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Predicting tearing paths in thin sheets
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This study investigates the tearing of a thin notched sheet when two points on the sheet are pulled apart. The
concepts that determine the crack trajectory are reviewed in the general anisotropic case, in which the energy
of the fracture depends on the fracture direction. When observed as a flat sheet a purely geometric “tearing
vector” is defined through the location of the crack tip and the pulling points. Both Griffiths’s criterion and the
maximum energy release rate criterion (MERR) predict a fracture path that is parallel to the tearing vector in the
isotropic case. However, for the anisotropic case, the application of the MERR leads to a crack path that deviates
from the tearing vector, following a propagation direction that tends to minimize the fracture energy. In the case
of strong anisotropy, it is more difficult to obtain an analytical prediction of the tearing trajectory. Thus, simple
geometrical arguments are provided to give a derivation of a differential equation accounting for crack trajectory,
according to the natural coordinates of the pulling, and in the case that the anisotropy is sufficiently weak. The
solution derived from this analysis is in good agreement with previous experimental observations.
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I. INTRODUCTION

The prevention of crack nucleation is a key objective
in the engineering and design of reliable structures [1–3].
However, predicting and controlling the crack pathway also
has important applications, such as the design of easy to tear
packaging [4,5] or fracture-induced patterning on a micro- [6]
or nanoscale [7]. Additionally, in order to further the design of
tough materials, printing materials with patterns composed of
precut segments and sacrificial zones favor the development
of a desired crack path to enable predictable and progressive
fracture propagation [8].

In applications such as packaging, fracture propagation is
desirable, and the control of the pathway of the crack trajec-
tory is highly beneficial. For instance, spiral tearing has been
suggested as an elegant way for the fast and efficient unwrap-
ping of a present [5]. However, achieving the appropriate tear
control is often hindered by the complex nature of the material
in question and an insufficient understanding of the physical
laws of fracture propagation involving large sheet deflections.
Indeed, both stress distribution and fracture head shape are
determined by the properties of local materials, such as plas-
ticity, anisotropy and texture. In turn, common experience
indicates that the geometrical properties of the points over
which forces are applied, and the corresponding pulling di-
rections, are the fundamental parameters controlling fracture
path and the mechanical work to sustain tearing progression.

Pioneering work by O’Keefe [9] investigated how a piece
of paper tears when simultaneously pulled apart by two points.
O’Keefe’s experimental setup includes a notch being cut
into a brittle thin sheet and the selection of two points, A
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and B, on either side of the notch. Subsequently, these two
points are pulled apart, applying only forces (no torque) (see
Fig. 1). This study enabled the identification of geometric and
energetic aspects of the tearing problem and introduced for
the first time the role of fracture-energy anisotropy [9], which
is closely related to the oriented fibered structure of ordinary
paper. It is crucial to consider the anisotropy of fracture
energy, as in nature materials with anisotropic fracture energy
occur more frequently compared to isotropic ones. In addition,
the latter are very difficult to manufacture.

Although O’Keefe’s work was enlightening, it was not
based on the principles of fracture mechanics, thus leading to
inaccurate and intricate variable relations for crack trajecto-
ries. This article predicts theoretically the crack trajectory in a
strongly deformed brittle sheet, with a tearing configuration
of two points being pulled apart. Fracture propagation is
modeled within the inextensible framework [10], where the
energy release rate is linear to the applied force [11,12],
unlike in linear elastic fracture mechanics [13]. In general, the
fracture path is considered, and in the case of weak fracture
anisotropy an analytical expression is derived.

In a previous work, experiments are carried out with
bioriented polypropylene sheets. These are much more ho-
mogeneous than paper and give a perfectly smooth fracture
path [12]. These sheets have a weakly anisotropic fracture
energy with two orthogonal principal axis of symmetry. It
was observed that the trajectories are reproducible and that
the propagation direction depends solely on the position of
the crack’s tip and is independent of the past propagation
[12]. As a result, all experimental tearing pathways are related
and have nonintersecting trajectories (see Fig. 2). In addition,
these trajectories tend to deflect and curve away from the
furthest pulling point. The trajectories that are most similar to
a straight line correspond to cases where the fracture tip C is
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FIG. 1. Photos demonstrating the tearing of paper by hand.
(a) Two pulling points are selected, A and B, and a notch is made
between these two points until point C. (b) Points A and B are gradu-
ally pulled apart. Straight lines demonstrate the relation between the
pulling points and the head of the crack or tear. (c) If the sheet is thin
and flexible enough, points A (and B) become aligned in a single
straight line, and a fracture propagates when there is a strong enough
pulling force. (d) It is assumed that the sheet cannot be extended.
Thus, in order to investigate the geometrical features of tearing, the
sheet should be observed on a flat surface or “flat representation.”

at equal distance from both pulling points. Furthermore, it was
noted that the trajectories differ depending on the orientation
of the sheet, which highlights the role of the anisotropy of the
sheet [compare Figs. 2(a) and 2(b)].

Material anisotropy is presented in a general and system-
atic manner based on a Wulff’s type diagram [14], providing
the propagation direction in a scenario where the crack tip
position is known. Through a recursive application of the
Wulff’s type diagram, the experimental crack trajectory is
predicted in the general case of two pulling points, and a good
prediction is made of the applied force that leads to tearing,
without making any adjustments of parameters [12]. However,
this approach does not give an analytical derivation of the
crack trajectories.

Here the mechanical principles of fracture propagation in
thin films are investigated, and it is shown how to derive
rigorously analytical predictions of crack pathways using
these principles along with a simple hypothesis [10,12]. This
approach towards deriving differential equations of crack
pathways is based on the fact that, when a material is isotropic,
the fracture follows a perfect hyperbola. Small deviations
from hyperbolas, induced by the material anisotropy, are well
described by a differential equation represented in this nat-
ural hyperbolic coordinates system. Theoretical trajectories
compare very well with the previously reported experimental
results [12], without adjusting the parameters.

(a)

(b)

FIG. 2. Observed fracture trajectories as presented by Ibarra
et al. [12] for various locations of the initial crack, with a constant
pulling speed and two orientations of symmetry axis 1 with respect
to the focal axis, compared to the theoretical predictions within this
study. The line joining the pulling points (located 100 mm apart and
indicated by black dots) indicates the focal axis. (a) Symmetry axis
1 oriented parallel to focal point axis, θ0 = 0. (b) Symmetry axis 1
oriented at θ0 = π/4 with respect to the focal axis. Insets to the left
indicate the orientation of the symmetry axis of fracture energy. Note
that G1/Gc(θ ) is indicated for greater clarity.

II. GENERAL FRACTURE CRITERION

A. Fracture criterion in isotropic materials

The classical Griffith criterion establishes that a crack can
propagate in a generic direction θ if the energy released per
unit of fracture surface, G(θ ), compensates for the energy
cost of fracturing the material Gc(θ ), so that G(θ ) = Gc(θ ).
This criterion expresses energy conservation, therefore it is
always valid, but an additional criterion is required to de-
termine propagation direction. A widely accepted criterion
is to assume that a fracture propagates in the direction that
maximizes the energy release rate. This maximum energy
release rate (MERR) criterion is equivalent to the principle
of local symmetry for continuous trajectories [15,16] and is
valid for smooth propagation in isotropic materials.

The calculation of the energy release rate G(θ ) is given for
the tearing configuration in Fig. 1. In order to visualize the
geometrics of pulling, the sheet should first be investigated
during tearing. An important observation made during the ex-
periment was that the two lines (AC, BC) marked on the sheet,
which join the pulling points to the crack tip C, become a sin-
gle straight line during the application of force [see Fig. 3(a)].
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FIG. 3. (a) A three-dimensional diagram presenting tearing by
pulling of two points. (b) Diagram illustrating the identified geomet-
rical variables and vectors with respect to a flat sheet. (c) On the
sheet, the reference orientation is identified to be along the major
axis of symmetry of the fracture energy, axis 1. The orientation
of axis 1 with respect to the axis joining the pulling points, or the
focal axis, is θ0.

This occurs because the sheet is extremely bendable and is
unable to sustain torques. Additionally, it is observed that the
application of force on a thin, inextensible sheet means that no
stretching energy is stored within the sheet. Thus, the energy
release rate corresponds exactly to the work carried out by
the operator per unit of surface created, G(θ )hds = FdlT ,
where h is the sheet thickness, F is the force applied as
the crack advances by ds, and dlT = dl1 + dl2 is the total
distance increase between the pulling points (along the pulling
direction), where l1 = distance AC and l2 = distance BC.
The crack trajectory in the flat sheet can be examined where
l0 represents the length of segment AB [Fig. 3(b)]. In this
case the distances will not be modified because the sheet is
almost inextensible. The following dimensionless unit vectors
are defined as T̂1 and T̂2, joining the fracture tip to the pulling
points, with the sheet observed as a flat surface [Fig. 3(b)].
As the fracture advances by a distance of ds in the direction
t̂ , the following is observed: dl1 = T̂1 · t̂ ds and dl2 = T̂2 · t̂ ds,
giving the energy release rate

G(θ )h = F (T̂1 + T̂2) · t̂ . (1)

In the case that the fracture energy is isotropic, the energy
release rate is maximized when the fracture direction t̂ is par-
allel to the tearing vector, defined as �T12 = T̂1 + T̂2. Consider-
ing that the tearing vector bisects the lines joining the pulling
points to the fracture tip, the crack trajectories are therefore
portions of hyperbolas, with the pulling points as their focal
points. This is consistent with the trajectories observed in
Fig. 2. These appear to curve away from the closest pulling
point and tend to present themselves as straight asymptotes
remotely positioned from the focal points, as expected for
hyperbolas. However, comparisons between experiments with
theoretical predictions (presented as dashed lines in Fig. 2)
indicate systematic deviations from the hyperbolic pathways
predicted for isotropic sheets. Thus, herein the effect of mate-
rial anisotropy is investigated.

B. Fracture criterion in anisotropic materials

In the case of an anisotropic material, a simple and natural
generalization is given of the MERR criterion [12] to define
the direction of propagation. Indeed, assuming that loading
progressively increases, it is suggested that that fracture prop-
agates in the initial direction that fulfills Griffith’s criterion
[16–20]. Thus, cracks propagate in the direction θ , such that

G(θ ) = Gc(θ ), (2)

dG(θ )

dθ
= dGc(θ )

dθ
. (3)

As a general rule, in the presence of anisotropy a crack will
not propagate in the direction of the maximum energy release;
instead it will be deflected towards a direction with lower
fracture energy. This condition [Eq. (3)] is also referred to as
an Eshelby torque (to the left-hand side), corresponding to a
material torque associated with anisotropy in fracture energy
[18]. Although this criterion [Eqs. (2) and (3)] was put forward
during the 1970s [17], and supported by the numerical phase
field approach [18–20], only recently was it tested under
experimental conditions using the specific geometry of the
tearing direction of a anisotropic film in a simplified and
symmetric configuration [12,14].

Also, it was demonstrated that the tangency condition
together with the Griffith criterion led to a generalized form
of Wulff’s construction [14], enabling the prediction of crack
direction and pulling force by inputting the fracture energy Gc

as a function of propagation angle. The experimental results
from the trousers test configuration are in good agreement
with previous predictions [14]. More recently, it was demon-
strated that under these fracture propagation conditions it
is possible to accurately predict the crack direction for the
general case of pulling apart two points [12]. Subsequently,
a different approach is adopted [12] to find a differential
equation that accounts for fracture propagation.

When two points are pulled apart, the angular dependence
of the energy release rate is explained in Eq. (1) leading to

G(θ )h = 2F cos(φ/2) cos(θ − αt ),

where θ and αt are, respectively, the propagation angle and the
angle of the tearing vector �T12, with respect to a reference axis
in the sheet [see Fig. 3(c)], and φ is the angle ACB. Griffith’s
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criterion (2) now becomes

2F cos

(
φ

2

)
cos(θ − αt ) = Gc(θ )h. (4)

The Eshelby condition (3) then reads

−2F cos

(
φ

2

)
sin(θ − αt ) = dGc(θ )

dθ
h. (5)

These two equations (4) and (5) are unspecific. However,
it is noted that the energy release rate G(θ ) takes on a
very simplified form, as seen in Eq. (1). In particular G(θ )
does not depend on the properties of the elastic material,
which are most certainly anisotropic. This greatly simplifies
the problem, as only anisotropy should be considered in the
description of fracture energy.

Equations (4) and (5) then lead to

tan (θ − αt ) = −dGc(θ )

dθ

1

Gc(θ )
. (6)

Thus, given the fracture energy Gc and the direction of the
tearing vector αt , it is possible to determine the propagation
angle θ . It should be noted that if the material is isotropic,
propagation occurs along the tearing vector, since θ = αt .
The tearing angle, αt , is a function of the location of the
pulling points with respect to the crack tip. In general, the
implicit relation [Eq. (6)] is not simple to use. Therefore,
a graphical construction is proposed, which is often used
under the discipline related to crystal growth, as described in
previous studies [12,14].

C. The vanishing anisotropy limit approximation
for crack trajectories

The previous equations predict the crack direction for any
anisotropic fracture energy. However, the differential equation
followed by the crack path and the possible solutions of such
an equation remain unresolved. This study partially elucidates
these unknown aspects through the limit of small anisotropy
using the variables l1 − l2 and l1 + l2. It is noted that in the
case of null anisotropy any possible crack path is charac-
terized by l1 − l2, equal to a constant (dl1 = dl2, hyperbolic
trajectories). The natural orthogonal coordinate of l1 − l2 is
l2 + l1, thus the differential equation for the isotropic case
is, d (l1 − l2)/d (l1 + l2) = 0. As seen from Eq, (6), with the
effect of anisotropy slightly modifying hyperbolic trajectories,
consequently the following equation is determined: d (l1 −
l2)/d (l1 + l2) � 1.

Geometrically, the vector t̂ tangent to the crack trajectory
can be written as

t̂ = T̂1 + T̂2

|T̂1 + T̂2|
cos(θ − αt ) + T̂1 − T̂2

|T̂1 − T̂2|
sin(θ − αt ). (7)

Since dl1 = t̂ · T̂1ds and dl2 = t̂ · T̂2ds, the above expres-
sion can be used to calculate d (l1 − l2) and d (l1 + l2), giving

d (l1 − l2)

d (l1 + l2)
= tan(φ/2) tan(θ − αt ) = − tan(φ/2)

G′
c(θ )

Gc(θ )
.

(8)

The term in the product can be expressed as tan(φ/2) =√
l2
0 −(l1−l2 )2

(l1+l2 )2−l2
0
, while an explicit expression of Gc(θ ) is needed

to achieve further progress. For such purposes, we choose
to use a general expression of Gc(θ ), validated recently for
oriented polypropylene sheets by Ibarra et al. [12], Gc(θ ) =
G1 cos2 θ + G2 sin2 θ . Since the observed anisotropy in this
material is small, we then define �Gc ≡ G1 − G2 � G1,
which leads to

G′
c(θ )

Gc(θ )

∣∣∣∣
αt

≈ 2�Gc sin(2αt )

G0
, (9)

where G0 = (G1 + G2)/2. In order to simplify the calculation,
one of the symmetry axes is considered parallel to the focal
axis, θ0 = 0, with θ0 the angle made by the symmetry and the
focal axis [Fig. 3(c)]. The relevant trigonometric functions of
αt are expressed in terms of l1 − l2 and l1 + l2. Initially the
following is observed [Fig. 3(c)]: 2αt = φ1 + φ2. By using
sin(2αt ) = sin(φ1) cos(φ2) + sin(φ2) cos(φ1) and geometri-
cal relations, the following is obtained: l0 sin(φ1) = l2 sin(φ)
and l0 sin(φ2) = l1 sin(φ) and through the cosines theo-

rem, cos(φ1) = l2
1 −l2

2 +l2
0

2l0l1
and cos(φ2) = l2

1 −l2
2 −l2

0
2l0l2

, which finally

(b)

FIG. 4. (a) Estimated crack trajectories obtained from Eq. (11),
for θ0 = 0, compared to the exact solution predicted using Wulff’s
method presented in Ref. [12]. (b) Estimated crack trajectories ob-
tained from the numerical solution of Eq. (12) compared to Wulff’s
solution [12] for θ0 = π/4. Isotropic solutions are included in panels
(a) and (b) so they can be compared.
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leads to

du

dv
= �G

G0

[
2uv

l2
0

u2 − l2
0

v2 − u2

]
, (10)

where u = l1 − l2 and v = l1 + l2. In order to solve this
equation, u is replaced by its initial value in the denominator
of the right-hand term, which is justified since v varies more
rapidly than u (u is constant in the isotropic case). Integration
leads to

u ≈ �G

G0

[(
u0

l0

)2

− 1

]
u0 ln

(
v2 − u2

0

v2
0 − u2

0

)
+ u0. (11)

For any orientation θ0 of the symmetry axis, the general
equation for the crack trajectories is

du

dv
= �G

G0

[
2

uv

l2
0

u2 − l2
0

v2 − u2
cos(2θ0) +

√
l2
0 − u2

v2 − l2
0

×
{

v2 + u2 − 2u2v2/l2
0

v2 − u2

}
sin(2θ0)

]
. (12)

In order to validate these analytical approximations, the
trajectories given by the geometrical Wulff’s construction,
obtained by Ibarra et al. [12], are compared. In the case of
θ0 = 0 and θ0 = π/4 the analytical solution [Eq. (11)] is an
optimal approximation to the crack trajectories [Fig. 4(a)]. For
intermediate cases, the solution of Eq. (12) can be obtained
numerically. This agrees well with the exact solution from
Wulff’s method [12] [Fig. 4(b)].

It is worth mentioning that in practical situations Eq. (11)
allows for a direct estimation of the fracture energy anisotropy
�G/G0. This is realized by measuring the corresponding
distance between pulling points (l0) on the sheet and the initial
location of the crack tip (u0, v0) and from the torn sheet the
pair (u, v) on the crack trajectory. If the fracture advances a
significant distance, in practice v − v0 is of the order of l0,

then �G/G0 can be deduced from Eq. (11) with about 10%
uncertainty.

III. CONCLUSIONS

This article focuses on the simplest tearing configuration
where two arbitrary material points on the sheet are pulled
apart from the crack tip. During fracture, the thin sheet
undergoes high levels of out-of-plane deformation. However,
assuming that the sheet is inextensible and infinitely bendable,
a simple representation of the highly bent sheet into a flat sheet
facilitates the calculation of the energy release rate G(θ ) for
any propagation direction θ through an energetic approach.

This is attained through the identification of an effective
pulling vector, which is easily calculated for any geometrical
configuration. Thus, this is a simple approach to introduce
fracture physics and calculate fracture trajectories. In the case
of isotropic materials, fracture trajectories are expected to
be perfect hyperbolas with focal points that are defined by
the pulling points. However, in the presence of anisotropy, the
fracture is deflected towards directions with less fracture en-
ergy, which is consistent with the tangency condition of G(θ )
and Gc(θ ) curves, which maximize the ratio G(θ )/Gc(θ ).
Exploring these conditions within the natural variables of the
problem, the hyperbolic coordinates give differential equation
that, given the pulling points and the initial notch location,
gives predictions of the tearing trajectories. For a slight
anisotropy regime, this prediction is in good agreement with
experiments under similar conditions, without adjustable pa-
rameters.
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