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Landau theory for smectic-A–hexatic-B coexistence in smectic films
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We explain theoretical peculiarities of the smectic-A–hexatic-B equilibrium phase coexistence in a finite-
temperature range recently observed experimentally in free-standing smectic films [I. A. Zaluzhnyy et al.,
Phys. Rev. E 98, 052703 (2018)]. We quantitatively describe this unexpected phenomenon within Landau phase
transitions theory assuming that the film state is close to a tricritical point. We found that the surface hexatic order
diminishes the phase coexistence range as the film thickness decreases, shrinking it to zero at some minimal film
thickness Lc, of the order of a few hexatic correlation length. We established universal laws for the temperature
width of the phase coexistence range in terms of the reduced variables. Our theory is in agreement with the
existing experimental data.
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I. INTRODUCTION

Free-standing smectic films are unique layered systems,
solidlike in one direction (normal to the layers) and fluidlike in
two lateral directions. Unlike other films, smectic films are liv-
ing in the three-dimensional (3D) world without any parasitic
influence from a substrate. It is not surprising that this topic is
the subject of many experimental and theoretical works (see,
e.g., the comprehensive review [1] and the monograph [2]).
Our motivation to add one more article to the investigation
field is related to new results concerning the phase coexistence
in smectic films that we obtained. Our main concern is related
to finite-size effects.

In our study we develop the quantitative theory explaining
the finite-temperature interval for the equilibrium coexistence
of the smectic-A (Sm-A) and the hexatic B (Hex-B) phases in
the smectic films.

Common wisdom claims that the equilibrium phase coex-
istence at the first-order phase transition in the unconfined
one-component material takes place at the transition tem-
perature solely. Indeed, only at the transition point do both
coexistent phases have equal free energies (cf., with the phase
coexistence between spinodal and binodal lines, when one of
the coexisting phase is in a metastable state). A finite range for
the phase coexistence can be achieved for binary mixtures, or
(in the case of a pure one-component material) in confined
geometry, where neither of the coexistent states can provide
the required equilibrium density. However, in our case the Sm-
A-Hex-B phase transition occurs in one-component material
and in apparently unconfined free-standing film geometry.
The point is that any smectic liquid crystal is a strongly
anisotropic system (solidlike along the normal to smectic lay-
ers). Due to this anisotropy, smectic stress tensor components
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orthogonal to the smectic layers are not determined uniquely
by the external pressure, as an essential contribution comes
from the solidlike elasticity of smectic layers (see more details
in Refs. [1,2]). As a result, smectic films behave similarly
to a closed volume (i.e., confined) system undergoing a first-
order phase transition under conditions where the number of
the smectic layers is fixed (i.e., unchanged on a timescale
needed to get the equilibrium phase coexistence). The stan-
dard experimental technique for the free-standing smectic film
preparation provides the uniform film thickness [3–7]. In turn,
local changes in the film thickness are possible only under
overheating of the free-standing smectic film above the bulk
temperature of melting of the smectic phase or under local
(nonuniform) heating of the films, see Refs. [4–13]. These
nonequilibrium phenomena are beyond our consideration.

Being motivated by the experiment in Ref. [3] we consider
only relatively thick films, i.e., three-dimensional systems.
Similarly to the Sm-A–Sm-C phase transition the Sm-A–
Hex-B phase transition means a reduction of the rotational
symmetry of the smectic layers. In the Sm-A state the lay-
ers are isotropic, whereas in the hexatic smectics the layers
possess a sixth-order rotational axis. The corresponding order
parameter is a six-order symmetric irreducible tensor Qin jklm

(its irreducibility means Qii jklm = 0), having the components
only along the layers. The tensor Qin jklm has two independent
components [14,15], a linear combination of which is the
scalar complex field ψ . Its phase is changed by the angle 6ϕ at
the rotation of the reference frame by the angle ϕ. Due to the
rotational invariance of the Sm-A phase, the Landau functional
has to be invariant under a phase shift of ψ . Therefore one
would expect a second-order phase transition with the XY
universality class. However, in a majority of the materials,
exhibiting Sm-A-Hex-B phase transition, it is of weak first
order, see Refs. [1,3,8,16–20].

A tempting explanation of the fact assuming that the
transition is close to a critical point is excluded since the
states have different symmetries (Sm-A possesses isotropic
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liquidlike smectic layers, and Hex-B possesses orientation
hexagonal symmetry order). We suggest another possibility
to explain the experimental data when the system is close to
a tricritical point. This assumption is supported also by the
measured critical exponents (for the specific heat and for the
order parameter) that are close to those for the tricritical point
[16–18,21]. It is worth noting that the liquid-crystalline mate-
rials exhibiting the Sm-A-Hex-B phase transition demonstrate
apparently universal behavior. The phase diagrams of such
materials are remarkably similar even though the molecules
of the materials are appreciably different (see, for example,
Refs. [19,20]). Thus our results are universal and can be
applied to all such materials.

We exploit the phenomenological Landau phase transitions
theory. As it is known, the mean-field Landau theory works
well near the tricritical point (up to logarithmic corrections),
see, e.g., Refs. [22–24]. Our calculations are mainly analyt-
ical, giving the framework for observable effects. They are
expressed as universal laws in terms of reduced variables.
To find solutions of the nonlinear equations within the whole
temperature interval of the phase coexistence we use Wolfram
Mathematica numerics. This allows us to illustrate dependen-
cies for the width of the equilibrium phase coexistence on
system parameters. We also compute numeric values of the
dimensionless coefficients entering the derived analytically
universal laws.

In Ref. [3] the coexistence of Sm-A and Hex-B phases was
observed in a finite-temperature interval (and qualitatively and
semiquantitatively, for thick films, rationalized theoretically).
However, in Ref. [3] the expression for the temperature in-
terval of the equilibrium phase coexistence has been derived
merely from the surface order-induced renormalization of
the bulk hexatic phase parameters (what is not a consistent
procedure). In this work we present the consistent quantitative
theory.

Our paper is organized as follows. In Sec. II we formulate
general thermodynamical conditions for the phase coexistence
in a form suitable for smectic liquid crystals possessing the
layer structure. In Sec. II A we discuss the phase coexistence
in bulk in terms of the Landau theory. Specifically motivated
by experimental observations [3] we study the Sm-A-Hex-B
transition in the free-standing films. In Sec. III we explore and
analyze the key point of our work, namely the surface effects.
In the free-standing smectic films exhibiting the Sm-A-Hex-
B phase transition, the surface hexatic order occurs at the
temperature higher than the bulk transition temperature. The
surface-induced order in the vicinity of a tricritical point pene-
trates into the interior of the film, which essentially influences
the phase transition even for relatively thick films, which
are the systems of our special interest. This phenomenon
is the subject of our consideration in this work. In particular,
we demonstrate that the surface order provokes diminishing of
the phase coexistence range as the film thickness decreases.
Eventually, it leads to shrinkage of the coexistence range at
some minimal film thickness Lc. Thus we arrive at a special
critical point, where the coexisting phases become indistin-
guishable. In Sec. IV, we summarize our results and also
discuss some open questions and perspectives. We relegate
some technical details of the analytic calculations into two
Appendices to the main text.

II. GENERAL THERMODYNAMIC ANALYSIS
OF THE PHASE COEXISTENCE

Here we present the general thermodynamical conditions
of the phase coexistence [22,25]. Two-phase coexistence
indicates that none of the coexisting phases (in our case Sm-A
and Hex-B) is able to support the optimal two-dimensional
density of the film, and the compromise is achieved by
means of two-phase equilibrium where two phases coexist.
The coexistence signals about first-order transition between
the phases. However, ordering in the hexatic case is weak
in the region of the phase coexistence. That enables one to
use the Landau expansion in the order parameter to analyze
the phenomenon. We consider the case where the number
of the smectic layers in the film is fixed. The assumption
holds if nucleation of dislocation loops (which are able to
adjust the number of layers to the external stresses) is very
infrequent and too slow in comparison to characteristic time
scales relevant for the phase coexistence [2,26,27]. Then the
thickness L of the film is determined as a minimum condition
of an appropriate thermodynamic potential. The thicknesses
of the Sm-A and Hex-B phases are slightly different (at a given
temperature); however, due to the weakness of the hexatic
ordering the difference is small and can be safely neglected.

We designate as NH and NA two-dimensional mass densi-
ties and designate as FH and FA two-dimensional free-energy
densities of the Hex-B and Sm-A phases, respectively. The
areas the phases occupy are AH and AA, and then the total free
energy of the system can be written as

F = FA(NA)AA + FH (NH )AH

−μ(NAAA + NH AH − N ), (1)

where N is the total number of molecules in the film and μ

is a Lagrangian multiplier fixing the number. Minimization of
the energy (1) in terms of NA and NH leads to the conditions

∂FA

∂NA
= μ = ∂FH

∂NH
. (2)

Thus the chemical potentials of the phases are equal if they
coexist. This condition is analogous to famous Maxwell com-
mon tangent construction, see Refs. [23–25,28].

Note that AH = A − AA, where A is the total area of the
film. Therefore minimization of the expression (1) in terms of
AA leads to the condition

�A = �H , (3)

where � is the grand thermodynamic potential per unit area:

�(μ) = F − N
∂F

∂N
, μ = ∂F

∂N
,

d� = −Ndμ − SdT . (4)

Further, we operate in terms of the grand thermodynamic
potential having in mind that both the chemical potentials and
the temperatures of the coexisting phases should coincide.

We arrived at the following general picture of the phase
transition. At T > T+ the Sm-A phase is realized. Then
the chemical potential μ is determined by the condi-
tion ∂�A/∂μ = −N , where N = N /A is the average two-
dimensional density of molecules of the film. At T < T− the
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Hex-B phase is realized. Then the chemical potential μ is
determined by the condition ∂�H/∂μ = −N . At T− < T <

T+ the phases coexist, and then the chemical potential μ is
determined by the condition (3). Thus, the chemical potential
μ+ at T = T+ is determined by the relation (3) and the
condition ∂�A/∂μ = −N .

Below T+, in the region of the phase coexistence, the
density of the Sm-A phase NA = −∂�A/∂μ does not coincide
with N . We expect that it is larger than N : NH < N < NA.
Having in mind narrowness of the coexistence region, we
expand the density of the Sm-A phase in μ − μ+, T − T+ to
obtain

NA = N − ∂2�A

∂μ2
(μ − μ+) − ∂2�A

∂T ∂μ
(T − T+), (5)

where the derivatives are taken at T = T+, μ = μ+.

A. Landau expansion

The hexatic order parameter ψ (see its definition above and
more details can be found in Refs. [14,28,29]) in the region
of the phase coexistence is assumed to be small. Then one
may expand the grand thermodynamic potential � in ψ to
obtain � = �0 + �, where � is the Landau functional. In the
context of the bulk consideration (neglecting surface effects)
the first terms of its expansion in ψ are

� = L(a |ψ |2 − λ |ψ |4/6 + ζ |ψ |6/90), (6)

where L is the thickness of the film and the coefficients a, λ,
and ζ are functions of T and μ.

We expanded the grand thermodynamic potential � up to
the sixth order in ψ having in mind that both coefficients, a
and λ, are anomalously small. In other words, the system is
in the tricritical regime (near a tricritical point in the phase
diagram). It is well known [22–24] that in the tricritical regime
fluctuations of the order parameter are relatively weak: They
produce only logarithmic corrections to observable quantities.
Therefore our problem can be examined in the mean-field
approximation.

To find equilibrium values of the order parameter ψ , one
should minimize the Landau functional (6). The Sm-A phase
corresponds to the zero value of the order parameter ψ . The
minimum of � at ψ = 0 is realized if a > 0, and the condition
is implied below. The Hex-B phase corresponds to a non-zero-
order parameter that can be found as a result of the following
minimization:

|ψm|2 = 5λ

ζ

(
1 +

√
1 − 6aζ

5λ2

)
. (7)

This minimum of the Landau functional exists if 6aζ < 5λ2.
In the mean-field approximation the Landau functional �

is equal to zero for the Sm-A phase. Therefore �A = �0,
�H = �0 + �H . Since �H = �A + �H , we obtain

NH = NA − ∂�H/∂μ (8)

in the region of the phase coexistence. Note that at calculating
the derivative in Eq. (8) one can differentiate only the coeffi-
cients in the expansion (6) since ∂�/∂ψ = 0 in the minimum.

To find the value of the order parameter in the regime of
phase coexistence one should use the relation (3). In our case

it leads to �H = 0. Substituting the expression (7) into Eq. (6)
and equating the result to zero, one finds a = a0, |ψ | = ψ0,
where the equilibrium value of the order parameter is

ψ2
0 = 15λ/(2ζ ), a0 = (5/8)λ2/ζ . (9)

Thus, both parameters ψ and a are fixed by the equilibrium
conditions. Note the relation ζa ∼ λ2 between two small
parameters, a and λ.

Within Landau theory, the parameter a in the expansion (6)
is the most sensitive to variations of chemical potential μ and
of temperature T . Therefore in the main approximation we
can safely assume that the coefficients λ and ζ are independent
of the temperature and of the chemical potential in the phase
coexistence region. In the same spirit we believe that the
equilibrium phase coexistence exists in the narrow range of
the parameters governing the transition. As we will show
below it is the case in the vicinity of the tricritical point. Thus
we expand a in T − T+ and μ − μ+ to obtain

a = a+ + α(T − T+) + β(μ − μ+), (10)

where a+ is the value of the parameter a at T = T+ and μ =
μ+. We expect that both coefficients, α and β, are positive.
The conditions mean that on diminishing T or μ the hexatic
phase becomes more preferable.

In our model the only quantity in the Landau functional (6),
dependent on μ, is a. Calculating ∂�/∂μ, and substituting
then the value (9), we find in accordance with Eq. (8)

NH = NA − Lβ
15λ

2ζ
. (11)

As we expected, there is an additional negative contribution
to NH in comparison with NA. In our model, it is independent
of T .

The condition a = a0 shows that at the phase coexistence a
remains approximately constant, that is. α(T − T+) + β(μ −
μ+) = 0. Substituting the relation into the expression (5) and
the resulting formula for NA into expression (11), we obtain

NH = N − Lβ
15λ

2ζ
+ �L(T+ − T ), (12)

�L = ∂2�0

∂T ∂μ
− α

β

∂2�0

∂μ2
. (13)

The lower coexistence temperature T− is achieved where
NH becomes N , and the property enables us to obtain the
temperature interval of the phase coexistence in the bulk:

�

β
(T+ − T−) = ψ2

0 = 15λ

2ζ
. (14)

Since the phase transition occurs in the vicinity of the tricrit-
ical point, the coefficient λ is small. Therefore the interval
T+ − T− is small as well, as we have assumed expanding the
coefficient a in (10), and a+ = a− = a0 in the first order of
the expansion of a over deviations (T − T+), (μ − μ+).

III. SURFACE EFFECTS

Here we consider effects related to the surface hexatic
order (see Refs. [2,30–32], which contain many useful refer-
ences). We assume that at the surface of the film the absolute
value ψs of the hexatic order parameter ψ is fixed. Then

022705-3



KATS, LEBEDEV, AND PIKINA PHYSICAL REVIEW E 100, 022705 (2019)

the order parameter is nonzero and inhomogeneous in space
in both phases. In the spirit of the mean-field treatment we
assume that ψ is homogeneous along the film. However,
due to the prescribed value of the surface ordering, it is
inhomogeneous in the orthogonal direction. To analyze the
situation one should introduce the Landau functional for the
inhomogeneous order parameter. For this purpose we add the
gradient term to the Landau expansion (6) and obtain

� =
∫ L/2

−L/2
dz

(
b|∂zψ |2 + a|ψ |2 − λ|ψ |4

6
+ ζ |ψ |6

90

)
, (15)

where b is Landau theory expansion coefficient and the z axis
is along the smectic layer normal.

To avoid confusion, it is worthwhile to stress that our
phenomenological theory [with the squared gradient term in
(15)] holds for relatively thick films (thus three-dimensional
systems). Even for the minimal thickness film, when the
phase coexistence region width shrinks to zero (see below)
the film thickness is still larger than about five correlation
lengths (along the normal to the smectic layers). Moreover,
in the vicinity of the tricritical point the correlation length
is much larger than the layer thickness. In such condi-
tions the disclination-induced two-dimensional (Berezinskii-
Kosterlitz-Thouless, see Refs. [33–38]) mechanism for the
phase transition does not work because the energy of the
disclination is much larger than the thermal energy.

We place the plane z = 0 in the center of the film. Let
us stress that the surface ordering provides a nonzero value
of the Landau functional for the Sm-A phase, in contrast to
the analysis of the Sec. II, performed neglecting the surface
effects. Since the gradient term is positive, the homogeneous
configuration is a trivial minimizer of the Landau thermody-
namic potential. In the bulk system, if the thermodynamic
potential is convex, then a single homogeneous phase is
a solution corresponding to a stable thermodynamic state.
However, if, on the other hand, it is concave for some values
of the model parameters, then it is energetically favorable to
split the system into (at least) two regions with the phase coex-
istence. Conventional wisdom suggests that surface ordering
plays a small role for bulk transitions for sufficiently thick
films. Conventional wisdom is simple and comfortable but not
necessarily always true. We will show in this section that it is
just the case for the Sm-A-Hex-B transition in the vicinity of
the tricritical point.

The characteristic length of the order parameter variations
along the z axis is its correlation length ξ , defined as

ξ 2 = b

a0
= 8bζ

5λ2
. (16)

The quantity ξ is assumed to be much larger than the molec-
ular length, and the property holds because the system is
assumed to be close to a tricritical point. That justifies our
phenomenological approach. Note also that in our approach
the correlation length ξ weakly depends on temperature in the
coexistence region.

Further on we assume that the order parameter ψ is real.
The case corresponds to the minimum contribution from the
gradient term in the Landau expansion (15). The constant
(zero) phase does not enter into our mean-field analysis. Based

on the up-down symmetry of the system we consider the
symmetric in z profile of the order parameter: ψ is equal to
ψs at z = ±L/2 and achieves a minimum at z = 0.

Variation of the Landau functional (15) over ψ yields to
the extremum condition

−b∂2
z ψ + aψ − λψ3/3 + ζψ5/30 = 0. (17)

Equation (17) has the first integral:

−(∂zψ )2 + g(ψ ) = γ , (18)

g(ψ ) = 1

b
(aψ2 − λψ4/6 + ζψ6/90), (19)

where γ is a z-independent parameter. As follows from
Eq. (18), γ is the value of g at z = 0 where ∂zψ = 0 (since
ψ is symmetric in z).

With the relation (18) taken into account, the energy (15)
becomes

� = 2b
∫ L/2

0
dz (2g − γ ). (20)

Equation (18) at z > 0 is rewritten as ∂zψ = √
g − γ , that is,

dz = dψ/
√

g − γ . Integrating the condition, we find

L = 2
∫ ψs

ψ�

dψ√
g − γ

, (21)

where ψ� is the value of the order parameter at z = 0, γ =
g(ψ�) in accordance with Eq. (18) and ψs is the surface value
of the order parameter.

Analogously, the Landau functional (20) can be rewritten
as

� = 2b

[
2

∫ ψs

ψ�

dψ
√

g − γ + γ L/2

]
. (22)

The expression determines the smectic energy per unit area
of the phase with the surface conditions taken into account.
The relation (21) can be treated as the extremum condition in
terms of ψ� (or γ ) of the Landau functional (22).

In the vicinity of the tricritical point, ψs, entering into
Eqs. (21) and (22), is much larger than the characteristic
values of the order parameter ψ in the bulk. Therefore one can
put ψs → ∞ in Eq. (21) due to convergence of the integral.
Thus we arrive at the function

�(a, γ ) = 2
∫ ∞

ψ�

dψ√
g − γ

, (23)

to be equated to L in the equilibrium in accordance with
Eq. (21).

A. Phase coexistence

In the phase coexistence region there are two different
solutions of Eq. (18) satisfying the conditions (21) and cor-
responding to the same energies, �A = �H . We designate as
ψA, ψH the values of the order parameter at z = 0 in the Sm-A
phase and in the Hex-B phase, respectively. Introducing also
γA = g(ψA) and γH = g(ψH ), we arrive at the relations

�(a, γA) = L = �(a, γH ). (24)
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The relations (24) together with the condition �A = �H are
three equations for the three variables L, γA, and γH .

Now we are in the position to find the difference �� =
�A − �H :

��

b
= (γA − γH )L + 4

∫ ψH

ψA

dψ
√

g − γA

+ 4
∫ ∞

ψH

dψ (
√

g − γA − √
g − γH ), (25)

in accordance with Eq. (22). Again, we extended the integra-
tion up to infinity due to convergence of the integral. One can
easily check that

��

b
=

∫ γH

γA

dγ (� − L). (26)

Note that Eqs. (24) are extrema conditions for the quantity
(26) in terms of γA and γH .

The difference �� can be considered as a function of L,
with the relation b−1∂ (��)/∂L = γA − γH < 0. In addition,
�� is a function of a via the function g, see Eq. (19). Then
the equilibrium condition �� = 0 determines L as a function
of a. Therefore we obtain

∂��

∂a
+ b(γA − γH )

dL

da
= 0. (27)

Since the relations (24) are extrema conditions of �� in terms
of ψA, ψH , we find

∂��

∂a
= 2

∫ ψH

ψA

dψ ψ2/
√

g − γA

+ 2
∫ ∞

ψH

dψ ψ2(1/
√

g − γA − 1/
√

g − γH ). (28)

To find the value of L at a given a, one should solve the
system of Eqs. (24) together with the condition �� = 0. The
relations are reduced to the following system of equations:

�(γA, a) = �(γH , a), (29)∫ ψH

ψA

dψ (2g − γA)/
√

g − γA

+
∫ ∞

ψH

dψ

(
2g − γA√

g − γA
− 2g − γH√

g − γH

)
= 0, (30)

determining ψA, ψH (see Fig. 1) and in turn γA, γH (see
Fig. 2). The function � in Eq. (29) is defined by Eq. (23).

After solving the system of Eqs. (29) and (30), L can be
found from any of the relations (24). In other words, L is
determined by the relation L = �(a, γA). The results of the
numeric computations are shown in Figs. 3 and 4. Numeric
solutions of Eqs. (29), (30), and (33) were obtained by the
Wolfram Mathematica Professional Version Premier Service
L3159-1472. The numeric errors of all our results are less than
5 × 10− 6.

B. Model Landau functional

Here we exploit the model, introduced above, where the
parameter a is determined by the expansion (10) and the
parameters λ and ζ are treated as constants, independent of
temperature and chemical potential. In addition, we assume

FIG. 1. Found numerically by solving Eqs. (29) and (30) values
of the dimensionless value of the hexatic order parameter ψ2/ψ2

0 at
z = 0 in the coexistence regime (sea-green circles) as a function of
the dimensionless temperature deviation (a − a0 )/a0. The dark green
solid line shows corresponding analytic result [Eq. (7)], and the blue
vertical dashed line shows the limit of the existence for this local
minimum [(a − a0 )/a0 � 1/3].

that the parameter b is constant as well. Then one finds from
Eqs. (15), (18), and (22)

NA = −∂�A

∂μ
= −∂�0

∂μ
− 2β

∫ ψs

ψA

dψ ψ2

√
g − γA

(31)

and an analogous expression for the hexatic phase.
Since NA = N at T = T+ and NH = N at T = T−, the in-

terval of the phase coexistence is determined by the condition
NH (T−) = NA(T+). According to Eq. (31), it is written as

∂�0

∂μ
(T−, μ−) − ∂�0

∂μ
(T+, μ+)

= 2β

∫ ψH

ψA

dψ ψ2

√
g+ − γA

+ 2β

∫ ∞

ψH

dψ ψ2

×
(

1√
g+ − γA

− 1√
g− − γH

)
, (32)

FIG. 2. Numerically found by solving Eqs. (29) and (30), using
Eqs. (19) and (A2), values of γA for the Sm-A phase (dark blue
circles) and γH for Hex-B phase (green circles) as a function of (a −
a0 )/a0. Light green dashed line represents the analytical dependence
g(ψm )/(ψ0/ξ )2. Using Eqs. (B6) we fit the numerical data near the
point γ = gc. Dark blue solid lines are for the Sm-A phase (γ � gc)
and dark green for the Hex-B phase (γ � gc).
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FIG. 3. Found numerically by solving Eqs. (29), (30), and (24)
values of the dimensionless film thickness L/ξ in the coexistence
regime (lilac circles) as a function of the dimensionless temperature
deviation (a − a0 )/a0. The azure dashed line in the left shows the
corresponding analytic result [Eq. (A12)]. The green solid line [for
(a − a0)/a0 < (ac − a0 )/a0] is obtained by fitting with Eq. (B5) the
result near the point γ = gc.

where we, again, extended the integration up to infinity due
to convergence of the integral. Here the parameters in g+ and
ψA are taken at T = T+ and the parameters in g− and ψH are
taken at T = T−.

In our model, a is an L-dependent parameter in the coexis-
tence region. Therefore we obtain from expression (10) α(T −
T+) + β(μ − μ+) = 0. This means g+ = g− = g , that is,
a+ = a− = a in the first order of the expansion of a over
the deviations (T − T+), (μ − μ+). In this way, expanding
the difference of the derivatives [Eq. (32)] over T+ − T−,

FIG. 4. Numerical values [found by solving Eqs. (29) and (30)
with Eq. (24) and using Eqs. (19) and (A2)] for the dimensionless
film thickness L/ξ in the coexistence regime of Sm-A (dark blue
circles) and Hex-B phase (green circles) presented as a function of
the dimensionless variable γ /(ψ0/ξ )2, in accordance with Fig. 2.
The last right numerical point corresponds to the condition ∂γ /∂L =
0. Corresponding analytical description according to the Eq. (A12),
using Eq. (A2), is shown by the light green dashed line. Fitting [see
Eqs. (B5) and (B6)] in the vicinity of the point γ = gc is shown by
the blue solid line (for the Sm-A phase, γ � gc) and by the dark
green line (for the Hex-B phase, γ � gc).

FIG. 5. The temperature interval of the phase coexistence as
a function of the dimensionless film thickness L/ξ , computed by
solving numerically Eqs. (29), (30), and (33) (dark blue points).
Our theory result for the thick films [Eq. (A17)] is shown by the
azure dashed line. The violet solid line (started from the point Lc/ξ )
denotes the analytic solution to Eqs. (34), (46), (47), and (B5) in the
vicinity of the point a = ac.

μ+ − μ− and using the condition, we find the relation

L�

2β
(T+ − T−) +

∫ ψH

ψA

dψ ψ2

√
g − γA

+
∫ ∞

ψH

dψ ψ2

(
1√

g − γA
− 1√

g − γH

)
= 0, (33)

which determines the interval of the phase coexistence, see
Fig. 5. The relation (33) can be rewritten as

L�

β
(T+ − T−) + ∂��

∂a
= 0, (34)

as a consequence of Eq. (28). These relations [(33) and (34)]
are our main results in the work, and they are ready for further
inspection.

Note that although L in smectic films must correspond
to the integer number of discrete layers, in our macroscopic
approach, for thick films one can treat L as a continuous
variable.

C. Universal phase diagram

It is convenient to utilize the dimensionless variables a/a0

and L/ξ . Then we obtain a universal picture, independent
of the concrete values of the model parameters, from the
results of the previous subsection. Despite the fact that the
solution of the above nonlinear equations can be found only
numerically, we can formulate some general universal laws
valid (within our model assumptions) in the equilibrium phase
coexistence region. Namely, the relations (24) imply that
in the coexistence regime the equation �(a, γ ) = L should
have at least two solutions. Already this deceptively simple
observation restricts the values of our model parameters. Let
us first look at the function �.
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FIG. 6. Computed from Eq. (23) for a/a0 = 1.1 (i.e., for the case
1 < a/a0 < 4/3) function �/ξ versus γ (ψ2

0 /ξ 2)−1.

For small γ the function � diverges logarithmically, see
Fig. 6. If 1 < a/a0 < 4/3, then the function g(ψ ) (19) has
a minimum at nonzero ψ . Therefore, the function � loga-
rithmically diverges at γ → gmin where gmin is the minimal
value of the function g. Thus � has a minimum inside the
interval 0 < γ < gmin, see Fig. 6. At γ > gmin the function
� monotonously decreases as γ grows. At a/a0 > 4/3 the
minimum in the function g(ψ ) disappears and � becomes a
regular function of γ . However, � remains a nonmonotonic
function of γ (it has a minimum and a maximum, see Figs. 7
and 8, up to some critical value ac [and γ (ac) = gc], the value
of ac/a0 is approximately equal to 1.5774, see Fig. 8). At
a > ac the function �(γ ) becomes monotonic.

Thus at a < ac there are three solutions of the equation
� = L in some interval of the film thickness L. The smallest
by the value of ψ solution corresponds to the Sm-A phase,
γ = γA. The next by its ψ value solution corresponds to an
unstable state. And, finally, the third solution with the biggest
ψ corresponds to the Hex-B phase, γ = γH . In the limit
a → ac we find γA → γH , and at a > ac there remains a single
solution of the equation �(a, γ ) = L. Then the equilibrium
phase coexistence region shrinks to zero. This result states
that the equilibrium phase coexistence is possible only in the
interval a0 < a < ac. Different values of a correspond to the

FIG. 8. Comparison of numerically found by solving Eq. (23)
�/ξ as a function of (γ − gc )(ψ2

0 /ξ 2)−1 with analytical approxima-
tion Eq. (B1) (thin azure solid line). a/a0 = 1.5773 (i.e., for the case
a/a0 > 4/3) and a/a0 = ac/a0 = 1.57741.

different values of the film thickness L, see Fig. 3. The value
of Lc/ξ is equal to 5.07.

D. Thick films

In this subsection we analyze the case of large film thick-
ness, L � ξ . The limit has been discussed at the semiquan-
titatively level in Ref. [3]. Here we present the quantitative
theory. For the thick films naturally the deviations of the
film properties from the bulk ones are relatively small. In
particular, the value of the parameter a is close to its bulk
value a0, a − a0 � a0. It follows from the relations (24) that
at L � ξ the integral (23) is anomalously large. It enables
us to develop the consistent analytical procedure to study the
surface effects in the equilibrium phase coexistence regime.

FIG. 7. Comparison of the numeric solution of Eq. (23) for �/ξ as a function of (γ − gc )(ψ2
0 /ξ 2)−1 with our theory analysis [Eq. (B1)]

(thin azure solid line). a/a0 = 1.57 and a/a0 = 1.572 (i.e., for the case a/a0 > 4/3).
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Let us turn to the hexatic phase. The value of ψ in the
hexatic phase, ψH , is close to ψm, which corresponds to
the minimum of g, see Eq. (7). The main contribution to the
integral (23) stems from the vicinity of ψm. Near ψm the
function g can be approximated as

g = ψ2
0

b

[
a − a0 + λ

3
(ψ − ψm)2

]
. (35)

Starting from Eq. (35) and using Eqs. (23) and (24), we find
with the logarithmic accuracy

L

ξ
= ln

ψ0

ψH − ψm
. (36)

Thus, ψH − ψm is exponentially small in L/ξ .
Let us now turn to the Sm-A phase. At L � ξ the main

contribution to the integral (23) comes from the small ψ ,
where g ≈ aψ2/b. Calculating the integral with the logarith-
mic accuracy, one obtains

L/ξ = 2 ln(ψ0/ψA). (37)

We conclude from Eq. (37) that ψA is exponentially small over
L/ξ .

Now we use the condition �� = 0, see Eq. (25), to find
a at a given L. We can substitute into Eq. (25) ψA = 0 and
ψH = ψm. In the main approximation we obtain

a0

a − a0
+ ln

a0

a − a0
= L

ξ
. (38)

We see that (a − a0)/a0 is a power of ξ/L that justifies the
substitution ψA → 0 and ψH − ψm → 0 since the quantities
are exponentially small.

Note that for the Sm-A phase there is an additional logarith-
mic contribution to the integral in Eq. (23), related to a vicinity
of the minimum of g(ψ ), containing ln[a0/(a − a0)]. As it
follows from Eq. (38), the logarithm is ln(L/ξ ). Therefore
the contribution is irrelevant in comparison with L/ξ in the
left-hand side of Eq. (37).

Now we rewrite Eq. (33) as

L�

2β
(T+ − T−) +

∫ ψm

0

dψ ψ2

√
g

+
∫ ∞

ψm

dψ
(
ψ2 − ψ2

m

)( 1√
g

− 1√
g − γH

)

+ψ2
m

∫ ∞

ψm

dψ√
g

− ψ2
m

∫ ∞

ψm

dψ√
g − γH

= 0, (39)

where we substituted ψA = 0, ψH = ψm. The last term in
Eq. (39) is equal to ψ2

mL/2, in agreement with Eq. (24).
In the main approximation we find

�

βψ2
0

(T+ − T−) = 1 − ξ

L
ln

L

ξ
, (40)

where we used Eq. (38). The expression (40) gives the first
correction to the bulk expression (14). The contributions
leading to the logarithmic factor in Eq. (40) were missed in
Ref. [3]. Therefore, the expression for the temperature width
of the phase coexistence region presented in Ref. [3] can
be used only for qualitative interpretation of the data. Note,
however, that in terms of numeric values for the range of

the film thicknesses considered in Ref. [3], the logarithmic
factor is almost irrelevant. Nevertheless, the logarithmic factor
is very important conceptually. Thanks to this factor we are
in the position to perform consistently our calculations with
logarithmic accuracy (see the Appendices where higher-order
corrections included). This allows us to distinguish the above-
determined law for the temperature width of the coexistence
region from regular (existing in any system) finite-size cor-
rections which scale as ξ/L. The fact that ψA and ψH − ψm

are exponentially small enables us to find analytically the
next terms of the expansion over the parameter ξ/L in the
expression for T+ − T−. The corresponding analysis is shown
in Appendix A; see also Figs. 3 and 4.

E. Thin films

For thin films, we consider the case a > 4/3a0. Then
the quantity � (23) has no singularities as a function of γ .
However, at a < ac it is still a nonmonotonic function of γ .
At a = ac the function � (23) has a point γ = gc, where both
∂�/∂γ and ∂2�/∂γ 2 are equal to zero.

In the vicinity of the point the quantity � can be approxi-
mated as

�

ξ
= �(a, yc)

ξ
− A(y − yc)3 − B

a − ac

a0
(y − yc), (41)

where y = γ (ψ2
0 /ξ 2)− 1 and A, B are dimensionless constants.

Their numerical values are A = 82.1362, B = 17.6392. Ex-
ploiting Eq. (26), one finds from Eq. (41)

ξ��

ψ2
0

=
[
�(a, yc)

ξ
− L

ξ

]
(yH − yA)

− A

4
[(yH − yc)4 − (yA − yc)4]

− B

2

a − ac

a0
[(yH − yc)2 − (yA − yc)2]. (42)

Now we can find the equilibrium values of the parameters
that are determined by the conditions (24) and �� = 0. The
conditions (24) are written as

�(a, yc)/ξ − L/ξ

= A(yH − yc)3 + B
a − ac

a0
(yH − yc)

= A(yA − yc)3 + B
a − ac

a0
(yA − yc). (43)

Equating then �� to zero, we find from Eqs. (42) and (43)

L = �(a, yc), (44)

yH − yc =
√

B(ac − a)/(Aa0),

yA − yc = −
√

B(ac − a)/(Aa0). (45)

Thus the equilibrium branch of the curve yA(a), yH (a) near the
point ac, yc is a parabola.

Since in the equilibrium the derivatives of �� over γA =
(ψ2

0 /ξ 2)yA and γH = (ψ2
0 /ξ 2)yH are zero, we find in the main
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FIG. 9. Comparison of our numeric results [solution to Eq. (28)
for ∂��/∂a versus (ac − a)/a0] in the coexistence regime (dark
blue circles) with analytic theory [Eq. (47)] near the point a = ac

(blue solid line).

approximation from Eq. (42)

∂��

∂a
= 2

ψ2
0

ξ 2

∂�

∂a

√
B(ac − a)

Aa0
(46)

at the equilibrium curve. Here the derivative ∂�/∂a is taken
at y = yc. We conclude that

∂��

∂a
∝ (ac − a)1/2, (47)

that is, the derivative tends to zero as a → ac, see Fig. 9. Thus,
in the agreement with Eqs. (34) the width of the equilibrium
phase coexistence region shrinks, T+ − T− ∝ (ac − a)1/2 as
a → ac, see Figs. 5 and 10. A similar procedure can be
used to calculate the higher-order terms over a − ac, y − yc

to the expansion (41). Technical details and final results are
presented in Appendix B; see also Figs. 2, 3, and 4.

IV. CONCLUSION

In summary, we developed the theory describing ther-
modynamic features of the free-standing smectic films in
the temperature range where the equilibrium phase coex-
istence Sm-A-Hex-B occurs. Our results explain how the
surface-induced ordering reduces the width of the equilib-
rium phase coexistence region. Quite remarkably, the width
shrinks to zero when the film thickness L becomes of the
order of a few hexatic correlation length along the z axis.
The behavior of the film at L → Lc resembles the clas-
sical gas-liquid critical point, where the coexisting phases
become indistinguishable. Our analysis of the surface-bulk
ordering interplay predicts universal laws for the equilibrium
phase coexistence range in terms of the reduced parame-
ters. The described phenomena and the calculated specific
relations between the parameters are our main predictions.
They depend only on a few dimensionless parameters. Thus
we arrived at the universal picture in terms of the reduced
parameters.

Let us stress that our crucial assumption, that the Sm-A-
Hex-B transition is close to the tricritical point, is strongly
supported by the existing experimental data [3,16–18,21],
which demonstrate weak first-order phase transitions. More-

FIG. 10. Experimental data, borrowed from Ref. [3], on the
temperature range �T of the Sm-A and Hex-B phase coexistence
as a function of the dimensionless film thickness L/ξ (on cooling,
shown by dark blue circles). Our analytical description of the data
by Eq. (A17) for the thick films is shown by the azure dashed line.
In numeric computation we used the following fitting parameters:
ξ = 3.5 × 10−7 m and βψ2

0 /� = 1.6. Our results near the point
a = ac (the violet solid line) are plotted by solving Eqs. (34), (46),
(47), and (B5).

over, the measured critical exponents (for the specific heat and
for the order parameter) are close to those for the tricritical
point [16–18,21]. Therefore our theory is applicable to all
such materials, and our predictions (the finite-temperature
range for the equilibrium phase coexistence, the film thickness
as the parameter governing the width of the coexistence
region, and universal laws for the width dependence on the
system parameters) hold.

We neglected fluctuations of the order parameter. It is
well known that near the tricritical point fluctuations provide
logarithmic corrections to the mean-field values. Since, in
accordance with our scheme, in the range of the equilibrium
phase coexistence the control parameter a varies in a relatively
narrow interval (on the order of the bulk value a0), the
logarithmic renormalization of the coefficients is not essential
for our consideration. However, when the film thickness ap-
proaches the critical value Lc, the smectic and hexatic states
become indistinguishable, signaling a special critical point.
This special critical point is basically similar to the con-
ventional liquid-gas critical point, where fluctuations of the
two-component hexatic order parameter (modulus and phase)
are relevant (see Refs. [39,40] in addition to Refs. [22–24]).
We defer investigation of this point for a future work.

To illustrate how our theory works, we reanalyze the
experimental data presented in Ref. [3] for the Sm-A-Hex-B
coexistence in the free-standing film of the 54COOBC
material. Measured in Ref. [3] the temperature width �T of
the phase coexistence region at different film thickness can be
reasonably described by our theory. The comparison suggests
also that these experimental data correspond to the regime
of the intermediate film thicknesses (between described
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analytically the thick- and thin-film limits). We presented in
Fig. 10 our analytical description of Eqs. (A17), (34), (46),
(47), and (B5) of the experimental data on the temperature
range �T of the Sm-A and Hex-B phase coexistence from
Ref. [3].

In this work we investigated the Sm-A-Hex-B phase tran-
sition in the vicinity of the tricritical point, characterized by
the two-component (complex) order parameter. Generally, our
theory can be applied to other orientation phase transitions in
smectics, provided the state is close to a tricritical point. For
example, it is applicable to the transition between the untilted
Sm-A and the tilted Sm-C states. However, the explicit expres-
sions require some modifications. Namely, one has to include
the uniaxial orientational anisotropy within the smectic layers
(to compare with the hexagonal symmetry of the HexB layers)
and, more importantly, induced by cooperative molecular
tilting, the layer thickness variation at the transition.

Our theory can be also adjusted to describe the
paraelectric-ferroelectric phase transitions in solid films,
where the transition is close to a tricritical point (see, e.g.,
Refs. [41,42] for the case of thin ceramic ferroelectric films).
Furthermore, for the thin ferroelectric films surface ordering
occurs prior yo the bulk one, and it yields to a critical
point, mentioned in Refs. [43–45]. To modify our theory
for the ferroelectric solid films, one has to include elastic
energy, long-range dipolar forces, domain structures, and
so on. Note also that the equilibrium phase coexistence,
tricritical behavior, and the film finite-thickness effects are
very common in nature, not only for the smectics or the
ferroelectrics but also for spin-density waves, charge density
waves, and adsorbed atoms.

A remarkable peculiarity of the Landau theory is that it
is a powerful tool for description of different systems in
terms of the order parameter irrespective of its microscopic
nature. The system properties depend solely on the system
dimension, symmetry, and the number of the components of
the order parameter. Similarity in the description can be even
more close if one considers quasi-two-dimensional layered
structures, such as high-temperature superconductors with
puzzling properties. One more remark can be useful here.
The matter is that in the smectic liquid crystals, unlike su-
perconductors and superfluids, not only do both components
of the order parameter have a transparent physical nature, but
also the fields conjugated to the modulus and to the phase
have realistic physical sources (e.g., uniaxial pressure and
electric or magnetic fields). This cannot be said about a super-
conducting gap and superfluid density for which there is no
conjugated physical field. It is tempting to use smectic phases
for modeling of different unusual superstructures forming
in superconductors and superfluids. To the same point, the
interplay between surface and bulk order we found in this
work in smectic films recently has become very popular with
a number of fascinating applications in several branches of
physics, like holographic principles in high-energy physics or
in topological insulators (see, e.g., Refs. [46,47]).

ACKNOWLEDGMENTS

This work was inspired by recent x-ray studies of the Sm-A
and Hex-B phase coexistence in free-standing smectic films

[3]. We are grateful to all members of the experimental team
for providing us with the very first results of their remarkable
observations. Special thanks are due to B. I. Ostrovskii, I. A.
Vartanyants, I. A. Zaluzhnyy, and R. P. Kurta for stimulating
discussions. The reported study was supported by the Ministry
of Science and Higher Education of the Russian Federation
within the State assignment (Theme No. 0033-2019-0003).
The contribution of E.S.P. connecting with numerical in-
vestigation of smectic films of intermediate thicknesses was
supported by the Russian Science Foundation (Grant No. 18-
12-00108).

APPENDIX A

Here we analyze the case of thick films, L � ξ . Then
a is close to a0. The system of equations can be stated in
a more elegant form (ready for numerics) by introducing
dimensionless variables,

� = a/a0 − 1, x = ψ2/ψ2
0 , (A1)

and one obtains

g = (ψ0/ξ )2x(1 + � − 2x + x2). (A2)

The parameter � > 0 is small for our case. The quantity g
(A2) has the minimum at x = xm, where

xm = 2

3

(
1 + 1

2

√
1 − 3�

)
< 1. (A3)

As we explained, in the case L/ξ � 1 both ψA and ψH −
ψm are exponentially small over L/ξ . Therefore, to analyze
effects, with a power law over ξ/L dependence, one can put
ψA = 0, ψH = ψm = ψ0

√
xm. Then one finds from Eq. (22)

ξ

bψ2
0

�A = ϕA, (A4)

ξ

bψ2
0

�H = 2x2
m(1 − xm)

L

ξ
+ ϕH . (A5)

The dimensionless quantities ϕA and ϕH are defined as

ϕA = 2
∫ s

0
dx

√
x2 − 2x + 1 + �

= (s − 1)(s2 − 2s + 1 + � )1/2 + √
1 + �

−� ln
1 − s + (s2 − 2s + 1 + � )1/2

1 + √
1 + �

(A6)

and

ϕH = 2
∫ s

xm

dx√
x

√
x − 2(1 − xm) (x − xm)

= (s − xm − 1)
√

s(s − 2 + 2xm) +
√

xm(3xm − 2)

+ 2� ln

√
s + √

s − 2(1 − xm)√
xm + √

3xm − 2
, (A7)

where s stands for the surface value of the order parameter.
Using Eqs. (A6) and (A7), one can easily calculate

lim
s→∞(ϕA − ϕH ) = √

1 + � −
√

xm(3xm − 2)

+ xm − � ln
2(

√
1 + � − 1)

(
√

xm + √
3xm − 2)2

. (A8)
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Therefore the condition �� = 0 reads as
√

1 + � −
√

xm(3xm − 2) + xm

−� ln
2(

√
1 + � − 1)

(
√

xm + √
3xm − 2)2

= 2x2
m(1 − xm)

L

ξ
. (A9)

This equation relates ξ/L and � .
Now we turn to the relation (39), which can be rewritten as

�

βψ2
0

(T+ − T−) + ξ

L

∫ s

0

dx√
x2 − 2x + 1 + �

− ξ

L

∫ s

xm

dx√
x2 − 2(1 − xm)x

− xm = 0. (A10)

The integrals here are∫ s

0

dx√
x2 − 2x + 1 + �

= ln
s − 1 + √

s2 − 2s + 1 + �√
1 + � − 1

,

∫ s

xm

dx√
x2 − 2(1 − xm)x

= 2 ln

√
s + √

s − 2 + 2xm√
xm + √

3xm − 2
.

Substituting the expressions into Eq. (A10) and passing to the
limit s → ∞, one obtains

�(T+ − T−)

βψ2
0

+ ξ

L
ln

(
√

xm + √
3xm − 2)2

2(
√

1 + � − 1)
= xm. (A11)

The equation relates ξ/L and T+ − T−.
The expressions (A3), (A9), and (A11) admit a regular

expansion over � . Keeping zero and first terms of the expan-
sion, we get

1

�
+ ln

4

�
+ 5

4
= L

ξ
, (A12)

�(T+ − T−)

βψ2
0

= ξ

L�
+ ξ

L
− �

4
. (A13)

Taking into account only the main logarithmic term, we
reproduce Eqs. (38) and (40). In the next order over � one
finds the relations

1

�
+

(
1 + �

4

)
ln

4

�
+ 5

4
+ �

16
= L

ξ
, (A14)

�(T+ − T−)

βψ2
0

= ξ

L�
+ ξ

L
+ 3�

8

ξ

L
− �

4
− � 2

4
. (A15)

Expressing � via ξ/L from Eq. (A14), we obtain in the
same approximation

� = ξ

L
+

(
ξ

L

)2(
ln

4L

ξ
+ 5

4

)

+
(

ξ

L

)3
[(

ln
4L

ξ

)2

+ 7

4
ln

4L

ξ
+ 3

8

]
, (A16)

the function L/ξ versus � is presented in Fig. 3. Substituting
the expression (A16) into Eq. (A15), we finally find

�(T+ − T−)

βψ2
0

= 1 − ξ

L

(
ln

4L

ξ
+ 1

2

)

+
(

ξ

L

)2(1

2
ln

4L

ξ
+ 1

)
, (A17)

in the second order over ξ/L. We plot the corresponding
dependence of T+ − T− on the dimensionless film thickness
L/ξ in Fig. 5.

APPENDIX B

Here we analyze in more detail the case where L is close
to Lc and the coexistence region is rather narrow in its width.
Then one should start from the expression (41), correct near
the point ac, yc. We discuss next corrections to the expression
(41). The modified expression can be written as

�

ξ
= �(a, yc)

ξ
− A(y − yc)3 − B

a − ac

a0
(y − yc)

+C(y − yc)4 + D
a − ac

a0
(y − yc)2, (B1)

�(a, yc)

ξ
= �c

ξ
+ A1

a − ac

a0
+ B1

(
a − ac

a0

)2

, (B2)

where A, B, D, C, A1, and B1 are dimensionless parameters.
The corrections with the coefficients C and D contain an
extra power of y − yc in comparison with the main terms
with the coefficients A and B. The parameters D, C, A1, and
B1 can be found numerically, and they are D = −45.6325,
C = −724.459, A1 = −4.81157, and B1 = 14.4096.

The next step is to generalize Eq. (42)

ξ��

ψ2
0

=
[
�(a, yc)

ξ
− L

ξ

]
(yH − yA)

− A

4
[(yH − yc)4 − (yA − yc)4]

FIG. 11. Comparison of the numeric results for L/ξ (light green
circles) versus ac − a with their analytic counterparts given by
Eq. (B5) near the point a = ac. Branch corresponding to the Eq. (B5)
is shown by the dark green solid line.
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FIG. 12. Comparison of the numeric results for yH − yc (light
green circles) and − (yA − yc ) (blue circles) versus ac − a with
analytic ones given by Eqs. (B6) near the point a = ac. Curves
corresponding to the Eqs. (B6) are shown by the solid lines (upper
dark green for Hex-B phase and bottom blue for Sm-A).

− B

2

a − ac

a0
[(yH − yc)2 − (yA − yc)2]

+ C

5
[(yH − yc)5 − (yA − yc)5]

+ D

3

(a − ac)

a0
[(yH − yc)3 − (yA − yc)3]. (B3)

Now we can find the equilibrium values of the parameters
that are determined by the conditions (24) and �� = 0. The
conditions (24) are written as

�(a, yc)/ξ − L/ξ = A(yH − yc)3 + B
(a − ac)

a0
(yH − yc)

−C(yH − yc)4 − D
a − ac

a0
(yH − yc)2

= A(yA − yc)3 + B
a − ac

a0
(yA − yc)

−C(yA − yc)4 − D
a − ac

a0
(yA − yc)2.

(B4)

The expressions generalize Eq. (43). The condition �� = 0
gives the equation following from Eq. (B3).

To have a regular expansion (perturbation theory) we as-
sume the higher-order corrections to be small. Then we find
after substitution of (B4) to condition �� = 0

L

ξ
− �(a, yc)

ξ
=

(
C

5
− DA

3B

)(
B(a − ac)

Aa0

)2

, (B5)

yH , yA = yc ±
√

B(ac − a)

Aa0

−
(

3C

5A
− 2D

3B

)
B

A

a − ac

a0
, (B6)

instead of Eqs. (44) and (45). The applicability condition
of the expressions implies that the corrections to yH , yA are
small in comparison with the main contribution. Compar-
ing the expression (B5) with Eq. (B2), we conclude that
L is expanded over integer powers of (a − ac)/a0. Our nu-
meric results, shown in Figs. 11 and 12, are in agreement
with the above-presented analytic expansion, see Eqs. (B5)
and (B6).
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