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Janssen effect in dynamic particulate systems
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The Janssen model of stress redistribution within laterally bounded particulate assemblies is a longstanding
and valuable theoretical framework, widely used in the design of industrial systems. However, the model
relies on the assumption of a static packing of particles and has never been tested in a truly dynamic regime
nor for a constraining system whose geometry is dynamically altered. In this paper, we explore the pressure
distributions of granular beds housed within a container possessing a laterally mobile sidewall, allowing
the depth, height, and cross-sectional areas of the systems studied to be dynamically altered, thus, inducing
particle rearrangements and flow in the particulate system constrained thereby. We demonstrate that the systems
studied can be successfully described by the Janssen model across a wide range of system expansion rates,
including those for which liquidlike flow is clearly observed and propose an extension to the model allowing for
an improved characterization of constrained dynamic systems.
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I. INTRODUCTION

Granular materials, despite their ubiquity in, and impor-
tance to, both nature and industry [1–4], remain—as com-
pared to classical, “molecular” materials—surprisingly poorly
understood due, at least, in part, to the comparative com-
plexity of the former, and the resultant deviations of their
behaviors from the models developed to describe the latter
[5,6]. A prime example of such deviation can be found in the
pressure scaling behaviors of a granular material housed in a
relatively tall and narrow container of uniform cross-sectional
area: Whereas the pressure within a classical fluid will—
under normal gravitational conditions—scale with depth as
P = ρgz, where ρ represents the fluid density, g represents the
gravitational acceleration, and z represents the depth below
the fluid’s surface. As such, the pressure felt at the base of
the container will, clearly, scale linearly with the mass of fluid
added. The same simple law cannot, however, be expected to
hold for granular media; for these non-Newtonian materials,
the pressure felt at the base of the system tends exponentially
towards a finite upper limit as more material is added—i.e.,
there exists a point beyond which, in effect, the addition of
more mass to the container will no longer be felt at the base!
This rather striking observation, known as the “Janssen effect”
was explained by its eponymous discoverer as a shielding
effect whereby frictional contacts between grains and the
system’s sidewalls act to redirect pressure towards said walls
and (hence) away from the system’s base [7,8].

The theoretical model derived by Janssen to explain these
effects is still widely and routinely used in industry, most
notably in the design of hoppers and silos where it represents
an industry-standard calculation [9–13].

A. Janssen theory

The Janssen model [7,8] predicts that, for a static granular
assembly housed within an arbitrary solid-walled container,

the weight of particles within the system will be balanced by
variations in the vertical component of the stress tensor σzz

and frictional forces exerted by the system’s walls. As such,
the stress transmitted to the base of the system (z = 0) can be
determined as [14]

σ base
zz = ρηgλ(1 − e−H/λ). (1)

Here, H is the total height of the particle bed, ρ is the
(material) density of particles, and η is the bed’s packing
fraction. The coefficient λ is a characteristic length whose
precise form depends on the specific geometry of the system
under investigation. For the cuboidal containers explored here,
λ takes the form [15]

λ = W D

2(W + D)

1

κμw

, (2)

where W and D, respectively, are the width and the depth
of the system (i.e., its extent in the Cartesian x and y
coordinates—see Fig. 1), μw is the wall’s Coulomb friction
coefficient and the Janssen coefficient κ characterizes the
transmission of vertical to horizontal stresses. The coefficient
κ is typically taken as a constant fitting parameter.

B. Prior work

There exists a considerable volume of scientific research
relating to the Janssen effect under various different condi-
tions [7,8,14–21]. Perhaps of the most direct relevance to the
current work is the 2003 study of Bertho et al. [14], which
demonstrated that the Janssen model can be generalized to
the case in which the walls of the container exhibit motion
relative to the (static) granular packing within. Their exper-
iments involved a packing of particles contained within a
hollow cylindrical tube, the tube being translated upward at
a constant velocity, and the apparent mass of the particles
measured. Janssen theory was observed to hold across a range
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FIG. 1. Schematic providing a simplified depiction of the varia-
tion in height (H ) and width (W ) of the studied granular bed (hatched
region) as the bounding wall moves outward in the horizontal di-
rection, shown alongside simulated systems of equivalent width and
height. The depth (D) of the system lies in the horizontal (y) direction
perpendicular to the page.

of relative velocities up to the order of 1 cm/s for which
the rearrangement of particles is minimized (i.e., the packing
may be considered effectively static). Later work by Bratberg
et al. [22] involved similar experiments exploring the limit
of narrow granular columns, utilizing experimental cylindrical
systems with widths between 1.9 and 3.5 particle diameters.
Although the exponential decay of the Janssen model could be
successfully fitted to the acquired data, even in these extreme
cases, the expected diameter dependence of the model was not
observed to hold.

The case of vertically moving sidewalls is also explored in
simulation by Landry and Grest [23] with a focus on cases
in which significant particle rearrangement is observed. The
paper compares the stress distributions of a simple poured
granular packing to one in which the particle distribution
has been altered through motion of the system’s side walls,
demonstrating that the Janssen model is only fully accurate
if and when friction within the system is significantly “acti-
vated” (i.e., when a suitably large number of particle-particle
and particle-wall contacts reach the Coulomb criterion). How-
ever, in this paper, stresses are only measured when the bed
has been allowed to come to rest.

Further exploration of the importance of the fully mo-
bilized friction condition is carried out in the simulation-
based work of Vivanco et al. [24] who, rather than applying
a simple monodirectional upward or downward translation
of the container’s walls, drive friction mobilization instead
via a cyclic vertical displacement of the system’s containing
walls. This cyclic motion acts to repeatedly mobilize and then
inversely mobilize friction, thus, acting to modify the stress
profiles observed. For relatively shallow beds, the Janssen
model is found to hold for all phases of the cyclic motion,
although the sign of the exponent in Eq. (1) is reversed for the
case of inversely mobilized friction. For taller systems, the
distribution of stresses is more complex with coexisting re-

gions of full, partial, and/or inverse friction mobilization; the
authors propose a generalization of the Janssen model capable
of describing the behaviors of these more complicated cases
also. Once again, data are acquired in the absence of any sig-
nificant particle rearrangement as the systems explored remain
jammed [25,26] throughout the majority of the simulations.

Most recently, Blanco-Rodríguez and Pérez-Ángel [27]
investigated the influence of various key parameters—namely,
the frictional coefficient, particle size, bed width, and parti-
cle polydispersity—on the stress distributions within a two-
dimensional system. Notably, it was found that as the width of
their system was increased relative to the particle diameter—
even at a constant aspect ratio H/W —the Janssen model
becomes less relevant. Specifically, their results suggest that
the system approaches hydrostaticity (i.e., the Janssen model
breaks down) for a ratio Rave

L � 0.008, where Rave is the mean
particle diameter.

C. Aims and motivation

Despite the significant research effort discussed above,
to the authors’ knowledge, the Janssen model has thus far
been applied only to static packings. Even in the case of
Bertho et al. [14] where there exists relative motion between
a particulate system and its housing container, the granulate
itself remains static and solidlike, and the container’s cross-
sectional area remains constant. As such, there remains a sig-
nificant open question regarding the applicability of Janssen’s
theory to dynamic systems where particles exhibit rearrange-
ments and relative motion. If the Janssen model—or a variant
thereof—can be shown to hold also for dynamic particulate
systems, this may prove a significant aid to the safe and
precise design of a variety of systems, such as the tall narrow
rotating drums used widely in the Australian mining industry,
compaction systems in the waste, pharmaceutical, and nuclear
industries, and the numerous systems in a variety of industries
involving the transport of particles through vertical pipes
[28–30].

Perhaps one of the most interesting contemporary applica-
tions of a dynamic Janssen theory is in the design of future
lunar bases [31] where beds of lunar regolith housed in con-
tainers with laterally mobile bounding walls may be used as
shielding to mitigate the destructive effects of micrometeorite
impacts. It is this particular geometry which we explore in the
present paper—although the theoretical derivation presented
may be easily adapted to other dynamic systems. Specifically,
in this paper, we explore—via numerical simulation—the
variation in the force exerted upon the base of a system
housing a granular material of fixed mass and particle number
as the width—and, hence, vertical cross-sectional area—of
said system is altered by the horizontal displacement of a
single bounding wall. Our results provide a demonstration that
the Janssen model may be successfully extended to the case of
dynamic granular systems.

II. SIMULATIONS

A. Simulation model

Our numerical simulations are produced using the MER-
CURYDPM discrete element method software package [32–35],

022902-2



JANSSEN EFFECT IN DYNAMIC PARTICULATE SYSTEMS PHYSICAL REVIEW E 100, 022902 (2019)

utilizing a spring-dashpot model [36,37] with linear elastic
and dissipative contributions for the determination of both
normal and tangential forces.

The normal and tangential forces acting between a pair of
particles i and j are given, respectively, as [37,38]

f n
i j = knδn

i j n̂i j − ζ nvn
i j, (3)

and

f t
i j = −ktδt

i j − ζ t vt
i j . (4)

In the above, the parameters vn
i j and vt

i j represent, respec-
tively, the normal and tangential components of the relative
velocity between particles i and j with δt

i j as the tangential
displacement (for further details, see Ref. [39]). The normal
spring and damping constants, kn and ζ n, respectively, are
determined as

kn = mi j

[(
π

tc

)2

−
(

ln ε

tc

)2
]
, (5)

and

ζ n = −2mi j

(
ln ε

tc

)
(6)

based on a given restitution coefficient ε and contact time tc
[40]. For the current paper, we implement a contact time of
tc = 1 × 10−6 s. The reduced mass mi j for a given pair of
colliding particles is computed as

mi j = mimj

mi + mj
. (7)

The tangential spring and damping constants are determined
from their normal counterparts as kt = 2

7 kn and ζ t = ζ n,
respectively.

A Coulomb-type friction law is implemented with a static
yield criterion applied in such a manner as to truncate the
tangential force f t

i j , acting between two contacting particles
i and j according to the inequality f t

i j � μ f n
i j , where f n

i j is the
normal force acting between the aforementioned particles and
μ is the relevant frictional coefficient. In the current paper,
the frictional coefficient is assigned a value of μ = 0.5, and
the restitution coefficient, which determines energy loss due
to collisional dissipation, is assigned a value of ε = 0.8. The
above-described model has previously been shown to suc-
cessfully recreate the behaviors of dense granular flows, such
as those explored here [41,42]. Stresses within the system
are determined using the coarse-graining [43] methodology
developed by Weinhart et al., full details of which may be
found in Ref. [44].

B. Simulated system

We simulate an open system bounded by five smooth
frictional walls, comprising a horizontal base plate and four
vertical sidewalls. In its initial state, the system possesses a
width and depth of W0 = D0 = 0.025 m and a height of H0 =
0.75 m. The system is filled, via pouring, with a number N =
3183 of 5 mm (mean) diameter spherical particles to create a
randomly packed bed which fills the system (see Fig. 1). The
diameters of the simulated particles are varied uniformly by
±5% so as to prevent the unrealistic crystallization of particles
and, hence, nonrepresentative behavior, which can occur if

FIG. 2. Variation with system width W of the total force exerted
on the base of the housing container for the case of a wall moving at
an externally imposed fixed velocity vw (continuous lines) and for a
series of equivalent static systems of differing fixed width (symbols).
Plotted also (dashed line) is theoretical fit following the conventional
Janssen model [Eqs. (1) and (2)]. Data are shown for various values
of vw , given in the legends provided in units of meters per second;
image (a) omits data for vp = 0.5 m/s such that the trend followed
by the lower-velocity systems may be more clearly observed.

particles are modeled with zero polydispersity. All particles
are assigned an equal material density of ρ = 2500 kg m−3.
The system is exposed to a gravitational acceleration of g =
9.81 ms−2 in the negative vertical direction.

III. RESULTS

A. Conventional Janssen scaling

In Fig. 2, we show the variation with system width of
the total force (i.e., the effective particle weight) felt by the
base of the container for a variety of different outward wall
velocities vw. First notable from this figure is the fact that,
despite the constant mass of material (and, hence, fixed “true”
weight), the effective weight Fbase, felt by the base varies
by approximately an order of magnitude as the bed’s width
W increases and its height H correspondingly decreases.
This observation, although not unexpected, provides a clear
demonstration of the considerable influence of the Janssen
effect in our system.

A second, and perhaps more surprising, observation is that
for dynamic systems with wall velocities ranging from one
tenth of a particle diameter per second up to the significant rate
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of 50 particle diameters per second, the observed Fbase-W rela-
tions all approximately collapse onto a single master curve—
although higher-velocity data sets show stronger fluctuations.

Finally, and perhaps most significantly for the aims of
this paper, we find that the trend is followed also for static
systems of differing (fixed) widths. In other words, we may
safely assume that—in our present system—for vw � 50 d/s,
for any fixed point in time, the Janssen model may be safely
expected to hold.

For higher-still velocities, agreement with the Janssen
model is found to break down (see Fig. 2, lower) as the wall
velocity becomes such that complete detachment between
bed and boundary occurs. The strong deviations from the
predicted form for the case of vw = 0.5 can be relatively
easily explained: during the wall’s initial rapid motion, the
bed becomes detached from the wall, and particles cascade
downwards to fill the void created. As a fraction of the
cascading, particles will enter freefall, their weight will not
be propagated through the system and, hence, not felt by the
base, leading to the initial reduction in Fbase as compared to the
other data sets. As the system expands further (W ∼ 0.18 m),
the freefalling particles recollide with the bed and/or base of
the system, creating an impact force not experienced by the
lower-vw systems and, thus, a relatively increased Fbase.

In short, our results strongly suggest that the Janssen model
can be expected to be applicable for any system in which
continuous contact between particles (i.e., an absence of wall
detachment or particle freefall) may be assumed.

B. A dynamic Janssen model

Although the Janssen model may indeed be expected to
provide a good description of our system at any given point in
time—i.e., any given single width—when we attempt to fit the
model to our dynamic data, the agreement is clearly imperfect
(see Fig. 2, dashed line). In particular, we observe a systematic
overestimation of Fbase for small W and an underestimation for
larger W . This disagreement between theory and simulation
can most likely be explained by the dubious assumption of a
constant Janssen coefficient κ . Although such an assumption
is reasonable for the fixed-width containers explored in prior
works, it cannot necessarily be expected to hold in our beds
where the width (and hence), height, and cross-sectional areas
vary significantly with time. In other words, we must consider
instead a “dynamic Janssen coefficient” κ̃ = κ (W, H ). It fol-
lows from the Janssen model that κ may be determined from
the ratio of horizontal and vertical principal stresses within the
system as detailed in Ref. [8], i.e.,

κ = μ
σwall

σbase
= μ

Fwall

Fbase

Abase

Awall
, (8)

where Awall and Abase are the relevant particle-wall contact
areas upon which the horizontal and vertical forces, respec-
tively, are exerted. We begin by assuming quasistatic motion,
i.e., the original static Janssen model is valid for any given
value of W , meaning that the general form of σbase may
be calculated from Eq. (1). The validity of this assumption
is supported by the fact that—as demonstrated in Fig. 2—
equivalent dynamic and static systems seemingly obey the
same force-width relation.

In order to determine a relation between the horizontal
and the vertical wall-particle contact areas Awall and Abase,
we begin by assuming that the bed occupies a constant to-
tal volume V0 = W0 × D0 × H0 (where W0, H0, and D0 are
constants representing the initial dimensions of the bed as
depicted in Fig. 1). We consider first Abase, which corresponds
simply to the area of the base of the system. As our system
maintains a fixed depth of D = D0, the width-dependent base
area can be written as

Abase(W ) = D0W. (9)

Second, we consider Awall, which corresponds to the contact
area of the bed with the four bounding lateral walls of the
system. The two static bounding walls in the y direction
will maintain a constant contact area, whereas the two walls
bounding the system in the direction of motion (i.e., the x
direction) will see a decrease in area as 1

W . As such, the total
horizontal contact area at a given system width W can be
calculated as

Awall = 2(W0H0 + D0H ), (10)

where H = H (W ) = H0W0
W , i.e.,

Awall(W ) = 2W0H0

(
1 + D0

W

)
. (11)

Equation (1) may be trivially expanded to give the total force
acting on the base of our system as

Fbase = Abaseσbase = D0W ρηgλ(1 − e−H/λ). (12)

Knowing that—as the total mass Mp of particles remains
constant—the total weight of the particles within the system
is given by

Fg = Mpg = ρηgW0D0H0, (13)

and that the difference between this total force and the force
felt by the bed must be borne by the system sidewalls, the
tangential force exerted by the walls can, therefore, be given
as

Ft
wall = Fg − Fbase = ρηgD0[W0H0 − W λ(1 − e−H/λ)]. (14)

Assuming, as per the conventional Janssen model, fully mo-
bilized Coulombic friction, the normal wall force can then be
given as

Fwall = ρηgD0

μ
[W0H0 − W λ(1 − e−H/λ)]. (15)

Combining Eqs. (1), (8), (11), and (15), we obtain an expres-
sion for the dynamic Janssen coefficient,

κ̃ = μ
σwall

σbase
= μ

Fwall

Awallσbase

= ρηgD0[W0H0 − W λ(1 − e−H/λ)]

2W0H0
(
1 + D0

W

)
ρηgλ(1 − e−H/λ)

, (16)

which can be simplified to give

κ̃ = W D0

2(W + D0)

[
1

λ̃(1 − e−H/λ̃)
− W

W0H0

]
, (17)

022902-4



JANSSEN EFFECT IN DYNAMIC PARTICULATE SYSTEMS PHYSICAL REVIEW E 100, 022902 (2019)

FIG. 3. (a) Variation of the effective weight felt by the system
base Fbase with the system width W for the varying-velocity data
originally shown in Fig. 2. (b) Variation of Fbase with W for a variety
of different horizontal system depths D0 at fixed initial height H0 =
0.75 m, thereby providing also a variation in the true weight Mpg of
the system. All data shown in this panel are conducted at a fixed wall
velocity of vw = 0.01 m/s = 2d . In both cases, fits corresponding to
the classical (constant κ) modified (dynamic κ̃) Janssen models are
represented by dashed and dotted lines, respectively.

where λ retains a dependence on a constant “static κ” which,
as in the original Janssen model, may be used as a fitting
parameter.

In Fig. 3, we show a series of Fwall-W curves for beds
possessing not only a range of expansion velocities, but also a
range of horizontal bed depths D0 ∈ [0.025, 0.1] and, hence,
varying total masses Mp, each fitted by Eq. (1) with both fixed
[Eq. (2), dashed lines] and dynamic [Eq. (17), dotted lines]
Janssen coefficients; in both cases, a single value of the static
Janssen coefficient κ = 0.225 (corresponding to a “static de-
cay length” λ = 0.06 m) is utilized for all simulated systems.
Whereas even the unaltered Janssen model can be seen to
provide a reasonable description of the systems’ behavior, the
extended model provides a superior fit in all cases, despite
the significant variation in both the bed’s horizontal depth
and the mass. It is valuable to note that the model is, for all
tested cases, found to produce strong agreement for all W -H
combinations for which the system walls can be expected to
bear any appreciable fraction of the system’s weight—in other
words, our results imply the modified model to be valid as
long as the Janssen effect is, in fact, present.

FIG. 4. Variation of effective weight Fbase with system width for
a fixed bed depth of D0 = 0.025 m and initial bed height of H0 =
0.75 m and particle-particle frictional coefficient μ = 0.5. Data are
shown for wall-friction coefficients μw = 0.25 [panel (a)] and μw =
1.0 [panel (b)]. In both cases, the black dotted line represents a fit
corresponding to the modified Janssen model.

In Fig. 4, we show data for a system in which the particle-
particle friction coefficient (μp) remains constant at a value
μp = 0.5, whereas the particle-wall restitution coefficient
takes on values of 0.25 (μw = μp

2 ) and 1 (μw = 2μp). In both
cases, we see that the modified Janssen equation continues to
provide a good description of the systems’ behaviors across a
range of wall velocities and frictional coefficients even for the
case in which μw �= μp.

C. The “free wall” case

Thus far, we have considered the case in which the par-
ticle transport within our system is driven by an externally
imposed prescribed motion. Whereas this situation is typ-
ical to a majority of industrial applications, we consider
now the case of a mechanically unstable free wall, whose
motion is driven by the horizontal pressure exerted by the
bed constrained thereby—the situation more relevant to the
lunar-base-shielding application [31] discussed in Sec. I C.
To test this case, we simulate a bed of particles identical to
that discussed in previous sections, bounded in the lateral
directions by three rigid fixed walls and one free wall of
mass Mw whose motion is determined by the balance between
outward pressure from the particle bed and the frictional force
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FIG. 5. Variation of Fbase with system width for the case of a free
bounding lateral wall for walls of varying mass Mw . The dotted line
corresponds to the modified Janssen model utilizing the same κ̃ as in
Fig. 3. It is interesting to note that the observed force-width relation is
seemingly independent of the wall bounding wall mass for the range
of Mw explored.

between the wall and the base of the system. For simplicity
and ease of interpretation, the free wall is constrained to
remain vertical and possess a constant frictional coefficient
μw = μp = 0.5. The system’s initial conditions match those
described in Sec. II B. In Fig. 5, we plot a curve corresponding
to our dynamical Janssen model using the same κ̃ as for Fig. 3,
alongside simulated force vs width data for simulations using
free walls of mass Mw ∈ [ 1

16 Mp, Mp]. Although the simulated
curves obtained are significantly noisier than those obtained
via externally imposed wall motion, curves for a variety of
wall masses are all observed to follow the same broad trend
predicted by the modified Janssen model. Note that the length
of the various curves is limited by the equilibrium point of the
wall (i.e., how far a wall of given mass can be expected to
move before the outward force exerted by the bed is balanced
by the opposing frictional force).

D. Limits of validity

It is finally valuable to consider the relevant timescales
which govern the appropriateness and quality of the predic-
tions provided by our modified Janssen model and, hence,
establish the limits of its applicability—as well as provid-
ing insight into the origin of the surprisingly wide range
of velocities across which said model is seemingly valid.
In any granular system, we may consider a value of τg =√

2d
g , corresponding to the time required for an initially static

particle to fall through a distance equal to its own diameter as a
timescale relevant to said system’s dynamical behaviors. The
behavior of our current system of interest can be predicted
by comparing a second natural timescale τw = d

vw
, the time

required for the moving wall to travel one particle diameter,
to the previously defined timescale. For the case of τw � τg,
the system can be assumed to behave quasistatically, meaning
that we may expect our system to be well described by the
modified Janssen model. For our present system, the afore-
mentioned condition implies that our model may be expected
to hold, to a reasonable extent, for wall velocities vw � 0.15,
a prediction borne out by the data presented in Figs. 2 and 3.
Notable also from these figures is that as the relevant timescale
approaches and begins to exceed the granular timescale τg, the
fluctuations about the predicted Fbase values begin to increase
as the separation of the two relevant timescales becomes
diminished, with agreement breaking down entirely only as
the timescales significantly diverge at large vw.

IV. CONCLUSIONS

In this paper, we have detailed a test of the validity of the
Janssen pressure-scaling model for dynamic granular systems
possessing a nonconstant characteristic length. In doing so, we
have demonstrated that the underlying physics of the system
may indeed be successfully described by the basic principles
of the Janssen model, even at significant bed-expansion veloc-
ities. Indeed, our results strongly imply that the Janssen model
can be expected to be held for all cases in which continual
contact between neighboring particles—and, where relevant,
the system walls—can be expected.

Furthermore, we have provided an extension to the orig-
inal (static) Janssen model for the case of a dynamically
expanding system and shown this model to accurately predict
the behavior of such systems across a range of expansion
velocities, system extensions, system widths, particle-wall
friction values, and bed masses. Furthermore, we have shown
the modified theory to hold both for the case of externally
imposed wall motion as well as for that of a free bounding
wall.

The ability to better understand and predict the behaviors
of laterally constrained dynamic systems—for example, the
high-aspect-ratio tumblers used in the mining industry or nu-
merous applications involving pipe flow—may prove highly
valuable to future research, both academic and industrial. In
particular, the applicability of our model to systems bounded
by free walls will directly benefit contemporary research
concerning impact shielding for lunar structures.
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