations though the definition
of the chemical potential (6). Substitution of the chemical
potential into the Navier-Stokes Eq. (3) would generate a
standard convective force. Substitution of the chemical po-
tential into the equation for the species transport (4) would
cancel the gravity term. Nevertheless, the effect of the gravity
in diffusion (barodiffusion) still remains and would enter
the problem through the boundary condition. To exclude the
diffusive transport through the wall one needs to set zero
value of the normal derivative of the chemical potential at the
wall, which brings the gravity term. This effect in particular
is responsible for equilibrium stratification in a mixture when
the concentration of a heavier component grows towards the
bottom of a layer.

The Cahn number sets the strength of the capillary forces.
It also sets the equilibrium thickness of the interface that is
determined as δeq = √−Cn/A [28,39].

One additional nondimensional parameter in Eqs. (3)–(6)
is A, which was introduced above and which sets the “tem-
perature” of a mixture (the thermodynamic behavior of a
mixture).

The governing equations are supplemented with the bound-
ary conditions. Normally, at the rigid walls one sets the
velocity vector to be zero (the no-slip condition), the normal
derivative of the chemical potential to be zero (no diffusive
flux through walls), and the normal derivative of concentration
to be zero (the neutral wetting conditions, i.e., the contact line
is orthogonal to the wall).

III. PROBLEM STATEMENT

We present the results of the two-dimensional direct nu-
merical modeling of the Kelvin-Helmholtz and Holmboe
instabilities in a system composed of two miscible liquids
that are initially separated by a flat horizontal interface. The
mixture fills in a horizontal plane layer. We assume that the
liquids are just brought into contact, and the initial thermo-
dynamic state of the mixture is different from the state of
thermodynamic equilibrium, which induces the process of
interfacial diffusion. The lighter liquid is placed on top of the
denser one. The shear flow is additionally imposed along the
interface. The mixture is assumed to remain isothermal.

Thus, the heterogeneous binary mixture is enclosed within
a rectangular computational domain. The stability of the
liquid-liquid interface with respect to a one-mode harmonic

perturbation, characterized by the wave number k = 2π/λ,
is studied. The periodic boundary conditions are imposed
in a horizontal direction. The horizontal size of the domain
is chosen to be equal to the wavelength, λ, of the initial
perturbation, and thus it varies for different runs. The vertical
size of the layer is used as the length scale. The horizontal and
vertical coordinates are denoted by x and y, respectively.

The initial concentration profile is set by the expression

C0(x, y) = 0.495 tanh

{
y − 0.5[1 + 0.1 cos(kx)]

δ0

}
. (12)

Here 0.495 are the initial concentrations in the two liquids in
contact, and δ0 is the initial interface thickness. The amplitude
of a perturbation is 0.1 for all runs.

The externally imposed flow along the interface is set by
the following profile:

U (y) = U0 tanh

(
y − 0.5

δU

)
. (13)

Here U0 and δU are the amplitude and thickness of the velocity
profile, respectively.

In the current work, the thicknesses of the concentration
and velocity profiles are treated as two independent parame-
ters. Since we consider the evolution of a thermodynamically
nonequilibrium binary mixture the initial thickness of the con-
centration profile is taken to be different from the thickness of
an equilibrium interface, that is, δeq = √−Cn/A.

The total vector of velocity is split into the background
and perturbation parts, �u = U�i + �v (the unit vector �i that
defines the direction of the x axis also defines the direction
of the imposed shear flow). The governing equations (3)–(6)
are supplemented with the periodic boundary conditions in the
horizontal direction and with the following conditions at the
bottom and upper plates:

y = 0, 1:
∂vx

∂y
= 0, vy = 0,

dμ

dy
= 0,

dC

dy
= 0. (14)

Thus, we impose the no-stress condition for the x component
of the velocity, and the no-penetration condition for the y
component of the fluid velocity. The boundary conditions for
the chemical potential and concentration assume the absence
of the diffusive flux through the walls and the condition of
neutral wetting. In the current work we are interested in the
development of the instabilities near the interface, which is in
the middle of a layer, far from the walls. The conditions at
the walls are less important for this study, and the boundary
conditions (14) were chosen so to minimize their influence on
the flows in the bulk layer.

For the numerical solution, Eqs. (3)–(6) are rewritten in the
stream function (vx = ∂ψ/∂y and vy = −∂ψ/∂x) vorticity
[ω = (∂vx/∂y − ∂vy/∂x)] formulation:

∂ω

∂t
+ J (ψ,ω) = 1

Re
(−U ′′′ + ∇2ω) + J (μ,C), (15)

∂C

∂t
+ U

∂C

∂x
+ J (C, ψ ) = 1

Pe
∇2μ, (16)

∇2ψ = −ω, (17)

μ = Gr y + 3

4
ln

(
1/2 + C

1/2 − C

)
− (3 − 2A)C − Cn∇2C. (18)
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FIG. 2. The time dependencies of the total kinetic energy (a), (c) and of the length of interface (b), (d) are plotted for the numerical runs
performed with the use of different grids, with 250×250 (dash-dotted lines), 500×500 (dashed lines), and 750×750 (solid lines) nodes. The
other parameters for these runs were k = 6.28, Pe = 106, Cn = 4×10−4, δ0 = δU = 0.028, and U0 = 0.2 (a, b) and U0 = 0, 4 (c), (d).

Here J ≡ ∂/∂x − ∂/∂y, and the prime stands for the deriva-
tive in respect with y. The periodic boundary conditions are
imposed in the x direction, and on the walls we set

ψ = 0,
∂ψ

∂y
= ∂μ

∂y
= ∂C

∂y
= 0. (19)

The resultant set of equations and boundary conditions are
solved using the finite-difference method on a uniform mesh.
The explicit first-order in time and second-order in space
discretization scheme is used.

IV. NUMERICAL RESULTS

To choose the optimal numerical resolution we perform
several numerical runs using the grids with the different
numbers of computational nodes. The results of these runs
are depicted in Fig. 2. We plot the time dependencies of the

kinetic energy of a perturbation,

Ek = 1

2

∫
V

v2dV (20)

(here V is the volume of the computational domain), and the
time dependencies of the length of an interfacial boundary for
two different amplitudes of the externally imposed flow U0 =
0.2 [Figs. 2(a) and 2(b)] and U0 = 0.4 [Figs. 2(c) and 2(d)].
One sees that perturbations decay for the lower amplitude of
the shear flow and perturbations grow when the externally
imposed flow is stronger.

In Fig. 2 the results obtained with the use of different
meshes converge (the distance between the curves decreases
upon the gradual improvement of the numerical resolution). In
a stable case, the curves remain close to each other during the
entire numerical run, until a perturbation completely decays.
In an unstable case, the curves obtained with the use of dif-
ferent grids eventually diverge from each other, although, as
one sees in Figs. 2(c) and 2(d), for the set of parameters used
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FIG. 3. Development of the Kelvin-Helmholtz instability. The fields of concentration (isolines) and velocity (vectors) at different time
moments. The data are obtained for δ = δU = 0.2, U0 = 1, Re = 100, Cn = 10−3, Pe = 106, Gr = 0.5, k = 4.19, resolution 750×500 nodes.

to generate this figure, the curves with two best resolutions
remain quite close at least until t � 10. We then assume
that the resolution with the grid size of 1/500 is sufficient
to produce the accurate results for an initial evolution of a
mixture, t � 10, and a better resolution would be needed for
tracing the growth of a perturbation on a longer time interval.
However, the improved resolution can be required for thinner
initial profiles of the concentration and velocity fields and for
higher Péclet numbers (when diffusive skin layers become
thinner) and lower Cahn numbers (as this parameter sets the
equilibrium thickness of the interface).

As discussed in the introductory section, there are two in-
stabilities that may develop in the layer. Figures 3 and 4 show
the snapshots that illustrate the typical developments of the
Kelvin-Helmholtz and Holmboe instabilities, respectively. For
the Kelvin-Helmholtz instability, one observes the develop-
ment of a vortex in the middle of the layer (right in the middle
of the interface). The size of the vortex and the amplitude of
the flow velocity increase with time, although the horizontal
location of the vortex always remains the same. In the case
of the Holmboe instability, one observes the development of
traveling waves on the interface and the formation of vortices
that move along the layer. These simple differences (whether
vortices are stationary or moving and whether the interface is
flat or wavy) allow us to distinguish the instabilities and to
associate the governing parameters with the particular kind of
instability.

Next we want to obtain the stability diagrams to show
the boundaries of the Kelvin-Helmholtz and Holmboe

instabilities. For this end, we perform the series of numerical
runs and calculate various integral characteristics. Namely, we
calculate the following:

The kinetic energy of perturbations using Eq. (20)

The length of the interface, L. (The position of the
interface is determined by the concentration level C = 0.
To determine the length of the interface, L, we first search
for the nodes between which the concentration changes
its sign, and determine the position of the interface
between these nodes by using the linear interpolation;
we next obtain the length of an interface element that
lies within a cell made of four nodes; and finally we sum
up these elementary lengths to obtain the length of the
whole interfacial line.)

The thickness of the interface δ using the formula δ =
Vδ/L (here Vδ is the volume of the transitional zone that
is defined as the region in the computational domain with
the concentration levels in the range |C| � 0.2)

The coefficient of the surface tension σ = Ei/L [here
Ei is the interfacial energy that is calculated as Ei =
Cn

∫
V (∇C)2 dV ]

The average concentrations in each phase, C1 and C2 (the
phases are distinguished by the sign of the concentration;
the average concentration in the part of the computational
domain with positive concentrations is denoted as C1,
and the average concentration in the other part of the
computational domain is C2).
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FIG. 4. Development of the Holmboe instability. The fields of concentration (isolines) and velocity (vectors) at different time moments.
The data are obtained for δ = δU = 0.2, U0 = 1, Re = 100, Cn = 10−3, Pe = 106, Gr = 10, k = 4.19, resolution 750×500 nodes.

Figure 5 depicts two typical time evolutions of the inte-
gral characteristics; namely, the curves are obtained for the
different levels of the Grashof number, when the Kelvin-
Helmhotz (solid lines) and Holmboe instabilities (dashed
lines) develop. The curves demonstrate the clear differences
in the time changes of the integral characteristics for these
two instabilities.

For the Kelvin-Helmholtz instability, the kinetic energy of
a perturbation (that has a form of a single stationary vortex)
grows monotonically. For the case of the Holmboe instability,
the oscillatory growth of the kinetic energy is observed, which
is explained by traveling vortices. Indeed, in Fig. 4, one
sees that the velocity field in the computational domain is
strongly different at different time moments, and this ex-
plains the strong changes (oscillations) in the values of the
kinetic energy.

As stated above, the position of an interface is defined
by a level of concentration, C = 0, which is depicted by the
central isoline in both Figs. 3 and 4. This definition is not
very accurate for rather diffusive interfaces considered in this
work. Nevertheless, in Fig. 3 one sees that the central isoline
becomes quite disturbed by the Kelvin-Helmholtz vortex,
which explains the observed growth of the interface length, L,
in Fig. 5(b) (solid line). In Fig. 4, in the case of the Holmboe
instability, the length of the central isoline remains almost
undisturbed, which is confirmed by a shape of the dashed line
in Fig. 5(b).

Figure 5(c) depicts the time changes of the interface thick-
ness. The interfacial stresses are characterized by the surface

tension coefficient, which time changes are shown in Fig. 5(d).
One sees that the surface tension coefficient remains constant
for the Holmboe instability, and this coefficient grows at the
initial time moments for the Kelvin-Helmholtz instability.
Finally, Figs. 5(e) and 5(f) show that the Kelvin-Helmholtz
instability results in a stronger enhancement of the molecular
mixing across the liquid-liquid boundary.

We also performed the numerical runs for the different
values of the parameters U0, Pe, and Cn. We found that the
increase of the amplitude of the shear flow speeds up the
instability. Lower Péclet numbers mean stronger diffusion
effects, and the instability develops more slowly in this case
owing to additional diffusive dissipation. The increase of
the Cahn number increases the surface tension effect, which
makes the interface less prone to deformations, and this
reduces the amplitude of the waves and the amplitude of
the hydrodynamic motion in the layer. Similar observations
were earlier achieved with the help of the linear stability
analysis [26].

The stability diagrams are depicted in Fig. 6. The Kelvin-
Helmhotz instability is always limited to lower Grashof
numbers, while the evolution at higher Grashof numbers
is dominated by the Holmboe instability. The zone of the
Holmboe instability is large (in comparison to the zone of
the Kelvin-Helmholtz instability) and remains unclosed from
the top. Stronger viscous and diffusion effects should result
in a closure of the zone of the Holmboe instability, although
such cases are not modeled in the present work. Similar
stability diagrams were earlier reported by other researchers
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FIG. 5. (a) The total kinetic energy, (b) the thickness of the interface, (c) the length of the interface, (d) the surface tension coefficient, and
(e), (f) the average concentrations in each phase vs time. The data are obtained for δ = δU = 0.2, U0 = 1, Re = 100, Cn = 0.001, Pe = 106,
k = 4.19, Gr = 0.5 (solid line) and Gr = 10 (dashed line).

[11,12,26]. In particular, Fig. 6(a) is adopted from our earlier
work [26], where this diagram is obtained by using the linear
stability analysis for an interface that separates two semi-
infinite domains of two miscible liquids.

Figures 6(b)–6(d) are obtained with the help of the nu-
merical solution of the full equations. To perform the direct
numerical simulations we assume that the liquids occupy a
plane layer of finite height, which is used as a unit of length.
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FIG. 6. The neutral curves defining the zones of the Kelvin-Helmoltz (marked by “KHI”) and Holmboe (“HI”) instabilities. (a) The results
of the linear stability analysis (see Ref. [26] for more details) obtained for an immiscible interface (Pe = ∞) with no surface tension effects
(Cn = 0) that separates two semi-infinite inviscid liquid domains (Re = ∞); other parameters are U0 = 1, δ0 = 0.2. The thickness of the
velocity profile, δU , was used as a length scale. (b)–(d) The results of the direct numerical simulations. The data are obtained for Pe = 106,
Re = 100, U0 = 1, and (b) δ0 = 0.04, δU = 0.2, Cn = 4×10−5; (c) δ0 = δU = 0.2, Cn = 0.001; (d) δ0 = 0.04, δU = 0.2, Cn = 0.001. The
unit of length is the height of the plane layer. The axes in (b–d) are rescaled to simplify the comparisons with (a). Square symbols correspond
to the phase-field simulations, and circles are the points obtained using the classical approach.

The thickness of the velocity profile is taken as δU = 0.2. The
thickness of the concentration profile was taken either equal
to δU [Fig. 5(c)] or five times smaller than δU [Figs. 5(b) and
5(d)]. In the linear stability theory the thickness of the velocity
profile was used as a length scale. For correlation of these
sets of data, in Figs. 6(b)–6(d) we rescale the wave number
and Grashof number as kδU and GrδU . The values of the other
parameters should be also rescaled as PeδU , ReδU , and Cn/δ2

U .
The diagrams here look very similar to the diagram ob-

tained with the help of the linear stability theory. The addition
of the surface tension effects extends the zones of the Kelvin-
Helmholtz and Holmboe instabilities, as already noted in
the linear stability study [26]. We also identify a behavior
that was not observed in Ref. [26], when the zones of the
Kelvin-Helmholtz and Holmboe instabilities are separated by
a zone of a stable shear flow [Fig. 6(c)]: At lower Grashof

numbers the shear flow is unstable to the Kelvin-Helmholtz
instability, at higher Grashof numbers the shear flow develops
the Holmboe instability, and there is a range of intermediate
Grashof numbers when the shear flow is stable. In the linear
study [26] the thickness of the interface was always taken
smaller than the thickness of the velocity profile, which is a
generally expected relation for these parameters: the phase
boundary is usually very thin (and, frequently, could be just
several molecular layers); nevertheless, the interface thickness
may be wider, e.g., near a consolute point, when the behavior
depicted in Fig. 6(c) can be realized.

Figures 6(c) and 6(d) also include the points (circles)
that were obtained with the help of the classical approach,
which completely disregards the surface tension forces and
which models the diffusion process using the classical Fick’s
law (the diffusion flux is proportional to the gradient of
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concentration). In the classical approach there are no different
phases, and instead, an evolution of a single-phase liquid with
a impurity is studied. Namely, the governing equations for the
classical approach read

∂ �u
∂t

+ (�u · ∇)�u = −∇� + 1

Rec
∇2�u − GrcC �γ , (21)

∂C

∂t
+ (�u · ∇)C = 1

Pec
∇2C, (22)

∇ · �u = 0. (23)

These equations include three nondimensional parameters,

Pec = L∗u∗
D

, Rec = ρ∗u∗L∗
η∗

, Grc = φgL∗
u2∗

, (24)

the Péclet number, the Reynolds number, and the Grashof
number.

In Figs. 6(c) and 6(d) one sees that the majority of the
“classical” points lie very close to the phase-field results.
This may be explained by the fact that interfaces that are too
diffusive are studied in this work, so the surface tension forces
remain low (the coefficient of the surface tension is reciprocal
to the interface thickness [26,39]). The classical and phase-
field approaches are based on the different laws for diffusion,
but these differences remain inessential for determination of
the boundaries of the hydrodynamic instabilities, as similar
study is based on relatively shorter numerical runs when
diffusive transport remains low (the changes in the average
concentrations within each phase are small).

V. CONCLUSIONS

We study the isothermal evolution of a heterogeneous
mixture of two slowly miscible liquids (with the heav-
ier liquid underneath) enclosed in a horizontal plane layer.
The shear flow is imposed along a miscible interface.
With the help of the direct numerical simulation we inves-
tigate the development of the Kelvin-Helmotz and Holmboe
instabilities of the shear flow.

In particular, we show that these two instabilities are
characterized by a number of different distinctive features,
which allow easy identification of the instability in each
numerical run.

The development of the Kelvin-Helmholtz instability
occurs through the formation of a flow vortex in the middle of
the interface. The position of the vortex does not change with

time. The kinetic energy associated with this vortex grows
monotonically. The development of the Holmboe instability
is associated with the formation of traveling waves on the in-
terface and with formation of moving vortices along the layer.
In the case of Holmboe instability, the oscillatory growth of
the kinetic energy is observed.

The identification of the instabilities help us to obtain the
stability diagrams for a number of the sets of governing pa-
rameters. As expected the Kelvin-Helmholtz instability occurs
at lower Grashof numbers (lower density contrasts of the
liquids in contact), while the Holmboe instability occurs at
higher Grashof numbers. For the parameters considered in this
work, we could not find the level of the Grashof number when
the zone of the Holmboe instability becomes closed from the
top. In our simulations, even for very strong Grashof numbers,
the shear flow is unstable. We, however, found a shape of the
stability diagram that to the best of our knowledge has not
been reported in earlier studies, e.g. in the linear stability study
[26], when the zones of the Kelvin-Helmholtz and Holmboe
instability are separated by an intermediate zone where the
shear flow remains stable.

The numerical results are obtained on the basis of the
phase-field approach. Some of the results (the stability dia-
grams) are also compared against the data obtained in the
framework of the standard approach that models a binary mix-
ture as a single-phase medium with a impurity. We found that
for the determination of stability diagrams, the peculiarities of
the phase-field approach turned out to be unimportant. There
are two major differences of the phase-field approach from
the classical model of miscible liquids: These are the account
of the surface tension effects and the different treatment for
the diffusion transport. The determination of the stability
boundaries is based on the relatively short numerical runs.
For similar runs, the interface remains almost flat, which
makes the surface tension effects less significant. In addition,
the Kelvin-Helmholtz and Holmboe instabilities develop on
shorter (hydrodynamic) times when diffusion does not have
time to impose any significant effect on the behavior of
a binary mixture. The features of the phase-field approach
should become more pronounced for a longer evolution, at
later stages of the instabilities.

ACKNOWLEDGMENTS

The financial support of the Russian Federation for Basic
Research (Grant No. 16-5110079), and the Royal Society
(Ref. IE160277) is gratefully acknowledged.

[1] L. Rayleigh, Proc. London Math. Soc. s1–11, 57 (1879).
[2] R. Fjortoft, Geofys. Pulb. Oslo 17, 1 (1950).
[3] S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability

(Cambridge University Press, Cambridge, 1961).
[4] P. G. Drazin, Introduction to Hydrodynamic Stability

(Cambridge University Press, Cambridge, 2002).
[5] L. N. Howard, J. Fluid Mech. 10, 509 (1961).
[6] J. Holmboe, Geofys. Publ. 24, 67 (1962).
[7] P. G. Drazin, J. Fluid Mech. 4, 214 (1958).
[8] S. A. Maslowe and R. E. Kelly, J. Fluid Mech. 48, 405 (1971).

[9] P. Hazel, J. Fluid Mech. 51, 39 (1972).
[10] L. N. Howard and S. A. Maslowe, Boundary-Layer Met. 4, 511

(1973).
[11] P. G. Baines and H. Mitsudera, J. Fluid Mech. 276, 327 (1994).
[12] C. C. P. Caulfield, J. Fluid Mech. 258, 255 (1994).
[13] J. R. Carpenter, N. J. Balmfoth, and G. A. Lawrence,

Phys. Fluids 22, 054104 (2010).
[14] G. A. Lawrence, S. P. Haigh, and Z. Zhu, Coast. Estuar. Stud.

54, 295 (1998).
[15] S. P. Haigha and G. A. Lawrence, Phys. Fluids 11, 1459 (1999).

023103-10

https://doi.org/10.1112/plms/s1-11.1.57
https://doi.org/10.1112/plms/s1-11.1.57
https://doi.org/10.1112/plms/s1-11.1.57
https://doi.org/10.1112/plms/s1-11.1.57
https://doi.org/10.1017/S0022112061000317
https://doi.org/10.1017/S0022112061000317
https://doi.org/10.1017/S0022112061000317
https://doi.org/10.1017/S0022112061000317
https://doi.org/10.1017/S0022112058000409
https://doi.org/10.1017/S0022112058000409
https://doi.org/10.1017/S0022112058000409
https://doi.org/10.1017/S0022112058000409
https://doi.org/10.1017/S0022112071001654
https://doi.org/10.1017/S0022112071001654
https://doi.org/10.1017/S0022112071001654
https://doi.org/10.1017/S0022112071001654
https://doi.org/10.1017/S0022112072001065
https://doi.org/10.1017/S0022112072001065
https://doi.org/10.1017/S0022112072001065
https://doi.org/10.1017/S0022112072001065
https://doi.org/10.1007/BF02265252
https://doi.org/10.1007/BF02265252
https://doi.org/10.1007/BF02265252
https://doi.org/10.1007/BF02265252
https://doi.org/10.1017/S0022112094002582
https://doi.org/10.1017/S0022112094002582
https://doi.org/10.1017/S0022112094002582
https://doi.org/10.1017/S0022112094002582
https://doi.org/10.1017/S0022112094003320
https://doi.org/10.1017/S0022112094003320
https://doi.org/10.1017/S0022112094003320
https://doi.org/10.1017/S0022112094003320
https://doi.org/10.1063/1.3379845
https://doi.org/10.1063/1.3379845
https://doi.org/10.1063/1.3379845
https://doi.org/10.1063/1.3379845
https://doi.org/10.1029/CE054p0295
https://doi.org/10.1029/CE054p0295
https://doi.org/10.1029/CE054p0295
https://doi.org/10.1029/CE054p0295
https://doi.org/10.1063/1.870009
https://doi.org/10.1063/1.870009
https://doi.org/10.1063/1.870009
https://doi.org/10.1063/1.870009


KELVIN-HELMHOLTZ AND HOLMBOE INSTABILITIES OF … PHYSICAL REVIEW E 100, 023103 (2019)

[16] S. Alabduljalil and R. H. Rangel, J. Eng. Math. 54, 99 (2006).
[17] A. Alexakis, Phys. Fluids 21, 054108 (2009).
[18] R. Barros and W. Choi, Phys. Fluids 23, 124103 (2011).
[19] D. Koppel, J. Math. Phys. 5, 963 (1964).
[20] W. D. Smyth and W. R. Peltier, J. Fluid Mech. 228, 387 (1991).
[21] S. A. Thorp, J. Fluid Mech. 32, 693 (1968).
[22] S. A. Thorp, Radio Sci. 4, 1327 (1969).
[23] A. M. Hogg and G. N. Ivey, J. Fluid Mech. 477, 339 (2003).
[24] D. D. Joseph and Y. Y. Renardy, Fundamentals of Two-Fluid

Dynamics. Part II: Lubricated Transport, Drops and Miscible
Liquids (Springer-Verlag, New York, 1993).

[25] A. Vorobev, Curr. Opin. Colloid Interface Sci. 19, 300 (2014).
[26] A. Kheniene and A. Vorobev, Eur. Phys. J. E 38, 77 (2015).
[27] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[28] J. Lowengrub and L. Truskinovsky, Proc. R. Soc. London, Ser.

A 454, 2617 (1998).
[29] A. Vorobev, Phys. Rev. E 82, 056312 (2010).

[30] A. Vorobev and T. Lyubimova, J. Fluid Mech. 870, 543 (2019).
[31] L. Landau and E. Lifshitz, Statistical Physics, Part 1, 3rd ed.

(Pergamon Press, New York, 1980).
[32] P. J. Flory, Principles of Polymer Chemistry (Cornell University

Press, Ithaca, NY, 1953).
[33] J. Pojman, C. Whitmore, M. Liveri, R. Lombardo, J. Marszalek,

R. Parker, and B. Zoltowski, Langmuir 22, 2569 (2006).
[34] R. Xie and A. Vorobev, J. Colloid Interface Sci. 464, 48

(2016).
[35] A. Vorobev and A. Boghi, J. Colloid Interface Sci. 482, 193

(2016).
[36] A. Vorobev and E. Khlebnikova, Int. J. Heat Mass Trans. 125,

801 (2018).
[37] T. Lyubimova, A. Vorobev, and S. Prokopev, Phys. Fluids 31,

014104 (2019).
[38] A. Vorobev and T. Lyubimova, J. Fluid Mech. 870, 563 (2019).
[39] A. Kheniene and A. Vorobev, Phys. Rev. E 88, 022404 (2013).

023103-11

https://doi.org/10.1007/s10665-005-9017-y
https://doi.org/10.1007/s10665-005-9017-y
https://doi.org/10.1007/s10665-005-9017-y
https://doi.org/10.1007/s10665-005-9017-y
https://doi.org/10.1063/1.3147934
https://doi.org/10.1063/1.3147934
https://doi.org/10.1063/1.3147934
https://doi.org/10.1063/1.3147934
https://doi.org/10.1063/1.3670611
https://doi.org/10.1063/1.3670611
https://doi.org/10.1063/1.3670611
https://doi.org/10.1063/1.3670611
https://doi.org/10.1063/1.1704198
https://doi.org/10.1063/1.1704198
https://doi.org/10.1063/1.1704198
https://doi.org/10.1063/1.1704198
https://doi.org/10.1017/S0022112091002756
https://doi.org/10.1017/S0022112091002756
https://doi.org/10.1017/S0022112091002756
https://doi.org/10.1017/S0022112091002756
https://doi.org/10.1017/S0022112068000972
https://doi.org/10.1017/S0022112068000972
https://doi.org/10.1017/S0022112068000972
https://doi.org/10.1017/S0022112068000972
https://doi.org/10.1029/RS004i012p01327
https://doi.org/10.1029/RS004i012p01327
https://doi.org/10.1029/RS004i012p01327
https://doi.org/10.1029/RS004i012p01327
https://doi.org/10.1017/S0022112002003397
https://doi.org/10.1017/S0022112002003397
https://doi.org/10.1017/S0022112002003397
https://doi.org/10.1017/S0022112002003397
https://doi.org/10.1016/j.cocis.2014.02.004
https://doi.org/10.1016/j.cocis.2014.02.004
https://doi.org/10.1016/j.cocis.2014.02.004
https://doi.org/10.1016/j.cocis.2014.02.004
https://doi.org/10.1140/epje/i2015-15077-4
https://doi.org/10.1140/epje/i2015-15077-4
https://doi.org/10.1140/epje/i2015-15077-4
https://doi.org/10.1140/epje/i2015-15077-4
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1017/jfm.2019.282
https://doi.org/10.1017/jfm.2019.282
https://doi.org/10.1017/jfm.2019.282
https://doi.org/10.1017/jfm.2019.282
https://doi.org/10.1021/la052111n
https://doi.org/10.1021/la052111n
https://doi.org/10.1021/la052111n
https://doi.org/10.1021/la052111n
https://doi.org/10.1016/j.jcis.2015.11.026
https://doi.org/10.1016/j.jcis.2015.11.026
https://doi.org/10.1016/j.jcis.2015.11.026
https://doi.org/10.1016/j.jcis.2015.11.026
https://doi.org/10.1016/j.jcis.2016.07.080
https://doi.org/10.1016/j.jcis.2016.07.080
https://doi.org/10.1016/j.jcis.2016.07.080
https://doi.org/10.1016/j.jcis.2016.07.080
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.136
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.136
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.136
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.136
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1017/jfm.2019.305
https://doi.org/10.1017/jfm.2019.305
https://doi.org/10.1017/jfm.2019.305
https://doi.org/10.1017/jfm.2019.305
https://doi.org/10.1103/PhysRevE.88.022404
https://doi.org/10.1103/PhysRevE.88.022404
https://doi.org/10.1103/PhysRevE.88.022404
https://doi.org/10.1103/PhysRevE.88.022404

