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Mechanisms to splay-bend nematic phases
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While twist-bend nematic phases have been extensively studied, the experimental observation of two
dimensional, oscillating splay-bend phases is recent. We consider two theoretical models that have been used
to explain the formation of twist-bend phases—flexoelectricity and bond orientational order—as mechanisms to
induce splay-bend phases. Flexoelectricity is a viable mechanism, and splay and bend flexoelectric couplings can
lead to splay-bend phases with different modulations. We show that while bond orientational order circumvents
the need for higher order terms in the free energy, the important role of nematic symmetry and phase chirality
rules it out as a basic mechanism.
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I. INTRODUCTION

Liquid crystalline materials show a rich variety of struc-
tures and phases. Indeed even if we focus on the smectic or
cholesteric mesophases, there are a nearly unlimited variety
of structures and motifs. On the other hand, achiral nematic
phases, the backbone of the display industry, the workhorse
of experiment, and the most well understood, have only a few
variants (it has not escaped our attention that their simplicity
is the key to their value as devices). Indeed, only a handful of
distinct nematic phases have been found, and the space of pos-
sible configurations is highly restricted for achiral molecules.
It is well known that achiral rodlike and discotic molecules
form uniaxial nematics and also biaxial nematics [1–3]. Over
the past few decades, the study of bent core molecules has led
to the discovery of a nematic phase in which the director field
of achiral molecules follows an oblique helicoid, maintaining
a constant oblique angle with a helical axis [4–8]. The texture
is splay-free, having only twist and bend distortions. This new
phase, the twist-bend phase, has attracted attention due to its
unusual properties: a spontaneously chiral phase is formed out
of achiral molecules [9,10]. Additionally, experiments show
three times larger bend flexoelectric coefficients in bent core
molecules than the typical value in rodlike liquid crystals
[11,12]. A schematic of this phase is shown in Fig. 1.

With this phase as the backdrop, it is natural to contemplate
additional nematic phases that show only twist and splay, or
only splay and bend deformations. In this paper we consider
both bond orientational order and flexoelectricity as effects
that can stabilize “splay-bend” phases, also shown in the
schematic in Fig. 1. Although flexoelectricity has been con-
sidered before, we show that different forms of the splay and
bend couplings can give us two distinct splay-bend phases
with different modulations [13,14]. The paper is organized as
follows. In Sec. II, we consider bond orientational order and
find that nematic symmetry and phase chirality make bond
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order an unlikely mechanism for splay-bend. Next, in Sec. III
we consider flexoelectric effects and look at the splay and
bend flexoelectric couplings that could give rise to splay-bend
phases with different modulations. In Sec. IV, we look at
the two different “splay” phases that have been addressed
in the literature—splay-bend [13] and splay nematic phases
[14]—and show that these are related to each other by an
exchange of the bend and splay deformations.

The mechanism behind the emergence of the twist-bend
and splay-bend phases remains debated. Initial work argued
that a purely elastic instability, resulting from negative bend
elastic constants, could explain the emergence of both these
phases [13,15,16]. However, this leads to a free energy un-
bounded from below: higher order and degree terms are
necessary to find stable extrema. More recent theoretical work
shows that a linear coupling between polar order and the
deformations of the nematic director can give effective elastic
constants, which can then be driven negative with changing
temperature [17,18]. Bend flexoelectric couplings have been
used to explain twist-bend phases, and a combination of both
bend and splay flexoelectricity to explain splay-bend phases.
Recent work shows that combinations of flexoelectricity and
intrinsic chirality also predict yet unseen, but related, modu-
lated phases [19].

Another mechanism that does not require higher order
terms does exist for the twist-bend texture [20] but requires
chiral bond order: upon cooling, nematic liquid crystals can
give rise to a liquid crystalline phase with nematic order and
hexatic order in the plane perpendicular to it [21]. If the hex-
atic order is itself chiral, then the twist-bend texture is stable.
Such a mechanism would predict the emergence of twist-
bend and splay-bend phases without the need for stabilizing
arbitrary higher order terms, but pushes the problem on to find
a mechanism for spontaneous achiral symmetry breaking in
the case of achiral molecules. In this paper we will employ
the tools of symmetry to study the phase behavior of a system
with spontaneous nematic and polar order. The polarization
is a vector which might be associated with molecular dipoles
or some other geometric aspect of the mesogens. As in [22],
we will not study the entire electromagnetic response of this
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complex material, but rather we will try to understand the
allowed ground states through the Goldstone-mode/Landau-
theory paradigm. In particular, couplings that are allowed by
symmetry are, genercially, nonzero. In the absence of a deeper
symmetry we will assume that these couplings arise through
an effective theory of the mesophases.

II. BOND ORIENTATIONAL ORDER

Previous work shows how hexatic bond order in a chiral
liquid crystal can give rise to a “conical phase” with the same
texture as the twist-bend phase, while circumventing the need
for higher order terms [20]. We consider now whether this is
a viable mechanism to induce the splay-bend phase. Consider
a nematic system with bond orientational order in the plane
perpendicular to the nematic director. For our purposes, it is
sufficient to consider the general case without specifying the
number of nearest neighbors.

The fluctuations in the nematic director, n, are given by the
Frank free energy density,

fn = K1

2
[n(∇ · n)]2 + K2

2
[n · (∇ × n)]2

+ K3

2
[(n · ∇ )n]2, (1)

where K1, K2, and K3 are the splay, twist, and bend elastic
constants, respectively. Here and throughout we require that
these elastic constants are positive. Apart from the contribu-
tions to the free energy from modulations in the director field,
we want to account for interactions between the director and
the bond angle. The bond angle, �, quantifies the bond order
in the system. The definition of � depends on the definition of
the nematic director field [20]: in order to measure the sense
of an angle in three-space we need a screw direction. Using
the nematic director requires us to incorporate the nematic
symmetry into the definition of �. In particular, it follows
the nematic symmetry, and � → −� under the transforma-
tion n → −n. We expect that the bond order contribution to
the free energy density has a term that penalizes any sharp
changes in �, and a term that captures the interaction between
� and n.

Since we require that the overall nematic symmetry is pre-
served in the free energy density, any term that represents the
interaction between the bond angle and the nematic director
must have an even power of � and n together. This means,
for a term linear in ∇�, the interaction term must have an odd
power in n.

The twist-bend phase has a chiral structure, and so a
chiral interaction term is expected. In order to construct the
interaction term then, we want a vector with an odd number
of derivatives to account for chirality, and an odd power of
n to preserve nematic symmetry. The lowest order term that
satisfies these constraints is n · ∇�. Considering this term,

f� = KA

2
(∇�)2 − KAq0(n · ∇�), (2)

where the full free energy density is f = fn + f� and f�
is the contribution to the free energy density from bond
orientational order. The total free energy can be minimized
to determine the parameters of the phase and the bond angle,

(a) Twist-Bend (b) Splay-Bend

FIG. 1. The figure shows (a) twist-bend and (b) splay-bend
structures. The twist-bend structure has molecules rotating about
the z direction while maintaining a constant angle with it. In the
splay-bend texture, molecules oscillate along the z direction in two
dimensions.

�, as a function of the Frank constants, the pitch (q0), and
the bond-angle stiffness (KA). Since the interaction term is
of lower order than the terms in the Frank elastic energy,
the total free energy remains bounded from below. Indeed,
extremizing over � we have ∇2� = q0∇ · n. For the twist-
bend texture ntb = [cos(qz) cos θ, sin(qz) cos θ, sin θ ] and we
can only have ∇� = v0ẑ, a constant vector along the z axis.
Minimizing over the value of v0 and integrating over a period
generates a term [20]

f� = −KAq2
0

2
sin2 θ, (3)

and the bond order acts as a magnetic aligning field, as studied
half a century ago by Meyer [23], stabilizing the texture.
Note that this mechanism is markedly different from the bold
proposal of Dozov [13] that requires that Frank constants
become negative. However, this mechanism for a twist-bend
texture requires chirality, something absent from the observed
systems.

Here, we drop chirality and attempt to build a bond-
orientational order model that stabilizes a splay-bend texture.
For splay-bend, we use the ansatz

n1 = {sin[θ sin(qz)], 0, cos[θ sin(qz)]}. (4)

This describes an oscillating, two-dimensional structure that
alternates between regions of splay and bend deformations.
Here, q is the pitch of the phase and θ is the maximum angle
to which the molecules tilt. The direction of modulation here
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(a) Splay-bend phase in
Eq. (4)

(b) Splay-bend phase in
Eq. (7)

FIG. 2. Schematics of the splay-bend phase in the ansatz in
(a) Eq. (4) and (b) Eq. (7) showing the maximum angle θ . The
modulations are parallel to the average nematic director direction in
the left schematic, and perpendicular to it in the right.

is parallel to the average nematic director field as shown in
Fig. 2.

Using this to calculate the splay and bend free energy
density contributions, and averaging over a period π/q, we
find a free energy density

f̄n1 = K1q2

8
[θ2 − θJ1(2θ )] + K3q2

8
[θ2 + θJ1(2θ )]. (5)

Here, Jν (z) are Bessel functions of the first kind. Using the
properties of Bessel functions it is straightforward to check
that when both K1 and K3 are positive, f̄n1 � 0 and has only
one minimum at θ = 0, the uniaxial namatic. Since the splay-
bend phase is achiral, an achiral coupling is necessary: f̃�.
The symmetries that the new term must have are as follows:
continuing to require that the nematic symmetry, n → −n, is
preserved, the interaction term must have an even power of �

and n together. Further, since the texture is achiral, we assume
that the interaction term must also be achiral and thus even
in derivatives of fields. Thus a term linear in ∇� requires
a vector with an odd order of derivatives and an odd power
of n.

We may then list our the possibilities for the lowest order
term: one could consider interactions that involve the splay
vector, n(∇ · n), but these do not follow the nematic sym-
metry. The same is true for interactions that involve the bend
vector, n × (∇ × n).

One possibility that has the required symmetries is ∇� ·
(∇ × n). In this case, the extremal equation for � is again
∇2� = 0. Since ∇ × n1 = [qθ cos(qz) sin (θ sin(qz)), 0, 0],
we can consider the standard harmonic solutions of Laplace’s
equation for �. If ∇� · ∇ × n1 �= 0 then � must depend on
x. There is a solution linear in x which, when inserted and
averaged over a z period, results in no coupling between the
bond order and the director. Other solutions are of the form
cosh(αxi ) cos(αx j ) where i �= j and α is a constant. Since
we would need ∂x� �= 0, the only possible term that would
not vanish upon spatial averaging would be of the form � =
cosh(αx) cos(αz) (up to translations). Unfortunately, while
surviving the z-averaging, a solution like this would lead to an

unbounded free energy density. Whether it is possible to have
defect walls between regions of bounded ∇� is the topic of
future work.

Finally, were we to consider an interaction term with higher
order in derivatives than either the bend or splay vectors, we
would generate an odd power of q higher than 2 in the free
energy integrated over one pitch, requiring even higher order
terms to assure stability. Since that was the raison d’être for
considering this mechanism, we conclude that there are then
no interaction terms that have the appropriate symmetries and
a low enough order to give a nontrivial minimum for q and θ .

We conclude then that bond orientational order is not a
simple mechanism that can give splay-bend phases. In order
to get a splay-bend phase, a vector field, like the polarization
vector, P, is required [17]. Such a field plays the part of a
vector that need not follow the nematic symmetry. Several of
the interaction terms that are not available to us with the bond
angle are then permitted by symmetry.

III. FLEXOELECTRICITY

Recall that the flexoelectric effect is a linear coupling
between a polarization vector and director deformations. A
coupling may be constructed with either the splay or bend
vectors that, in turn, gives rise to an effective negative K1 or
K3, respectively [17]. Such a coupling induces spontaneous
splay or bend in the system. Previous work has shown how
a negative effective K3 can lead to both the twist-bend and
splay-bend phases [13]. Similarly, a negative effective value
of K1 has been used to explain the observation of the splay
nematic phase [14].

We look at both of these couplings independently. We
consider the following ansatz for the polarization vector P and
nematic director field n [14]:

n2 = {sin[θ sin(qx)], 0, cos[θ sin(qx)]}, (6)

P = n2 p cos qx. (7)

This ansatz is different from the one in Eq. (4), and the direc-
tion of modulation is perpendicular to the average direction
of the nematic director field, as is shown in Fig. 2. We will
show in the next section how the two splay-bend systems can
be mapped on to each other. This form for the polarization,
P, breaks the nematic up/down symmetry. When averaging
over the sample, modulations that are at different wavelengths
than 2π/q will vanish and so we pick the dipole modulation
accordingly. For a splay flexoelectric coupling, the free energy
density is

fsplay = fn − γ P · [n(∇ · n)] + b

2
(∇P)2 + t

2
P2, (8)

where γ , b, and t are Landau coefficients. The coefficient t
is determined by various factors such as electrostatic energy,
entropy which make a positive contribution, and packing
energy that depends on molecular shape which has a stabi-
lizing effect. With all these contributing factors, t changes
with temperature and drives the transition to a spontaneously
polarized state [14]. Since the free energy is second order in n,
the effective period of its variation is π/q. Inserting the ansatz
into the free energy density, and integrating over a period π/q,
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FIG. 3. Plots of f̄splay and f̄bend as a function of θ at the free
energy minimizing values of q and p. The plots clearly show that both
free energies have a minimum at a nontrivial value of θ , implying
that the splay-bend phase is a possibility with both couplings. The
parameter values are K1 = 1.5, K3 = 2, γ = 40, b = 2, and t = 10.

we find an average free energy density of

f̄splay = K1

8
q2[θ2 + θJ1(2θ )] + K3

8
q2[θ2 − θJ1(2θ )]

− γ pq
J1(θ )

θ
+ t p2

4
+ b

16
p2q2(3θ2 + 4). (9)

This free energy can then be minimized with respect to p
and q to obtain the following expressions at the free energy
minimum:

q2
splay = − 4

√
t

b(3θ2 + 4)

×
{√

t + 2
√

2γ |J1(|θ |)|√
(K1 + K3)θ2 + θ (K1 − K3)J1(2θ )

}
,

(10)

psplay = 8θγ J1(|θ |)qsplay

|θ |
(

b
(
3θ2 + 4

)
q2

splay + 4t
) . (11)

Note that the radicand in (10) is non-negative ( f̄n1 � 0).
In order to check the validity of these expressions, we
plug in typical values of the different constants and take
θ ∼ 1. Using K1 = 1 pN, K3 = 10 pN, γ = 10−3 V, b = 2 ×
10−18 V m3/(A s), and t = 8 × 10−8 V m/(A s), we obtain
q = 0.1 nm−1 and p = 107 (A s)/m2. This is consistent with
experiments where a nanometer range for pitch is observed
[14]. Further, using the typical density of 1 g/cm3, the value
of the polarization density p translates to a molecular polariza-
tion of 10 debye, which is approximately the same as that of
the molecule of RM734 seen to form splay-bend phases [14].

We substitute these expressions for psplay and qsplay into the
free energy and plot it as a function of the maximum angle θ

in Fig. 3. As can be seen, there is a nontrivial minimum at a
nonzero value of θ , so the splay-bend phase is stable in the
case of a splay flexoelectric coupling.

In the case of a bend flexoelectric coupling, the only
term that changes is the interaction term with coupling γ . A
bend flexoelectric coupling is of the form P × [n × (∇ × n)].
However, this is a vector. If the material were sandwiched

between two different plates separated in the direction per-
pendicular to director (the y axis), then a coupling of the form
ŷ · (P × [n × (∇ × n)]) is allowed. Further, a term of this
form is a pseudoscalar, and the coupling constant γ also must
be a pseudoscalar. The pseudoscalar character of γ may be
because of chirality in molecular shape, or a chiral asymmetry
in the anchoring conditions. The latter could be possible as a
contributing factor in experiments that show the splay-bend
phase with achiral molecules. The strength of this coupling
depends on the strength of the anchoring conditions and is
characterized by γ . This is likely to be a weak effect, and we
expect that it penetrates into the bulk for liquid crystal films
very thin in the ŷ direction. In this case the average free energy
density is

f̄bend = K1

8
q2[θ2 + θJ1(2θ )] + K3

8
q2[θ2 − θJ1(2θ )]

− γ pqHHH1(θ ) + t p2

4
+ b

16
p2q2(3θ2 + 4). (12)

Here, HHHν (z) is the Struve function of order ν. Repeating the
same procedure as earlier, we plot the average free energy
density in Fig. 3. As can be seen, a nontrivial minimum
exists at a higher value of θ than for splay flexoelectricity.
Thus, we conclude that the splay-bend phase given by the
ansatz in Eq. (7) can be obtained by either splay flexoelectric
coupling or a bend flexoelectric coupling along with a sample
asymmetry, providing the direction ŷ.

IV. SPLAY-BEND AND SPLAY NEMATIC PHASES

Previous work on nematic phases with splay and bend
modulations makes a distinction between the ansatz in Eq. (7),
a “splay nematic phase,” and the “splay-bend phase” in Eq. (4)
[14]. In particular, the direction of the modulation is perpen-
dicular to the director in Eq. (7), as opposed to along the
director, as in Eq. (4). In the “splay-bend phase,” the splay
and bend contributions to the free energy density, integrated
over a period π/q, are then

f̄n2 = K1q2

8
[θ2 + θJ1(2θ )] + K3q2

8
[θ2 − θJ1(2θ )]. (13)

As can be seen from a comparison of the above equation
with Eq. (5), the splay and bend contributions have been
interchanged. The two systems can be mapped on to each
other by exchanging K1 with K3. The “splay nematic phase”
and the “splay-bend phase” are closely related phases. This
is expected since a rotation of the nematic director field by
π/2, as would be required to turn n1 into n2, would turn
splay deformations into bend deformations and bend into
splay. If we consider the case where the polarization vector
has its origins in shape asymmetry for bent-core molecules,
a spontaneous bend in the system would be equivalent to
a spontaneous splay in a similar system of wedge-shaped
molecules, since the two shapes can be related to each other by
a rotation of π/2. A mechanism that leads to a “splay-bend”
phase of bent-core molecules would then induce a “splay
nematic” phase in a system of wedge-shaped molecules.

We could have begun by using the ansatz in Eq. (4),
and repeated the process outlined in Sec. III by inserting
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the new ansatz into the free energies with the two different
flexoelectric couplings. Minimizing with respect to q and p,
we would find that the results in Sec. III are reversed, and
the curves for f̄splay and f̄bend are interchanged in Fig. 3.
Thus, both the splay-bend and “splay nematic” phases can be
obtained with splay and bend flexoelectric couplings, and can
be related to each other by an exchange of the bend and splay
elastic constants.

V. CONCLUSIONS

We have demonstrated that, while bond orientational order
is a mechanism that could circumpass the problem of an
unbounded free energy, nematic symmetry and achirality of
the splay-bend phase prevent it from explaining the formation
of the splay-bend phase. Flexoelectricity provides a viable

mechanism for introducing splay and bend modulations in
nematic systems. Bend and splay flexoelectric couplings lead
to effective elastic constants that stabilize splay and bend
modulations. Both flexoelectric couplings can give rise to
splay-bend phases with modulation in the average direction of
the director field or modulations perpendicular to the average
direction of the nematic director. These two modulations,
treated previously in the literature as “splay-bend” and “splay
nematic” phases, are related to each other by an exchange of
the splay and bend elastic constants.
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