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Emergence of a linear slope region of the isotherm in the first-order
liquid-expanded–liquid-condensed phase transition in Langmuir monolayers
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A nonhorizontal slope in the isotherm has been observed in the two-phase coexisting region of the first-
order liquid-expanded (LE)–liquid-condensed (LC) phase transition in Langmuir monolayers for many decades.
We show that the simple analysis of a phenomenological Landau free energy involving the coupling-energy
contributions of molecular lateral density (ρ ) with spontaneous collective chain tilt (θ ) and two-dimensional
strain (εs ) inside the LC domain enables one to understand the origin of a nonhorizontal straight-line slope in
the LE-LC phase coexistence region of the isotherm. The presence of ρ − εs coupling must be essential for the
appearance of the straight-line shape of a nonhorizontal plateau in the isotherm. Moreover, it is found from the
comparison of the two-dimensional contour plots of the free energy that an LE phase may persist significantly
even at the later stage of the straight-line regime beyond a transition midpoint surface pressure in the presence of
this coupling. The persistence of the LE phase may lead to the delay of transition progress as manifested more
clearly by the appearance of a compressibility plateau in the coexistence region that indicates the existence of
persistent equilibrium density fluctuations in the monolayer.
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I. INTRODUCTION

Langmuir monolayers have received much attention from
the viewpoints of physical, chemical, biological interests,
and their potential applications [1–4]. Surface pressure (π )
-molecular area (A) isotherms provide information about
the phases and phase transitions in monolayers [5]. The
isotherms, characterized by the appearance of a nonhorizontal
slope region followed by a steeper nonlinear ascent region in
the phase-coexistence region of a first-order liquid-expanded
(LE)–liquid-condensed (LC) phase transition, have been most
commonly found in some fatty-acid monolayers [6] and in
phospholipid monolayers [7,8]. The origin of a nonzero slope
in the isotherm has been extensively discussed from various
perspectives: (i) the effect of impurities in monolayer materi-
als [9,10], (ii) the effect of the long-range dipole interaction
[11,12] and (iii) the formation of two-dimensional molecular
aggregates such as surface micelles and submicroscopic clus-
ters constituting a finite number of amphiphilic molecules
[13–15]. Besides the above possibilities, some authors dis-
cussed the nonhorizontal slope of isotherms from certain
mechanical viewpoints. Arriaga et al. stressed the significance
of the mechanical rigidity of a microheterogeneous composite
medium composed of two coexisting phases to the occurrence
of a finite slope in the phase-coexisting region [16].

As mentioned above, although the origin of the appearance
of a nonhorizontal slope in the isotherm has been extensively
discussed from both theoretical and experimental viewpoints
(and it still remains unclear), another interesting puzzle to
be solved in a monolayer isotherm concerns the shape of a
nonhorizontal slope, which has almost not been addressed
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so far. In this paper we focus our attention on the origin
of the isotherm shape of a nonhorizontal slope appearing
immediately after the onset of the LE to LC phase transition.
The isotherm generally exhibits either one of two types of
shapes in the nonhorizontal slope region: a curved line or
a straight line. The isothermal compressibility, defined as
the fractional change of surface area per unit change in sur-
face pressure, characterizes the isotherm shape in the LE-LC
phase-coexistence region more definitely. It normally shows a
peak [17,18] or a plateau [13,19,20] corresponding to a curved
line or a straight line in the isotherm, respectively (Fig. 1).
The cause of a maximum in the experimental compressibility
curve in an LE-LC transition was discussed in relation to a
change in the tilt of the hydrocarbon chain at the air-water in-
terface and to reorientations in the head group region [17,21].
From a theoretical point of view, the formation of a finite
size of cooperatively transforming molecular clusters as small
systems was attributed to a phase transition over some range
of pressures and this transition would be possible to exhibit a
finite slope in the isotherm [14,22]. In this case, however, the
resultant compressibility curves always must show a peak and
not a plateau, as it can be easily checked by direct calculation
from the cooperative cluster model [14,22].

We must thus seek another cause for the origin of the oc-
currence of a nonhorizontal straight-line shape in the isotherm
and of the resultant compressibility plateau. We here note
that the ordered fluid LE-LC phase transition is a kind of
first-order transition between condensed phases and that the
transition proceeds by the growth of domains of the product
phase at the expense of the surrounding parent phase [16]. In
monolayer isotherms in which the LE-LC phase-coexistence
region can be observed, the area of a molecule (ALE) in the
LE phase is normally much greater than that (ALC) in the
LC phase. In the phase-coexistence region it is thus highly
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FIG. 1. Schematic illustration of a monolayer isotherm and two
types of compressibilities in the two-phase coexistence region of the
first-order LE-LC phase transition in Langmuir monolayers.

likely that the free energy of an LC domain within a matrix
of LE phase is significantly different from that of an LE
domain of exactly the same size and shape within a matrix of
LC phase due to its different stored strain energy. Therefore
an additional mechanical strain energy contribution must be
involved in the excess free-energy expression of the LE-LC
transition. In Ref. [16] Arriaga et al. indeed investigated the
macroscopic relation between the mechanical rigidity kineti-
cally controlled of a microheterogeneous medium constituted
of two coexisting phases and frustrated first-order metastable
energetics giving rise to a nonhorizontal transition plateau in
the isotherm. Kaganer et al. reported experimental evidence of
an equilibrium phase coexistence in strained heteroepitaxial
films over a wide temperature interval [23,24]. The fraction
of the low-temperature phase decreased almost linearly with
approaching the phase-transition temperature. We expect that
such a mechanical strain-related first-order phase transition
may occur over some temperature or pressure range in the
LE-LC transition.

From the above viewpoints, in this study we present a
simple argument based on a phenomenological (“coarse-

grained”) Landau free energy involving the coupling effects
of molecular lateral density (ρ) with spontaneous molecular
collective chain tilt (θ ) and two-dimensional (2D) strain (εs)
inside the LC domain to examine the effects of stored strain
energy on the first-order LE-LC phase transition in Langmuir
monolayers. As the result of this analysis, it is found that the
existence of ρ − εs coupling in the transition region may lead
to the appearance of a nonhorizontal linear slope region in
the isotherm with equilibrium phase fractions depending on
the surface pressure. The comparison of the 2D-contour plots
of the free energy calculated with different renormalization
parameter values suggests that ρ − εs coupling leads to the
persistence of the LE phase even at the later stage of the linear
slope regime beyond a transition midpoint surface pressure in
the two-phase coexistence region. This may be closely related
to the appearance of an isothermal compressibility plateau as
often previously observed in lipid monolayers [19,20,25].

II. LANDAU MODEL INVOLVING THE
COUPLING-ENERGY TERMS OF LATERAL DENSITY

WITH SPONTANEOUS CHAIN TILT AND 2D STRAIN FOR
A FIRST-ORDER LE-LC PHASE TRANSITION IN

LANGMUIR MONOLAYERS

A. Formulation

The magnitudes of spontaneous molecular collective chain
tilt (θ ) and 2D strain (εs) inside the LC domain in monolayer
can depend on the extent of an LE to LC transition progress,
and the presence of θ and εs, on the other hand, can affect
the degree to which the transition proceeds. There must thus
be a corresponding decrease in the free energy through the
evolution of ρ in such a way as to compensate the excess
elastic energy for θ and εs generated within the monolayer.
That is, the changes of ρ, θ , and εs must be adjusted spon-
taneously to minimize the total free-energy penalty as the
transition proceeds. In order to get direct and intuitive insights
into the macroscopic thermodynamic character of such a first-
order LE-LC phase transition under the growth of internal
strain and the microscopic driving forces behind it, let us
start with a phenomenological Landau model [26]. Since the
generation of a long-range strain field due to ρ − εs coupling
promotes the mean-field behavior, a Landau theory is ex-
pected to provide an accurate description of phase transitions
in a monolayer under influence of strain.

In order to investigate the manner in which spontaneous
orientational elasticity and 2D strain fields influence the
progress of the first-order transition in monolayer with some
pseudo-2D character, we assume that the excess free energy of
the low-symmetry LC phase over that of the high-symmetry
LE phase is given as follows:

�G(π, T ) = GLC − GLE = 1

2
a(T − T0)ρ2 + 1

4
Bρ4 + 1

6
Cρ6 (a,C > 0, B < 0) (�Gρ )

+ 1

2
Kθ θ

2 + K0εs
2

2

1 + γ0

1 − ν
ν =

(
RLC

RLE

)2

, γ0 = 4

3

μ0

K0
, (K0, Kθ > 0, εs, μ0 � 0) (�Gelastic )

+ dρ2θ + eρ2εs (d, e � 0) (�Gcoupling)

. (1)
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In Eq. (1) the order parameter driving the transition in
monolayer is the lateral packing density difference ρ(=
ρLC − ρLE) between the two phases in order to account for a
large change in molecular lateral density (generally one order
of magnitude higher than density differences between the
liquid and solid phases of bulk materials). A possible LE-LC
phase boundary (line energy) effect can be neglected in the
present case since it is small compared to the long-ranged
strain energy. �Gρ is a standard Landau potential for the
variation of excess free energy with temperature. This has
only even powers from symmetry reasons. a, B, and C are
coefficients which do not depend explicitly on temperature
and surface pressure. We choose B < 0 and C > 0 to consider
the effects of chain tilt and 2D strain on the molecular density
in monolayer for the case of an already first-order transition.
We note that T0 is the equilibrium transition temperature
for second-order and tricritical transitions under ordinary
pressure and that a first-order transition occurs at a higher
transition temperature Ttr (= T0 + (3/16)(B2/aC) > T0).

In addition to �Gρ , we have added excess chain tilt–2D
strain energy �Gelastic and excess molecular density–chain
tilt-2D strain coupling energy �Gcoupling in the total excess
free energy �G. K0 and μ0 are the compression and shear
moduli of the LE phase and εs is the 2D strain inside the LC
phase. Kθ is the orientation (splay) elastic constant. Although
μ0 is normally negligibly small compared to K0 in the LE
phase [16,27], we retain γ0(= (4/3)(μ0/K0)) term for gener-
ality. ν is the area fraction of the LC phase to the total area,
ν = SLC/(SLE + SLC) = (RLC/RLE)2 (see Fig. 6 in Appendix
A). Fluorescence microscopy image analysis combined with
the “lever rule” technique demonstrated that ν is inversely
proportional to A in the LE-LC phase coexistence region
[28,29]. In the present model, one can thus regard ν as a
direct counterpart to the average molecular density (A−1) in
the isotherm. That is, in the phase-coexistence region, ν = 0
corresponds to the molecular area ALE for a single LE phase,
i.e., the onset surface area of the LE to LC transition and
ν → 1 means that the molecular area approaches the molec-
ular area ALC for a single LC phase. �Gelastic in Eq. (1)
involves spontaneous strain-energy terms derived from the
orientation and the 2D Hooke’s laws, assuming that their
changes are small through the transition. The first term in
�Gelastic represents the excess elastic energy caused by the
orientational change of molecules. In the collective change
in equilibrium tilt angle, θ = θLC − θLE, resulting from inter-
molecular interactions between the tail groups, θLE and θLC

are the angles between the average chain orientation and the
normal to the water surface in each phase. The second term
in �Gelastic is the excess 2D strain energy of the LC phase
depending on the LC phase area ratio ν, and it was derived
within the linear elasticity framework under the assumption
that the monolayer is under hydrostatic compression (see Ap-
pendix A for the derivation). The “renormalized” compression
modulus, K ′ = 1+γ0

1−ν
K0, indicates that elastic hardening of the

two-phase coexistence system gradually develops as the LE to
LC transition proceeds. The value of ρ will be influenced by
θ and εs during the transition. �Gcoupling in Eq. (1) represents
the coupling contributions of θ and εs to ρ. The geometrical
parameters, θ and εs, are allowed to be coupled with ρ in the
lowest order by symmetry reasons. The coupling constants

d and e express the strength of coupling of ρ with θ and
εs, respectively. We have ignored the complexities introduced
by π , T dependences of the coupling constants d , e and of
the elastic moduli K0, Kθ for simplicity. The first terms in
�Gelastic and �Gcoupling were first introduced by Albrecht and
coauthors in order to investigate the chain-melting transition
in phospholipid monolayers [13].

The Landau expansion is normally described for phase
transitions that occur as temperature is varied under ordi-
nary pressure. It would be convenient to convert the external
intensive variable from temperature to surface pressure in
�Gρ in order to consider a monolayer isotherm. After some
manipulation of Eq. (1) (Appendix B), we finally obtain the
rescaled free energy, �Gres

ν :

�Gres
ν =

(
C2

|B|3
)

�Gν

= ν

(
π res

2
ξ 2 − 1

4

(
1 + α + β

1 − ν

1 + γ0

)
ξ 4 + 1

6
ξ 6

)
,

ρ =
( |B|

C

)1/2

ξ, π res = −aC

B2

(
dTc

dπc

)
(π − πc),

α = 2d2

|B|Kϑ

� 0, β = 2e2

|B|K0
� 0, γ0 = 4μ0

3K0
� 0.

(2)

Here we note that the actual surface pressure π (< πc)
increases as the rescaled surface pressure π res decreases since
the coefficient −(aC/B2)(dTc/dπc) is always negative under
the condition considered here.

B. Analysis of the rescaled Landau free energy

Using the rescaled free energy, Eq. (2) and from the con-
dition ∂�Gres

ν /∂ξ = 0, π res can be expressed by the rescaled
order parameter ξ as follows:

∂�Gres
ν

∂ξ
= νξ

{
π res −

(
1 + α + β

1 − ν

1 + γ0

)
ξ 2 + ξ 4

}
= 0,

∴ π res =
(

1 + α + β
1 − ν

1 + γ0

)
ξ 2 − ξ 4. (3)

Substituting π res in Eq. (3) into that in Eq. (2) and from
the condition ∂�Gres

ν /∂ν = 0, one can obtain the equilibrium
order parameters ξLE and ξLC:

∂�Gres
ν

∂ν
= ξ 4

{
−1

3
ξ 2 + 1

4
(1 + α) + β

4

(
1 − 2ν

1 + γ0

)}
= 0.

∴ ξLE = 0 and ξLC = ±
{

3

4

(
1 + α + β

1 − 2ν

1 + γ0

)}1/2

.

(4)

Since the order parameter ξLC must be real and nonzero
in the phase coexistence, we impose the condition of the
radicand in Eq. (4) being real and positive in the phase-
coexistence region between ν = 0.0 and ν = 1.0. The range
of β is hence bounded above by the condition 1 + α > β.
At the transition midpoint, the condition �Gres

ν = 0 should
be satisfied. Using the nonzero ξLC in Eq. (4), we have ν
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dependence on π res:

νξ 2

{
π res

2
− 1

4

(
1 + α + β

1 − ν

1 + γ 0

)
ξ 2 + 1

6
ξ 4

}
= 0,

∴ π res
ν = 1

2

(
1 + α + β

1 − ν

1 + γ0

)
ξ 2 − 1

3
ξ 4

= 3

16

(
1 + α + β

1

1 + γ0

)(
1 + α + β

1 − 2ν

1 + γ0

)
.

(5)

From π res
ν in Eq. (5) and the relation between π res and π in

Eq. (2), we can obtain the following important result: In the
presence of molecular density–2D strain coupling (β�0), the
actual surface pressure π increases “linearly” with increasing
(decreasing) molecular density (molecular area) in a nonhor-
izontal plateau of the two-phase coexistence region of the
isotherm.

From Eqs (2), (4), and (5), we obtain the following scaling
relation between ξLC and π :

ξLC = ±2

(
aC

B2

)1/2( dTc

dπc

)1/2(
1 + α + β

1

1 + γ0

)−1/2

× (πc − π )1/2 . (6)

Using π res
ν in Eq. (5), the onset surface pressure of the LE

to LC transition (ν = 0),

π res
ν=0 = 1

2

(
1 + α + β

1

1 + γ0

)
ξ 2 − 1

3
ξ 4

= 3

16

(
1 + α + β

1

1 + γ0

)2

. (7)

At the transition midpoint (ν = 0.5),

π res
tr ≡ π res

ν=0.5 = 1

2
+ (1 + α)ξ 2 − 1

3
ξ 4

= 3

16

(
1 + α + β

1

1 + γ0

)
(1 + α). (8)

Therefore, the actual transition midpoint surface pressure
πtr is

πtr = πc − π res
tr

(
B2

aC

)(
dπc

dTc

)

= πc − 3

16

B2

aC

(
dπc

dTc

)(
1 + α + β

1

1 + γ0

)
(1 + α). (9)

From Eq. (9) the strain-renormalized, actual surface pres-
sure πtr becomes lower compared to the corresponding
“bare” surface pressure π0

tr (= πc − (3/16)(B2/aC)(dπc/dTc))
for α �= 0 and/or β �= 0.

At the later stage of the straight-line regime of the transi-
tion (for instance, at ν = 0.8):

π res
ν=0.8 = 1

2
(1 + α)ξ 2 − 1

3
ξ 4

= 3

16

(
1 + α + β

1

1 + γ0

)(
1 + α − 0.6β

1

1 + γ0

)
.

(10)

FIG. 2. 2D-contour plots of the Landau free energy �Gres
ν

[Eq. (2)] along the rescaled lateral density order parameter ξ and
the LC phase area ratios ν: (a) α = 0.0; β = 0.0, γ0 = 0.0, πtr

res =
0.188 (decoupling); (b) α = 0.143, β = 0.0, γ0 = 0.0, ptr

res = 0.245
(density–chain tilt coupling); (c) α = 0.0, β = 0.143, γ0 = 0.0,
πtr

res = 0.214 (density–2D strain coupling); (d) α = 0.143, β =
0.143, γ0 = 0.0, πtr

res = 0.276 (density–chain tilt-2D strain cou-
pling). (�) ν = 0.2; (�) ν = 0.5; (�) ν = 0.8.

From Eqs. (2), (7), and (10), as the transition proceeds from
ν = 0.0 to ν = 0.8, the actual surface pressure interval �π is

�π = πν=0.8 − πν=0

= − B2

aC

(
dπc

dTc

)(
π res

ν=0.8 − π res
ν=0

)

= 3

10

B2

aC

(
dπc

dTc

)
β

(1 + γ0)2 {(1 + α)(1 + γ0) + β}.
(11)

For the decoupling limit (β → 0) between ρ and εs, �π

approaches zero; that is, a nonhorizontal slope of 2D strain
origin does vanish in the isotherm.

III. RESULTS

To investigate the geometrical features of our derived free
energy �Gres

ν [Eq. (2)], we show the two-dimensional contour
plots of the free energy along the rescaled lateral density order
parameter ξ and for some typical LC phase area ratios ν in
the two-phase coexistence region (Fig. 2). �Gres

ν is an even
function of ξ and it is symmetric with respect to ξ = 0.0. Each
2D free-energy contour plot was made with the equilibrium
transition surface pressure π res

tr [Eq. (8)] for given α, β, γ0

values. The values of α, β, γ0 were chosen arbitrarily for illus-
tration of the effects of molecular density–mechanical strain
coupling on �Gres

ν . The LE and the LC phases correspond to
the free-energy minima at ξLE = 0 and at some nonzero ξLC,
respectively. They have the same energy value at ν = 0.5 for
all cases. There is one free-energy maximum constituting a
finite energy barrier between the two free-energy minima. The
energy barrier height depends on the strength of both ρ − θ

022801-4



EMERGENCE OF A LINEAR SLOPE REGION OF … PHYSICAL REVIEW E 100, 022801 (2019)

FIG. 3. (a) 2D-contour plot (ξ� 0.0) of the Landau free energy
shown in (d). The two minima correspond to the LE (ξ = 0) and
the LC (ξ �= 0) phases, respectively. (b) The LC phase area ratio
ν dependence on the energy barrier height W (�) and the energy
asymmetry � μ (�). Inset: The LC phase area ratio ν dependence
on the driving force � (≡ �μ/W ) (�) for transition. (c) Schematic
of the transition from a higher metastable α phase, over an energy
barrier W to a lower stable β phase.

(α) and ρ − εs (β) couplings as well as on ν. In the presence
of ρ − εs coupling [Figs. 2(c) and 2(d)], the energy barrier
for both (LE→LC and LC→LE) directions is not identical
except at ν = 0.5. We can see that the barrier asymmetry
is reversed across at the transition midpoint (ν = 0.5) and
that the LC phase becomes energetically metastable above
it. Figure 3(a) shows the 2D contour plot of the free energy
shown in Fig. 2(d) at a smaller interval of ν. In order to see
this behavior more quantitatively we show ν dependence on
the energy barrier height W and the energy asymmetry �μ

[Fig. 3(b); see also Fig. 3(c)]. In the range of ν = 0.0 to
ν = 0.5 the energy barrier height WLE→LC from the majority
LE phase to the minority LC phase increases monotonously
with increasing ν while the energy asymmetry �μLE→LC does
not change significantly. Above the midpoint, WLC→LE from
the majority LC phase to the minority LE phase remains
almost constant while �μLC→LE increases monotonously. The
driving force � for transition is plotted as a function of ν in the
inset of Fig. 3(b). As the LC phase grows beyond the transition
midpoint (ν > 0.5), the driving force from the majority LC
to the minority LE phase increases monotonously. In Fig. 4,
we plot ν dependence on π res

ν from Eq. (5) (remember that
ν is a direct counterpart to the average molecular density,
A−1). In this plot we consider only the effect of density–
mechanical (chain tilt–2D) strain coupling on the surface
pressure. Although the effect of limited cooperativity in the

FIG. 4. LC phase area ratio ν dependence on rescaled equilib-
rium surface pressure π res

ν : (a) α = 0.0 , β = 0.0 , γ0 = 0.0 (decou-
pling); (b) α = 0.0 , β = 0.143 , γ0 = 0.0 (density–2D strain cou-
pling); (c) α = 0.143 , β = 0.0 , γ0 = 0.0 (density–chain tilt
coupling); (d) α = 0.143 , β = 0.143 , γ0 = 0.0 (density–chain
tilt-2D strain coupling).

transition would produce an additional contribution for the
isotherm shape, its effect is not included in this plot. Only
in the presence of ρ − εs coupling [Figs. 4(b) and 4(d)], π res

ν

decreases (or the actual surface pressure π increases) linearly
with increasing ν (or decreasing A) in the phase coexistence
region. From Eq. (11), the stronger ρ − εs coupling (the larger
β) is, the larger is the surface pressure interval �π .

IV. DISCUSSION

It is experimentally well known that cooperative clusters
are formed in the LE-LC phase-coexistence region and that
their size is normally finite (the order of 10–100 molecules)
[13,15,30,31]. If this limited cooperativity is a dominant
mechanism for the transition progress, the transition will
certainly occur over some surface pressure range [14,22]. For
such a finite cooperative transition, however, the isotherm
must show a curved line shape in the coexistence region and
the resultant compressibility curve must result in a peak with
finite width and height. The presence of coupling of molec-
ular lateral density ρ with additional mechanical degrees of
freedom, θ and εs, might significantly affect its energetics in
the LE-LC transition. In fact, if all the domains were to collect
together to form one large domain, for instance, instead of a
large number of separate small domains of one phase within
the bulk, parent phase, then effects of strain energy would be
remarkably reduced [32]. From the above considerations, we
have investigated the energy cost of the formation of a finite
fraction of LC region embedded inside an LE matrix within
the framework of a phenomenological Landau model. The
coupling effects of ρ with spontaneous θ and εs can produce
a strain renormalization of the fourth-order coefficient in
the excess free energy �Gres

ν [Eq. (2)]. This renormalization
leads to the change in strength of the LE-LC transition and
provides some useful information on how the LE to LC
transition proceeds [Eq. (5)]. The fourth coefficient in �Gres

ν

increases negatively with increasing the renormalization con-
stants α and β. This suggests that the transition is driven even
more strongly first order with increasing the renormalization
strength and that the actual transition pressure πtr is reduced
more strongly [Eq. (9)]. From Eqs. (2), (4), and (5), ν and the
discontinuity in the order parameter �ξ (= ξLC − ξLE(≡ 0))
scale with π as ν ∝ π and �ξ ∝ (πc − π )

1/2
, respectively. The

former relation is consistent with the previous experimental
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FIG. 5. Renormalized, control parameters α, β dependence on
the equilibrium actual surface pressure difference �π in the two-
phase coexistence region of the LE-LC phase transition. [B2/aC =
3.0 K, dπc/dTc = 2.35 mNm−1 K−1, γ0 = 0.0 in Eq. (11)].

results [13,19]. From the latter scaling relation, as the LE to
LC transition proceeds from ν = 0 to ν = 0.8, ξLC is expected
to decrease by 1.6β due to ρ − εs coupling. In the molecular
density–mechanical strain decoupling limit (α, β → 0), ξLC

reduces to the bare order parameter ρ0
LC

= (3|B|/4C)1/2 at
a single transition surface pressure π0

tr (= πν=0 = πν=0.8) =
πc − (3/16)(B2/aC)(dπc/dTc). It should be noteworthy from
Eqs. (5) and (11) that as far as a finite ρ − εs coupling
(β �= 0) exists a finite isotherm linear slope must arise, irrel-
evant of the presence of density–chain tilt coupling. It was
reported that the main (first-order) transition is characterized
by the appearance of a nonhorizontal straight-line region in
isotherms and isobars [13,19]. The appearance of a straight-
line shape of the isotherm in the LE-LC coexistence region is,
however, nontrivial [20,33]. Our result indeed suggests that π

increases linearly with increasing ν (or with decreasing A) in
the isotherm only in the presence of ρ − εs coupling. Although
a nonhorizontal straight-line shape of mechanical strain origin
would certainly vanish in the phase-coexistence region of
isotherm in the absence of ρ − εs coupling, a nonhorizontal
curved line shape would still remain in the isotherm due to the
existence of intrinsic limited cooperativity of the transition.
To consider how the horizontality of isotherm in the phase-
coexistence region is lost upon the renormalization parameters
α and β, we plot the actual surface pressure interval �π as a
function of α and β using Eq. (11) (Fig. 5). For plotting this
schematic phase space, we need the values of dπc/dTc and
Landau coefficient ratio B2/aC. Albrecht et al. [13] carried out
to determine dipalmitolylphosphatidylcholine (DPPC) mono-
layer phase diagrams from the isotherm measurements. They
identified a tricritical point as well as a line of first-order
phase transitions on their phase diagram. From their phase
diagram we take dπc/dTc = 2.35 mNm−1 K−1 as a typical
value for evaluation. The Landau coefficients of monolayers
have not been reported to date. However, some efforts were
made to evaluate the Landau coefficients for DPPC bilayers
[34] and for liquid crystals [35,36]. Typically, the coefficients
in lipid bilayers are one order of magnitude larger than those

in liquid crystals. This can be simply explained by the large
latent heat of gel to liquid-crystalline phase transition (we
note that the latent heat of monolayers is comparative to
that of lipid bilayers [13]). Most transition properties remain
constant except the latent heat when the Landau coefficients
are increased by the same factor [34]. In fact, we have
compared the values of the Landau coefficient ratio using the
coefficients reported for DPPC bilayer [34] and for nematic
N-(p-methoxybenzylidene)-p′–butylaniline (MBBA) [37] and
have obtained the comparative values, 2.7 (DPPC) and 4.7
(MBBA). We thus take B2/aC = 3.0 K as a moderate value
of the coefficient ratio. Using these values we have plotted
α and β dependences on the surface pressure interval �π

in Fig. 5. The calculated values of �π are reasonable and
the values previously reported for nonhorizontal isotherms lie
within �π for chosen ranges of α and β. From this schematic
phase plot we can see how the horizontality of the isotherm
is lost depending upon the control parameters α and β. The
horizontality of an isotherm is kept only on the β = 0 line.
Therefore, β can be identified as the key control parameter
of nonhorizontality in the isotherm. At the constant β (�0),
�π is weakly dependent on α. A negative fourth-order term
in the Landau free energy creates an energy barrier in the free-
energy landscape, leading to a first-order transition. In Eq. (2)
the renormalized parameters α, β are expected to decrease
monotonously with increasing surface pressure since the den-
sity jump at the first-order transition decreases monotonously
with increasing surface pressure upon approaching the tricrit-
ical point [13]. From the above argument, the relative contri-
bution of 2D strain energy on nonhorizontality of isotherms
is expected to decrease with increasing surface pressure. The
size of the cooperative transforming clusters was, on the other
hand, observed to increase upon approaching the tricritical
point [13]. This suggests that the cooperativity of transi-
tion plays a dominant role for the nonhorizontal isotherm
behavior in the coexistence region with increasing surface
pressure. It may be instructive to compare our results with
those by Arriaga et al. [16]. They ascribed the origin of
nonhorizontal isotherm plateau in the coexistence region and
the subsequent nonzero compression rigidity to kinetically
limited growth of LC domains upon continuous compression.
In their kinetic scenario, the growth of LC domains does not
have enough time to incorporate molecules supplied from the
surrounding LE phase if strained at high compression rates
and the monolayer resists against compression, producing a
finite compression rigidity. They proposed the “Plum-Cake”
model to estimate the compression modulus as a function
of the LC phase fraction in the coexistence region at a high
compression rate limit. The model predicts an upper limit
for the compression modulus of the coexisting monolayer
expected for a relaxation process due to lipid changes between
the LC domains and the surrounding LE phase at strain rates
much higher than the characteristic growth rates of the LC
domain. It is interesting to point out that the LC-phase fraction
dependence of the renormalized composite compression mod-
ulus K ′(=K0(1 + γ0)/(1 − ν)) involved in the elasticity term
of the free energy [Eq. (1)] shows qualitatively the similar
behavior as that of the high-rate limit compression modulus
given by the Plum-Cake model. In the equilibrium context, a
composite elasticity term that includes the above compression
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modulus is naturally introduced into the free energy in our
equilibrium mean-field approach. The minimization of the
resultant free energy leads to a linear π increase with the
increased LC-phase fraction in the coexistence region. From
the standpoint of a kinetic approach to the isotherm shape of
monolayers in the coexistence region, it will be meaningful
to investigate the relation between the effect of compression
rates on LC domain growth kinetics and the curvature of the
nonhorizontal isotherm slope.

For a single-component macroscopic system the Gibbs
phase rule would require that the two-phase coexistence could
be in thermodynamic equilibrium only at a single surface
pressure at a fixed temperature. The phase rule in general
describes the relationship among the degrees of freedom ( f )
that can be independently varied, the number of chemical
components (c), the number of phases (p), and the number of
intensive variables (i). Although controllable intensive fields
are limited to temperature and pressure (i = 2) for traditional
physicochemical systems, the phase rule must in general be
changed with respect to the number of additional degrees of
freedom for systems that is subjected to varying external fields
such as electrical, magnetic, or mechanical ones. It must then
be stated as f = i + c − p in general form for any integer
value i depending on the experiment in question, instead
of the conventional form f = 2 + c − p. The strain energy
generated within the monolayer can contribute to an extra
degree of freedom. It would thus not be necessary to invoke
any violations of the phase rule in the LE-LC transition in the
presence of a long-ranged strain field. Our strain-renormalized
surface pressure π res

ν [Eq. (5)] in the phase-coexistence region
is indeed consistent with the phase rule modified by the strain
energy. It was reported that an apparent contradiction with the
Gibbs phase rule is resolved by the presence of long-ranged
elastic interactions for the temperature-dependent phase coex-
istence between condensed (crystalline) phases where the free
energies of the two phases are modified by a mechanical strain
energy [23,24]. From the above considerations the diffuse
first-order transition in monolayers could be caused not only
by limited cooperativity of the constituent molecules within
submicroscopic clusters but also by molecular density–2D
strain coupling, causing two different shapes of isotherm. We
should note that ρ − θ coupling alone does not lead to the
appearance of a finite linear slope in the isotherm [Fig. 4(c)].
This coupling term, however, makes the surface pressure
during the LE-LC transition lower effectively. In fact, the
lowering of transition midpoint surface pressure can be caused
if at least one of α and β is nonzero [Eq. (9)].

Here let us remember that an isothermal lateral com-
pressibility is one of the thermodynamic response functions
that describe the response of the order parameter to a field
conjugate to it [38]. Response functions are closely related
to equilibrium fluctuations of order parameters in the sys-
tem. In this respect, the appearance of a compressibility
plateau [13,19,20,25,33] in the LE-LC phase-coexistence re-
gion means that molecular density fluctuations remains almost
constant and therefore that they do not decay easily even
across at the midpoint of the transition. This indicates that
ρ − εs coupling plays a significant role for the persistence
of equilibrium molecular density fluctuations or for the delay
of transition progress in the nonhorizontal linear π increase

regime of the isotherm. The 2D free-energy contour plots
(Fig. 2) might provide us with some useful information
about the persistence of equilibrium density fluctuations in
the phase-coexistence region. We find that the presence of
ρ − εs coupling leads to the formation of an asymmetric
energy barrier between the LE and the LC phases, regardless
of whether ρ − θ coupling is present or not [Figs 2(c) and
2(d)]. The development of such an asymmetric energy barrier
due to ρ − εs coupling, assisted by a significant increase in
the energy asymmetry �μ, would provide the possibility of
producing a substantial driving force �LC→LE from the en-
ergetically metastable, majority LC phase to the energetically
stable, minority LE phase even beyond the transition midpoint
[inset in Fig. 3(b)]. This might provide a microscopic basis
for the persistence of equilibrium density fluctuations mani-
fested macroscopically as the appearance of a compressibility
plateau.

V. CONCLUSIONS

In this paper we have presented a generalized approach
based on a phenomenological Landau free energy to inves-
tigate the coupling effects of molecular area density with
spontaneous collective chain tilt and 2D strain inside the LC
domain on the nonhorizontal isotherm shape in the first-order
LE-LC phase transition in Langmuir monolayers. This theo-
retical approach has the advantage that one can gain intuitive
physical insights into the effects of the above mechanical
degrees of freedom on the evolution of the LE-LC phase
transition. The constructed Landau free energy includes sur-
face pressure terms in the lowest-order coefficient and lateral
density–chain tilt-2D strain coupling renormalization terms in
the fourth-order coefficient. As thermodynamic consequences
of strain renormalization in the Landau expansion, we can
get some useful information on the strength of the first-order
transition and on the possible existence of isotherm slope and
if any, on its shape in a strained monolayer. As a main result of
this phenomenological approach it is found that the existence
of a finite lateral density–2D strain coupling in the transition
region must be essential for the occurrence of a linear increase
of surface pressure with decreasing molecular area. This result
can also explain the apparent violation of the phase rule due
to a contribution from the strain energy to the total degrees
of freedom. In 2D contour plots calculated from our derived
Landau free energy, the presence of a finite molecular density–
2D strain coupling might cause some significant driving force
for the majority LC phase to the minority LE phase beyond the
transition midpoint, leading to the possibility of the delayed
LE to LC transition due to the persistence of the LE phase.
From the above arguments, the appearance of a compressibil-
ity plateau as often reported before in lipid monolayers might
be regarded as a natural macroscopic manifestation of the
persistence of equilibrium density fluctuations due to residual
LE phase caused by the molecular lateral density–2D strain
coupling.

APPENDIX A: EXCESS 2D STRAIN ENERGY TERM IN
THE LANDAU FREE ENERGY

Let us consider a circular LC domain embedded in a
circular LE matrix (Fig. 6). Since we are concerned with the
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FIG. 6. Correspondence between π -A isotherm and the growth of
an LC domain surrounded by a circular LE matrix in the two-phase
coexistence region of a monolayer.

nonhorizontal slope region of an isotherm appearing imme-
diately after the onset of the two-phase coexistence in the
first-order LE-LC transition, we assume that LC domains are
well separated from each other. Thus we consider the region
(0 � ν � 0.8) in which the interactions between LC domains
could definitely be ignored, where ν = (RLC/RLE)2 is the area
fraction of grown LC phase to the total area. We may regard
ν as a direct counterpart of the molecular density (A−1) in
the isotherm as described in Sec. II A. We use cylindrical
coordinates for the symmetrical reason, with the origin at
the center of a circular LC domain and the z axis parallel
to the normal to the domain. Assuming that the monolayer
is uniformly compressed from all directions in the phase-
coexistence region, the tangential displacements are zero and
the displacement vector u is purely radial and is only a
function of r, ur = u(r). Hence curl u = 0 and using the
equation of equilibrium, 2(1 − σ ) grad div u − (1 − 2σ ) curl
curl u = 0 from the linear elastic theory [39], we have

∇ · u = 1

r

d (ru)

dr
≡ 2a = Tr(ε̂) = εs (a : constant), (A1)

where εs = Tr(ε̂) is a 2D strain inside the LC domain (2D
strain is equivalent to the divergence of a displacement field).
An LC domain increases in size and a misfit strain εs devel-
ops due to the LE-LC boundary continuity requirement with
increasing surface pressure in the phase-coexistence region
(Fig. 6). The radial displacement field ur within or outside an
LC domain can be written as

uLC
r = a1r (r � RLC) and uLE

r = a2r + b2

r
(RLC < r � RLE),

(A2)

where RLE and RLC are LE and LC domain radii, respectively.
a1, a2, and b2 are constants to be determined. Boundary con-
ditions of this problem are determined from the two require-
ments: (i) The displacement field vanishes at the boundary,
r = RLE of parent phase considered; (ii) the strain field is
continuous at the LE-LC phase boundary, r = RLC.

From the first condition,

a2RLE + b2

RLE
= 0. (A3)

From the second condition,

a1RLC = a2RLC + b2

RLC
. (A4)

From the above equations, we obtain the following coeffi-
cients:

For LC domain

a1 = εs

2
. (A5)

For LE domain

a2 = − b2

R2
LE

= −εs

2

R2
LE

R2
LE − R2

LC

= εs

2

ν

ν − 1
,

b2 = εs

2

R2
LCR2

LE

R2
LE − R2

LC

= εs

2

R2
LC

1 − ν
. (A6)

We note that the strain field uLE
r in the LE region is

expressed by the 2D strain εs within the LC region through the
boundary conditions. Since we are in the Hooke’s law regime,
the free energy of a deformed body F is obtained from the fact
that F is quadratic in the strain tensor [39]:

F = 1
2σikuik, σik : stress tensor, uik : strain tensor. (A7)

The excess free energy of the LE region (RLC < r � RLE)
is (per unit area of the LC domain) as follows:

∴ �GLE
εs

= 1

2πRLC
2

∫ RLE

RLC

(σrrurr + σϕϕuϕϕ )2πrdr. (A8)

The stress tensor σik is [39]

σik = K0ullδik + 2μ0
(
uik − 1

3δikull.
)
, (A9)

where K0 and μ0 are compression and shear moduli of the LE
phase, respectively.

The components of the stress tensor in cylindrical coordi-
nates are

σrr = K0(urr + uϕϕ ) + 2μ0

(
urr − 1

3
(urr + uϕϕ )

)

= 2a2K0 + 2μ0

(
a2

3
− b2

r2

)
,

σϕϕ = K0(urr + uϕϕ ) + 2μ0

(
uϕϕ − 1

3
(urr + uϕϕ )

)

= 2a2K0 + 2μ0

(
a2

3
+ b2

r2

)
. (A10)

The components of the strain tensor in cylindrical coordi-
nates are

urr = ∂ur

∂r
= a2 − b2

r2
,

uϕϕ = ∂uϕ

∂ϕ
+ ur

r
= a2 + b2

r2
. (A11)
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Therefore,

∴ σrrurr + σϕϕuϕϕ

=
{

2a2K0 + 2μ0

(
a2

3
− b2

r2

)}(
a2 − b2

r2

)

+
{

2a2K0 + 2μ0

(
a2

3
+ b2

r2

)}(
a2 + b2

r2

)

=
(

4K0 + 4

3
μ0

)
a2

2 + 4μ0b2
2

r4
. (A12)

Finally the excess free energy of surrounding LE region is
expressed as follows:

∴ �GLE
εs

= 1

2πRLC
2

∫ RLE

RLC

{(
4K0 + 4

3
μ0

)
a2

2 + 4μ0b2
2

r4

}
2πrdr

= εs
2

2

1

1 − ν

{(
K0 + 1

3
μ0

)
ν + μ0

}
. (A13)

We see that the excess elastic energy �GLE
εs

of the LE ma-
trix is associated with the spontaneous 2D strain εs within the
grown LC domain weighted by the factor ν/(1 − ν) reflecting
the growth of LC domain. Similarly, from the excess free
energy of an LC domain (r = RLC)

�GLC
εLC

= �SF = 1
2πRLC

2(σrrurr + σϕϕuϕϕ ), (A14)

it is (per unit area of the LC domain) as follows:

�GLC
εs

= 1
2πRLC

2
(
4a2

1K0 + 4
3μ0a2

1

)/
πRLC

2

= 1
2 K0εs

2 + 1
6μ0εs

2. (A15)

Finally, the total excess elastic energy due to the develop-
ment of 2D strain field as the LE to LC transition proceeds, is
expressed as

�Gεs = �GLE
εs

+ �GLC
εs

= εs
2

6(1 − ν)
(3K0 + 4μ0)

= K0εs
2

2

1 + γ0

1 − ν
, γ0 ≡ 4

3

μ0

K0
. (A16)

This is the second term of �Gelastic in Eq. (1).

APPENDIX B: DERIVATION OF THE RESCALED
FREE ENERGY

Let us consider �Gρ in more detail below. In an isobaric
experiment carried out at some elevated π , by assuming that
the LE-LC phase boundary is linear in the π − T phase dia-
gram with a positive slope, dπc/dTc > 0 (Fig. 7), the critical
temperature for transition changes from T0 to T0 + dTc/dπcπ .

Thus we have

�Gρ = 1

2
a

{
T −

(
T0 + dTc

dπc
π

)}
ρ2 + 1

4
Bρ4 + 1

6
Cρ6.

(B1)

FIG. 7. Schematic illustration of the relationship between
isothermal and isobaric measurements of an LE-LC phase transition
with a positive slope ∂πc/∂Tc > 0 for the phase boundary.

From Fig. 7, π dependence of the excess free energy
�Gρ can be derived by noting that at some temperature T
the transition surface pressure πc can be written as πc =
dπc/dTc(T − T0):

�Gρ = −1

2
a

(
dTc

dπc

)
(π − πc)ρ2 + 1

4
Bρ4 + 1

6
Cρ6. (B2)

Equation (B2) gives the evolution of ρ with increasing π

under an isothermal condition. Replacing �Gρ in Eq. (1) with
that in Eq. (B2), we obtain an equation, providing the basis
for the analysis of chain tilt–2D strain effects on the LE-
LC transition under an isothermal condition. The interactions
between the polar heads can be considered to be involved in
π and εs implicitly. Since at equilibrium the monolayer must
be stress free, finding the minimum of the total excess free
energy in Eq. (1) with respect to θLC and εs, respectively, we
obtain ρ dependence on θ and εs:

θ = −dρ2

Kθ

, (B3)

εs = −eρ2

K0

1 − ν

1 + γ0
. (B4)

Thus, as ρ increases, the tilt angle decreases (molecular
tails orient more perpendicularly to the water surface) and the
negative strain increases at constant ν.

From Eqs. (B3) and (B4) we obtain the relation between εs

and θ :

εs =
(

Kθ

K0

)( e

d

) 1 − ν

1 + γ0
θ. (B5)

For a finite ρ − εs coupling (e �= 0), the spontaneous 2D
negative strain grows as the tilt angle decreases at some
constant ν. Inserting Eqs. (B2)–(B4) into Eq. (1), we obtain
the following equation:

�G = −1

2
a

(
dTc

dπc

)
(π − πc)ρ2

+ B

4

(
1 − 2d2

BKϑ

− 2e2

BK0

1 − ν

1 + γ0

)
ρ4 + C

6
ρ6. (B6)
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The energy cost for the formation of LC phase should be multiplied by its area fraction ν. The free energy �Gν for the system
under the application of surface pressure is now expressed as follows:

�Gν = ν

(
−1

2
a

(
dTc

dπc

)
(π − πc)ρ2 + B

4

(
1 − 2d2

BKϑ

− 2e2

BK0

1 − ν

1 + γ0

)
ρ4 + C

6
ρ6

)
. (B7)

Rescaling the order parameter ρ = (|B|/C)1/2ξ to simplify the above expression, we finally obtain the rescaled free energy,
�Gres

ν [Eq. (2)].
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