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We employ a version of classical density functional theory to study the phase behavior of a simple model
liquid crystal in an external field. The uniaxially symmetric molecules have a spherically symmetric core with
superimposed orientation-dependent attractions. The interaction between the cores consists of a hard-sphere
repulsion plus an isotropic square-well attraction. The anisotropic part of the interaction potential allows for the
formation of a uniaxially symmetric nematic phase. The orientation of the molecules couples to an external polar
field. The external field is capable of rotating the nematic director n̂ in the x-z plane. The field is also capable
of changing the topology of the phase diagram in that it suppresses the phase coexistence between an isotropic
liquid and a nematic phase observed in the absence of the field. We study the transition from an unpolar to a polar
nematic phase in terms of the orientation-distribution function (odf), nematic and polar order parameters, and
components of n̂. If represented suitably the odf allows us to study orientational changes during the switching
process between nonpolar and polar nematic phases. We also give a simple argument that explains why nematic
order is lost whereas polar order persists up to the gas-liquid critical point along the coexistence curve. We also
discuss the relevance of our theory for future experimental studies.
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I. INTRODUCTION

Because of the technological importance a large body of
fundamental scientific work already exists that is devoted to
various aspects of the interaction between liquid-crystalline
materials and external fields. For instance, Camacho-Lopez
et al. [1] studied orientationally ordered liquid-crystal
elastomers exposed to mechanical strain. This strain is
perceived as the external field in their case. In a more recent
review Leferink op Reinink et al. [2] discuss the impact of
various external fields on lyotropic colloidal liquid crystals.
Besides the perhaps more conventional electric or magnetic
fields these authors also consider the impact of the Earth’s
gravitational field.

In another system polymers are used to stabilize blue
phases that can be formed in chiral liquid crystals [3]. The
polymer matrix acts as an “external field” in this example.
Blue phases are normally stable over a very narrow temper-
ature range of less than a few K. By adding the polymer,
Kikuchi et al. [3] were able to widen the range of stability
to about 60 K. This achievement is very important because
blue phases can be used as electro-optical switches with very
short response times of about 10−4 s.

In most studies to date external electric fields have been
used to manipulate liquid crystals (see also the review article
by Garbovskiy and Glushchenko [4] and references therein).
For example, Kim et al. [5] used an electric field to re-
versibly switch nematic domains of a liquid crystal. This is
important to reduce the power consumption required for high-
information-content displays. In another study [6], the electro-

optical and thermo-optical properties of liquid crystals have
been investigated. The authors studied the effects of applied
voltage and temperature on liquid-crystal droplet morphology
and its transmission characteristics. In a composite system
in which one of the compounds consists of a chiral nematic
liquid crystal, Hu et al. [7] investigated the electrically con-
trollable selective reflectivity of their hybrid system.

Using magnetic fields van den Pol et al. [8] were able
to stabilize biaxial nematic and biaxial smectic phases in
a colloidal model system consisting of boardlike goethite
particles. Ostapenko et al. [9] studied the magnetic-field in-
duced isotropic-nematic phase transition in bent-core liquid-
crystalline materials. The critical magnetic field to initiate
this phase transition increases with temperature. The authors
employ Landau–de Gennes (LdG) [10] and Maier-Saupe
[11] mean-field models to rationalize their experimental
findings.

Particularly fascinating liquid-crystalline systems are those
exhibiting unpolar and polar nematic order at the same time.
The idea that this could happen is quite old. In fact, Born
[12,13] introduced the hypothesis that attractive dipolar in-
teractions would allow for the formation of ordered liquidlike
phases. The mechanism through which this happens is one in
which the configurational energy in an ordered phase can be
lower than that of a corresponding isotropic liquid phase. In
his work, Born applied a simple mean-field approximation to
describe the isotropic-nematic phase transition. Because his
system is composed of dipoles the nematic phase turns out to
be also polar (ferroelectric nematic) with the dipoles aligned
with the nematic director.
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Quite some time later Brochard and de Gennes [14] in
a seminal paper considered a suspension of small magnetic
particles in a nematic carrier fluid. They developed a con-
tinuum theory for this ferromagnetic nematic liquid crystal
that has at its core the assumption that the magnetization is
always perfectly aligned with the nematic director. This is
sometimes referred to as the “rigid anchoring” condition [15].
However, as pointed out in a recent review article by Mertelj
and Lisjak (see Ref. [16] and references therein) progress in
experimental studies of ferromagnetic nematic liquid crystals
has been relatively slow for many years. The main obstacle
hampering this progress was the difficulty to sufficiently
stabilize ferromagnetic nematic phases. This problem could
only be mastered fairly recently [17].

Experimentally, ferromagnetic ordering arises in suspen-
sions of magnetic nanoplatelets in a nematic carrier fluid [17].
If the anchoring of the liquid-crystal molecules is sufficiently
strong and parallel to the surface of the platelets, the sponta-
neous magnetization M will align with the nematic director
n̂ [18–20]. If now a magnetic field is applied in a direction
perpendicular to M it exerts a torque on the nanoplatelets
which reorients them. This also reorients n̂ through the an-
choring of the liquid-crystal molecules at the surface of the
platelets. Because of the spatial variation of n̂ in the presence
of an external magnetic field the optical properties of the
nematic host phase will change in a controllable manner
[21,22] (see also Figs. 1 and 2 of Ref. [19] and Fig. 1 of
Ref. [20]). Besides nanoplatelets, suspensions of rodlike and
spherical nanoparticles in a nematic carrier fluid have also
been considered [23].

On the theoretical side and after Brochard and de Gennes’
theory [14] quite a bit of work has been carried out to
understand various aspects of ferromagnetic nematic phases
[24–28]. However, these theoretical works are all based upon
a macroscopic (continuum) picture.

The goal of the present study is to contribute to our under-
standing of ferromagnetic nematic liquid crystals at the molec-
ular level. We are employing classical density functional
theory (DFT) in the version proposed recently by Schoen et al.
[29] in which the short-range positional order is accounted
for realistically. Unlike computer simulations, DFT has the
advantage that it is numerically very efficient and avoids the
notorious finite-size effects [30] in computer simulations of
ordered liquid-crystalline materials.

We are essentially using a model that has been proposed
originally by Maier and Saupe [11]; later a more sophisticated
version of this model has been suggested by Hess and Su [31].
This model is capable of exhibiting nematic order. In addition,
we are allowing the orientations of the mesogens to couple to a
polar external field. That way our model liquid crystal is capa-
ble of exhibiting properties of a ferromagnetic nematic phase.

The remainder of this paper is organized as follows. In
Sec. II our model system is introduced. We develop an ap-
proximate free-energy functional in Sec. III. Section IV is
devoted to aspects of minimizing the grand-potential density.
We introduce key quantities on which this work is based in
Sec. V and present our results in Sec. VI. These results are
discussed and summarized in Sec. VII.

The paper has three Appendixes. In Appendix A we
demonstrate that the orientation dependence of intermolecular

interactions in our model is equivalent to the one proposed
by Hess and Su [31], Appendix B is devoted to mathematical
details in the development of the free-energy functional, and
in Appendix C we analyze the alignment tensor Q for a
perfectly ordered ferromagnetic nematic phase.

II. MODEL

A. Intermolecular interactions

We consider a simple model of a thermotropic liquid
crystal composed of N molecules (mesogens) interacting with
each other in a pairwise additive fashion. The interaction
potential is assumed to consist of two parts: one of them
describes the interaction between the spherically symmetric
cores of a pair of mesogens, the other one accounts for
the orientation dependence of the interactions. Thus, we can
decompose the total interaction potential according to

u(r12, ω1, ω2) = uiso(r12) + uaniso(r12, ω1, ω2), (2.1)

for a pair of mesogens where the centers of mass are located
at r1 and r2, respectively; r12 = r1 − r2 and r12 = |r12|. In
Eq. (2.1), ωi = (θi, ϕi ) (i = 1, 2) are sets of Euler angles
that we introduce to specify the orientations of the uniaxial
mesogens; in the usual way, θi and ϕi denote the polar and
azimuthal angle, respectively.

For the short-range repulsive interactions between the
isotropic cores we adopt the potential [29]

uhs(r12) =
{∞, r12 � σ

0, r12 > σ
(2.2)

for a pair of hard spheres of diameter σ . To derive an explicit
functional form for uaniso we follow Gray and Gubbins [32]
who pointed out that any function that depends on r12, ω1, and
ω2 as its variables can be expanded in the basis of so-called
rotational invariants {�l1l2l} according to

uaniso(r12, ω1, ω2) =
∑
l1l2l

ul1l2l (r12)�l1l2l (ω1, ω2, ω), (2.3)

where ω is a set of Euler angles allowing us to specify the
orientation of r̂12 = r12/r12 in a space-fixed frame of refer-
ence, {ul1l2l} are expansion coefficients that depend only on
r12, and l ′ (that is l1, l2, or l) is a positive semidefinite integer.
Throughout this paper the caret will be used to indicate a unit
vector.

Members of the set {�l1l2l} form a complete orthogonal
basis (see Appendix B of Ref. [29]) in which

�l1l2l (ω1, ω2, ω) =
∑

m1m2m

C(l1l2l; m1m2m)

×Yl1m1 (ω1)Yl2m2 (ω2)Y∗
lm(ω). (2.4)

In Eq. (2.4), C is a Clebsch-Gordan coefficient, Yl ′m′ is a
spherical harmonic, and the asterisk denotes the complex
conjugate; m′ (that is m1, m2, or m) is an integer that is linked
to l ′ through the relation m′ ∈ [−l ′, l ′] so that for each value
of l ′ the corresponding sum over m′ comprises 2l ′ + 1 terms.
Thus, the expansion in Eq. (2.3) has to be truncated for rather
small values of l ′ to be computationally tractable.

To that end we introduce the assumption that uaniso in
Eq. (2.1) (and therefore u) should depend only on r12 (but
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not on the distance vector r12). This immediately suggests
l = m = 0 in Eq. (2.4) and therefore Y∗

lm = Y00 = 1/
√

4π .
Nonzero Clebsch-Gordan coefficients are then obtained

provided the two selection rules [see Eqs. (A.130) and (A.131)
of Ref. [32]], (i) m = m1 + m2 and (ii) |l1 − l2| � l � l1 + l2
(triangle inequality), are satisfied simultaneously. Because
m = 0 the first of these requires m1 = −m2 whereas for
l = 0 the triangle inequality suggests l1 = l2. Therefore the
summation over l1, l2, m1, and m2 in Eqs. (2.3) and (2.4)
collapses to

u000(r12)

(4π )3/2
+ 1√

4π

∞∑
l>0

ull0(r12)
l∑

m=−l

C(ll0; mm0)

×Ylm(ω1)Ylm(ω2)

= u000(r12)

(4π )3/2
+ 1

(4π )3/2

∞∑
l>0

(−1)l
√

2l + 1

× ull0(r12)Pl (x), (2.5)

where m = −m; we also used Eq. (A.157) of Ref. [32] to-
gether with (−1)mYlm = Y∗

lm and treated the isotropic con-
tribution u000 separately. Last but not least, we invoke the
addition theorem for spherical harmonics [see Eq. (A.33)]. In
Eq. (2.5),

x = cos γ = û(ω1) · û(ω2) ≡ û1 · û2, (2.6)

and members of the set {Pl} are Legendre polynomials.
At this stage we introduce three more assumptions. First,

we require uaniso to remain invariant if the orientation of
one of the two mesogens is inverted. This takes notice of
the “head-tail” symmetry (i.e., the equivalence of ûi and
−ûi) characteristic of many mesogens [10]. In general, P2l+1

contains only odd powers of cos γ and thus would change
sign if the orientation of one of the two mesogens is inverted,
that is if γ → γ ′ = γ ± π . Hence, we consider only even
l (including the even integer l = 0) to maintain the desired
invariance of uaniso.

Second, we limit ourselves to the leading (l = 2) term in
the summation in Eq. (2.5) which permits us to introduce

uiso(r12) = uhs(r12) + u000(r12)

(4π )3/2
, (2.7a)

uaniso(r12, ω1, ω2) =
√

5

(4π )3/2
u220(r12)P2(x), (2.7b)

where P2(x) = 1
2 (3x2 − 1). Thus, the orientation dependence

of the anisotropic interactions in Eq. (2.7b) is the same as
that used by Mayer and Saupe [see Eq. (1) of Ref. [11]]
and also by Hess and Su [31] for the special case in which
only the coupling constant ε1 in their Eq. (9) is nonzero. To
demonstrate the equivalence between our Eq. (2.7b) and the
corresponding expressions in the paper by Hess and Su [31] is
slightly more involved. We summarize the main steps of this
demonstration in Appendix A.

The expansion coefficients u000 and u220 in Eqs. (2.7) are
still undetermined. Unfortunately, within the present approach
we cannot resort to any first principles to determine the

expansion coefficients. Instead, we need to make an ansatz
by introducing as our third assumption

u000(r12)

(4π )3/2
= usw(r12), (2.8a)

√
5

(4π )3/2
u220(r12) = ε′usw(r12), (2.8b)

where ε′ is a dimensionless parameter that we introduce so
that we can vary the relative strength of the isotropic and
anisotropic interactions. In Eqs. (2.8a) and (2.8b),

usw(r12) = −ε�(r12 − σ )�(λσ − r12) (2.9)

describes an attractive potential well and � is the Heaviside
function; ε and λσ denote the depth and width of the attractive
well, respectively. Finally, combining Eqs. (2.1), (2.2), and
(2.8) we obtain the interaction potential

u(r12, ω1, ω2) = uhs(r12) + usw(r12)[1 + ε′P2(x)], (2.10)

which is identical to the one employed in an earlier DFT study
by one of the present authors [29]. Throughout this work we
fix ε′ = 0.4.

Finally, we emphasize that liquid-crystalline behavior
comes about through anisotropic attractions between a pair
of molecules and not because of an interaction between
anisotropic repulsive cores as it would in the case of rod-
shaped or disklike particles. However, as far as the overall
topology of phase diagrams is concerned it turns out that
the disregard of an anisometric shape in favor of anisotropic
attraction is irrelevant. To see this one should compare the
phase diagram presented below in the field-free case with the
one presented by Franco-Melgar [33] and Franco-Melgar et al.
[34] who studied the phase behavior of hard spherocylinders
in which the isotropic-nematic phase transition is solely driven
by entropic rather than energetic features as in this work.

Nevertheless, it should be stressed that model systems
in which the molecules possess an isotropic core with su-
perimposed anisotropic attractions are computationally much
more convenient than models with shape-anisometric cores
both in computer simulations [30,35–38] and in classical
DFT [29,39].

The present class of liquid-crystal model potentials has
been used successfully to understand and explain structures
in nematic colloidal suspensions [40] that were observed
experimentally [41,42] but remained unexplained for nearly
twenty years. Another example in which a model potential
with an isotropic core and superimposed anisotropic interac-
tions has been shown to be adequate is the investigation of
defect topologies forming if colloidal particles are immersed
in a nematic or smectic A carrier host phase [43]. The defect
topologies observed theoretically [44] are in good qualitative
agreement with experimental findings [45,46]. A third exam-
ple is binary nematic mixtures of biaxial symmetry in which
both pure compounds pertain to the present class of model
systems [47].

The conclusion drawn from these earlier studies is that
shape anisometry as well as anisotropic attraction between
otherwise spherical molecules both capture the essential
physics of a broad variety of liquid-crystalline systems.
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B. External field

For a suitably chosen thermodynamic state the model
liquid crystal introduced in the preceding section will form
a nematic phase [29]. In this nematic phase the mesogens will
align, at least to a certain degree, where the overall direction of
alignment can be described by the nematic director n̂. How-
ever, without an external field the direction of n̂ is infinitely
degenerate on the unit sphere. Normally, this is not necessarily
a problem.

However, in this work, in which we want to use an external
field to switch n̂ between its direction in a nonpolar nematic
reference state and a polar-field-induced state, it seems sen-
sible to have the same fixed direction of n̂ in that reference
state. Thus, we are seeking to select one of the infinitely many
possible directions of n̂ by applying a weak external field that,
in addition, also preserves the “head-tail” symmetry (i.e., the
indistinguishability of n̂ and −n̂) in the nematic phase.

This situation is akin to the one usually encountered in
experiments. Experimentally, the liquid crystal is placed in
a container. The walls of that container are capable of “an-
choring” the mesogens in their immediate vicinity in spe-
cific ways. “Anchoring” refers to an energetic discrimina-
tion of certain orientations of the mesogens with respect to
the container walls [48]. Experimentally, specific anchoring
conditions can be realized by treating the container walls
mechanically, chemically, or by exposing the liquid crystal to
some external action.

For example, mechanical work can be applied by rubbing
or polishing the walls, by exposing them to photolithographic
relief, or by oblique evaporation of oxide films. Chemically,
substrates can be modified through the deposition of sur-
factants or polymeric films. The former causes homeotropic
anchoring of the mesogens whereas planar anchoring is real-
ized by the latter modification. Finally, flow can be used to
manipulate the anchoring of the mesogens at substrates which
constitutes an example of external action. For more details the
interested reader is referred to Sonin’s book [49].

If the liquid crystal is in the isotropic phase only that
portion in the immediate vicinity of the walls is affected
by the specific anchoring scenario. However, in the nematic
phase anchoring conditions are imprinted onto portions of the
liquid crystal that are too far away from the container walls to
directly interact with them. Nevertheless, these portions of the
liquid crystal can exhibit the same ordering as those located
in the vicinity of the walls. In other words, in the nematic
phase we are dealing with long-range orientational order. We
intend to mimic this experimental scenario by introducing an
external field Hn = HnĤn that couples quadratically to the
alignment tensor Q which is measure of nematic order in the
liquid crystal [10]. Therefore, we introduce

un(ω) = −H2
n Ĥ

T
n QĤn, (2.11)

where Hn is a coupling constant controlling the strength of the
field Hn.

The field is acting in the z direction and therefore Ĥ
T
n =

(0, 0, 1) where T denotes the transpose. Thus, un tends to align
a mesogen with the z axis. It should be perceived as the far
field due to the anchoring of the mesogens at the container
walls.

Components of the alignment tensor are given by

Qi j = 3

2

∫
dω α(ω)ui(ω)u j (ω) − 1

2
δi j, (2.12)

where δi j is the Kronecker symbol (i, j = x, y, z) and α is the
orientation distribution function (odf). The latter is normal-
ized according to ∫

dω α(ω) = 1. (2.13)

The second-rank tensor Q is real, symmetric, and traceless. It
can be represented by a 3 × 3 matrix. In Eq. (2.12),

ux(ω) = sin θ cos ϕ = −
√

8π

3
ReY11(ω), (2.14a)

uy(ω) = sin θ sin ϕ = −
√

8π

3
Im Y11(ω), (2.14b)

uz(ω) = cos θ =
√

4π

3
Y10(ω), (2.14c)

where Eq. (A.62) of Ref. [32] has also been invoked and Re
and Im denote real and imaginary parts, respectively. From
Eqs. (2.11) and (2.12) it is straightforward to verify that

un(ω) = −H2
n

2

[
3u2

z (ω) − 1
] = −H ′

nY20(ω) (2.15)

and H ′
n = H2

n

√
4π/5 is a renormalized coupling constant

where we lumped together the trivial prefactors arising from
the definition of Y20 [32].

The focus of this work is on switching between a non-
polar nematic reference state and a polar nematic state.
This requires the introduction of a second external field Hp.
According to Mertelj and Lisjak [16] the coupling of polar
order to this field should be linear. We assume that the field is
orthogonal to Hn and take Ĥp to point in the x direction, that

is Ĥ
T
p = (1, 0, 0). The external polar potential is then given

by

up(ω) = HpĤp · û(ω) = Hp sin θ cos ϕ = −H ′
p ReY11(ω),

(2.16)
where H ′

p � 0 is a coupling constant that allows us to control
the strength of the polar field. The unit vector û in Eq. (2.16)
can thus be interpreted as a magnetic moment carried by a
mesogen. As before in Eq. (2.15) it is convenient to lump
together all numerical prefactors from the definition of Y11

[see Eq. (A.62) of Ref. [32]] so that Hp → H ′
p. Combining

now Eqs. (2.15) and (2.16) allows us to introduce the total
external potential via

uext (ω) = un(ω) + up(ω)

= −H ′
nY20(ω) − H ′

p ReY11(ω). (2.17)

However, it needs to be stressed that the model that we
study attempts to mimic the experimental situation only im-
plicitly. In experimental systems one focuses on suspensions
of magnetic nanoplatelets in a liquid-crystalline host phase.
Assuming that the liquid-crystal molecules are sufficiently
strongly anchored at the surface of the nanoplatelets, the
nematic director can be rotated through the response of the
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nanoplatelets to an external magnetic field. To avoid the ad-
ditional effort to treat a binary mixture within the framework
of the present approach we simply add another (independent)
degree of freedom to our liquid-crystal molecules capable of
responding to the external field Hp. As we argue in Sec. VII,
to treat the ferromagnetic nematic suspension as an effective
single-component liquid crystal is actually advantageous from
a theoretical perspective.

III. APPROXIMATE FREE-ENERGY FUNCTIONAL

A. Preliminary remarks

For the model introduced in Sec. II we are ultimately
interested in thermodynamic equilibrium states under various
conditions characterized by, for example, temperature T or
chemical potential μ, but also for various coupling strengths
H ′

n and H ′
p. These thermodynamic equilibrium states corre-

spond to minima of the grand-potential functional given by
the expression

�[ρ(r, ω)] = F[ρ(r, ω)] +
∫∫

dr dω ρ(r, ω)uext (ω)

−μ

∫∫
dr dωρ(r, ω), (3.1)

where ρ is the generic singlet distribution function [32] and
F is the free-energy functional. The second term on the right-
hand side of Eq. (3.1) represents the free-energy contribution
due to uext [see Eq. (2.17)]. Thus, � can be perceived as a
generalized Legendre transform of F .

We decompose F into an ideal-gas contribution Fid and
an excess contribution F ex which we define through the
expression

F ex[ρ(r, ω)] ≡ F[ρ(r, ω)] − Fid[ρ(r, ω)]. (3.2)

Because of this definition, the functional F ex accounts for all
intrinsic free-energy contributions. An explicit expression for
Fid is given in Eq. (3.15) below.

B. Excess free-energy functional

At this stage one realizes that it will not be possible to
derive an exact expression for F ex on account of the relative
complexity of our model system. The best one can be hoping
for is to develop an approximate but sufficiently accurate
expression for F ex.

To develop such an expression we begin by decomposing
u in Eq. (2.10) into a contribution u0 of a reference system
and a perturbation u1 according to u = u0 + u1. The choice
of the reference system and that of the perturbation is by
no means unique. Therefore, we assume that the unweighted
orientational average of u1 satisfies

〈u1(r12, ω1, ω2)〉ω1,ω2 = 1

4π

∫∫
dω1 dω2 u1(r12, ω1, ω2).

= 0. (3.3)

An inspection of Eq. (2.10) immediately suggests that u1 =
uaniso owing to the “multipolelike” character [50] of uaniso

[see Eq. (3.3)]. To see that uaniso satisfies Eq. (3.3) one
realizes from Eq. (2.7b) and the addition theorem for spherical

harmonics [see Eq. (A.33) of Ref. 32] that

uaniso(r12, ω1, ω2) ∝ P2(x) = 4π

5

2∑
m=−2

Y∗
2m(ω1)Y2m(ω2).

(3.4)

Because of this relationship and using Eq. (A.38) of Ref. [32]
it is apparent that uaniso satisfies Eq. (3.3).

From this discussion and Eq. (2.10) it is then clear that

u0(r12) = u(r12, ω1, ω2) − u1(r12, ω1, ω2) = uiso(r12) (3.5)

describes the interaction of particles in the reference system.
Because of the decomposition of u into u0 and u1 we are now
ready to develop an explicit expression for the intrinsic free-
energy functional in Eq. (3.1). Therefore, we introduce

u(r12, ω1, ω2; ξ ) = u0(r12) + ξu1(r12, ω1, ω2), (3.6)

where 0 � ξ � 1 is a dimensionless parameter that allows us
to specify a linear path of integration along which we can
switch continuously between the reference system (ξ = 0)
and the system of interest (ξ = 1).

Because of Eq. (3.6), F ex becomes a function of ξ . As
detailed in Ref. [29] one can then take recourse to thermo-
dynamic integration and introduce a change in the excess free
energy functional,

�F ex = F ex
1 − F ex

0

= 1

2

∫ 1

0
dξ

∫∫
dr1dr2

∫∫
dω1dω2u1(r12, ω1, ω2)

× ρ(r1, ω1)ρ(r2, ω2)g(r1, r2, ω1, ω2; ξ ), (3.7)

where F ex
0 and F ex

1 are the excess free-energy functional
of the reference system and that of the system of interest,
respectively. In Eq. (3.7), g denotes the orientation-dependent
pair correlation function which depends on the coupling pa-
rameter ξ . In other words, for each value of ξ a different pair
correlation function is needed which consequently requires a
suitable parametrization of g [29].

Such a parametrization is possible if one expands the so-
called cavity correlation function in terms of ξ as explained in
detail elsewhere [29]. To leading order this expansion gives

g(r1, r2, ω1, ω2; ξ ) = g0(r12) exp[−βξu1(r12, ω1, ω2)],
(3.8)

where g0 is the radial pair correlation function of the reference
system.

The previous expression constitutes the augmented mod-
ified mean-field (AMMF) approximation [29]. In essence,
the AMMF approximation assumes that the short-range po-
sitional structure of the liquid crystal is solely determined by
the isotropic interactions between the mesogenic cores; the
anisotropic interactions enter the physical picture only at the
level of the second virial coefficient.

With Eq. (3.8) it is now possible to carry out the integration
over the coupling constant in Eq. (3.7) analytically which
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gives

β�F ex = −1

2

∫∫
dr1dr2g0(r12)

×
∫∫

dω1dω2 f (r12, ω1, ω2)

× ρ(r1, ω1)ρ(r2, ω2), (3.9)

where

f (r12, ω1, ω2) = exp[−βuaniso(r12, ω1, ω2)] − 1 (3.10)

is the orientation-dependent Mayer f function and β =
1/kBT (kB is Boltzmann’s constant). For mesogens of uniaxial
symmetry f can be expanded in terms of rotational invariants
(see Sec. A.4.2 of Ref. [32]) according to

f (r12, ω1, ω2) =
∑
l1l2l

fl1l2l (r12)�l1l2l (ω1, ω2, ω). (3.11)

Because we are dealing with a homogeneous bulk system
we decompose the generic singlet distribution functions in
Eq. (3.9) according to

ρ(r, ω) = ρα(ω), (3.12)

where ρ on the right-hand side is the number density. Putting
all this together, we can rewrite Eq. (3.9) as

β�F ex

V
≡ β� f ex = ρ2

∑
lm

αlmαlmulm(ρ). (3.13)

The energy parameters {ulm} in Eq. (3.13) are given by

ulm(ρ) = − (−1)l+m√
π√

2l + 1

∫ ∞

0
dr12 r2

12 g0(r12) fll0(r12),

(3.14)
where the density dependence arises through g0. Explicit
expressions for elements of the set { fll0} are given in
Appendix C of Ref. [29]. Details of the integration over
orientations in Eq. (3.9) leading to Eq. (3.13) are discussed
in Appendix B.

To arrive at Eq. (3.13), we transformed variables r1 →
r′

1 = r1, r2 → r′
2 = r12, performed the one trivial integra-

tion over dr′
1, and used spherical coordinates where dr12 =

r2
12dr12dω. At this stage, the reader should realize that �F ex

has become a function of ρ but remains a functional of α

because of Eq. (3.12).
Finally, on account of the approximation introduced in

Eq. (3.12) we can express the ideal-gas contribution as

βFid

V
≡ β fid

= ρ[ln(ρ�5m/I ) − 1]

+ ρ

∫
dω α(ω) ln[4πα(ω)], (3.15)

which is a function of ρ and a functional of α as well. The
first term on the far right-hand side of Eq. (3.15) arises from
the kinetic energy of the mesogens; the second one accounts
for the entropic loss if the liquid crystal undergoes a transition
from a disordered to an ordered phase. The extra factor of
4π in the argument of the logarithmic function is included
to make sure the the second term on the right-hand side of

Eq. (3.15) vanishes in the isotropic phase for which α = 1
4π

because of Eq. (2.13).

C. Free energy of the reference system

Turning now to the free energy of the reference system F ex
0 ,

this consists of two contributions. The first of these is the free
energy due to the hard-core repulsion [see Eq. (2.2)]. Because
the system is homogeneous [see Eqs. (2.15) and (2.16)] we
can employ the Carnahan-Starling equation of state [51] from
which one obtains the free-energy density of the hard-sphere
fluid [52] as

βFhs

V
≡ β fhs = ρ

4η − 3η2

(1 − η)2
. (3.16)

In Eq. (3.16), η ≡ π
6 ρσ 3 is the packing fraction of the hard

spheres at density ρ.
The second contribution to F ex

0 comes from the attractive
trough of the square-well potential [see Eq. (2.9)]. We treat
this contribution within thermodynamic perturbation theory á
la Barker and Henderson [53] or Zwanzig [54,55]. To leading
order this approach gives

βFsw

V
≡ β fsw = 2πβρ2

∫ ∞

0
dr12 r2

12usw(r12)ghs(r12),

(3.17)
where ghs is the radial pair correlation function of a hard-
sphere fluid.

The integrand in this expression is negative semidefinite
because usw � 0 and ghs � 0 regardless of r12. This allows us
to invoke the first mean-value theorem for definite integrals so
that the previous expression for fsw can be rewritten as [56]

β fsw = 2πβρ2gc
hs(ηeff )

∫ ∞

0
dr12 r2

12usw(r12)

� −2π

3
βερ2σ 3gc

hs(ηeff )(λ3 − 1), (3.18)

where gc
hs = limr12→σ+ ghs is the contact value of the radial

pair correlation function.
The parameter ηeff is an effective hard-sphere packing frac-

tion. It can be parametrized in terms of η. The parametrization
is known for a great many potentials [56] (for the square-well
potential, see Eqs. (26) and (27) of Ref. [29]).

One can then invoke the contact-value theorem for the
pressure of a hard-sphere fluid (see Eq. (2.5.26) of Ref. [52])
and combine it with the Carnahan-Starling equation of state
[51] to obtain

gc
hs(ηeff ) = 1 − ηeff/2

(1 − ηeff )3
. (3.19)

Applying a similar perturbative treatment then allows us to
rewrite Eq. (3.14) as

ulm(ρ) = − (−1)l+m√
π√

2l + 1
gc

hs(ηeff )
∫ ∞

0
dr12 r2

12 fll0(r12).

(3.20)
Because m enters Eqs. (3.14) and (3.20) as a trivial factor, we
have

ulm(ρ) = (−1)|m|+1(2l + 1)ul (ρ), (3.21)
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where explicit expressions for the first few members of the set
{ul} are given in Eqs. (101a)–(101c) of Ref. [29].

Hence, from Eqs. (3.16) and (3.18) together with Eq. (3.19)
we are in a position to calculate the excess free energy of the
isotropic reference system from

F ex
0 (ρ) = Fhs(ρ) + Fsw(ρ), (3.22)

which turns out to be only a function of ρ (and not a func-
tional) because of Eq. (3.12) and because the reference system
consists of spherically symmetric particles [see Eq. (3.6)].

IV. MINIMIZING THE GRAND-POTENTIAL FUNCTIONAL

Collecting the various free-energy contributions given in
Eqs. (3.13), (3.15), (3.16), and (3.18) permits us to construct
the approximate functional for � that we are now seeking to
minimize. It can be written as

β�[ρ, α(ω)]

V
= β fsw + β fhs + β fid + ρ2

∑
lm

αlmαlmulm

+βρ

∫
dω α(ω)uext (ω) − βμρ, (4.1)

where we dropped ρ as an argument of fsw, fhs, fid, and {ulm}
on the right-hand side to ease the notational burden. Using
this expression for � allows us to identify thermodynamically
stable states and also permits us to study phase coexistence.

A. Thermodynamically stable states

Generally speaking, thermodynamically stable states cor-
respond to minima of the approximate grand-potential func-
tional given in Eq. (4.1). Hence, we are seeking simultaneous
solutions of the equations(

∂ �

∂ ρ

)
= 0, (4.2a)(

δ�

δα(ω)

)
= χ (T, ρ), (4.2b)

where χ is a Lagrangian multiplier introduced to make
sure that the functional derivative on the left-hand side of
Eq. (4.2b) automatically satisfies the normalization condition
in Eq. (2.13). Using Eq. (4.2a) it is straightforward to verify
that

0 = βμsw + βμhs + βμid

+
∑
lm

αlmαlm

[
2ρulm(ρ) + ρ2 dulm(ρ)

dρ

]

+β

∫
dω α(ω)uext (ω) − βμ, (4.3)

where Eq. (3.13) has also been utilized and μ• = ∂ f•/∂ρ.
Solving Eq. (4.3) for βμ and replacing this term in Eq. (4.1)
then gives

β�[ρ, α(ω)]

V
= −βP

= βPCS − βPsw

−
∑
lm

αlmαlm

[
ρ2ulm(ρ) + ρ3 dulm(ρ)

dρ

]
,

(4.4)

where P is the total pressure and PCS is given by the Carnahan-
Starling equation of state [51] (see also Eq. (3.9.17) of
Ref. [52]); Psw is the pressure contribution from the attractive
square well. An explicit expression for the latter is given in
Eq. (61b) of Ref. [29].

To solve Eq. (4.2b) we first need to replace αlm and αlm in
the fourth term on the right-hand side of Eq. (4.1). We notice
from Eq. (B2) and because the spherical harmonics form a
complete set of orthonormal basis functions that

αlm =
∫

dω α(ω)Y∗
lm(ω). (4.5)

We note in passing that because of Eq. (A.38) in the
book by Gray and Gubbins [32] all expansion coefficients αlm

vanish in the isotropic phase except for α00 = 1/
√

4π because
of Eq. (2.13).

Reminding ourselves that fid is a functional of α we can
then perform the functional derivative in Eq. (4.2b). Solving
the resulting expression for the odf we obtain the expression

α(ω) = 1

4π
exp

[
χ (T, ρ) − ρ

ρ

]
�(ω) = 1

4π

�(ω)

〈�(ω)〉ω ,

(4.6)
where the expression on the far right-hand side follows with
the aid of Eq. (2.13). In the previous expression the unnormal-
ized odf is given by

�(ω) = exp

⎡⎣−2ρ
∑

l>0
m

ulm(ρ)αlmY∗
lm(ω) − βuext (ω)

⎤⎦
× exp

[
−ρu00(ρ)

2π

]
(4.7)

and

〈�(ω)〉ω = 1

4π

∫
dω �(ω) (4.8)

is its unweighted average over orientations.
The second term on the right-hand side of Eq. (4.7) ac-

counts for the isotropic (l = m = 0) contribution. This con-
tribution cancels between numerator and denominator of the
expression on the far right-hand side of Eq. (4.6). Moreover,
because ulm ∝ fll0 [see Eq. (3.20)] and the analysis in Ap-
pendix C of Ref. [29] reveals that the set { fll0} comprises
only coefficients for even l , the sum over l in the first term
on the right-hand side of Eq. (4.7) does, too. This is a
direct consequence of the orientation dependence of uaniso in
Eq. (2.7b).

Finally, we note that quantities such as
∑

lm αlmαlm [see
Eq. (4.4)] and

∑
lm αlmYlm [see Eq. (4.7)] are real as they

must be. This is a consequence of Eq. (A.3) of the book by
Gray and Gubbins [32] which is satisfied by both Ylm and αlm

in conjunction with the summation over m in Eqs. (4.4) and
(4.7).

B. Coexisting phases

For any thermodynamic state point characterized by its
temperature T and density ρ we are now in a position to
calculate the odf from Eq. (4.6). With this odf we can compute
the corresponding set of expansion coefficients {αlm} from
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Eq. (4.5). Thus, employing Eq. (4.4) we can obtain the grand-
potential density for the given T and ρ.

Unfortunately, we have no way of telling beforehand
whether this value of � corresponds to a true thermodynamic
equilibrium state point, that is whether or not this particular
combination of T and ρ is associated with a thermodynam-
ically metastable or stable situation [57]. However, we can
easily discriminate between these two situations on the basis
of the full phase diagram.

The latter can be determined by assuming that a pair of
phases ′ and ′′ exists, satisfying the constraints

T ′ = T ′′, (4.9a)

P′ = P′′, (4.9b)

μ′ = μ′′. (4.9c)

Henceforth, we will also assume that, without loss of gener-
ality, ρ ′ � ρ ′′; the equal sign applies at the critical point at
which the gas and liquid phases become indistinguishable.

The first constraint given in Eq. (4.9a) is implemented by
simply setting T ′ = T ′′ = T as an input parameter to our
minimization procedure. A comparison between Eqs. (4.4)
and (4.9b) then reveals that the second constraint gives rise
to a nonlinear algebraic equation of the general form,

s1(ρ ′, ρ ′′, {α′
lm}, {α′′

lm}) = 0. (4.10)

An explicit expression for s1 can easily be derived from
Eq. (4.4) keeping in mind that α00 = 1/

√
4π .

In Eq. (4.10), the function depends on the set of parameters
{α′

lm} for the lower-density phase ′. If this phase is a gas (G),
clearly no ordered phase can form. However, the mesogens
will exhibit some residual order because of the presence of
uext. That order needs to be accounted for. Without uext, the G
phase would self-evidently be isotropic.

The third constraint eventually leads to a second nonlinear
algebraic equation

s2(ρ ′, ρ ′′, {α′
lm}, {α′′

lm}) = 0. (4.11)

It needs to be solved simultaneously with Eq. (4.10). The
derivation of s2 is slightly more involved. From Eq. (3.15) it
is straightforward to derive an expression for βμid. It contains
the integral

∫
dω α ln(4πα). The logarithmic term can then be

replaced with the aid of Eqs. (4.6) and (4.7) keeping in mind
the normalization of α [see Eq. (2.13)]. We can now solve
Eq. (4.3) for βμ, replace in the resulting expression βμid by
the previously derived equation, and apply Eq. (4.9c) to obtain
an explicit form for Eq. (4.11).

Nevertheless, it should be clear that the simultaneous so-
lution of Eqs. (4.10) and (4.11) requires the sets {α′

lm} and
{α′′

lm} obtained at thermodynamic equilibrium. To compute
these parameters we solve the consistency equations

t ′,′′
lm = α′,′′

lm −
∫

dω α′,′′(ω)Y∗
lm(ω) = 0, (4.12)

alongside Eqs. (4.10) and (4.11) where Eq. (4.5) has also been
employed and α′,′′ is computed from the far right-hand side of
Eq. (4.6).

The reader should notice that for each l there are 2l + 1
additional equations of the form given in Eq. (4.12) that we
need to solve for the phases ′ and ′′. Hence, the computational

effort increases substantially with l even for relatively small
values. To limit the computational effort we therefore restrict
ourselves to l = 2 henceforth.

V. MEASURES OF ORIENTATIONAL ORDER

We now turn to a discussion of key properties that we
intend to compute in order to investigate the formation of or-
dered phases at and off phase coexistence. The most important
one is the alignment tensor already introduced in Eq. (2.12).
Using Eqs. (2.14) and (4.5) as well as Eqs. (A.3) and (A.36)
of Ref. [32] one can show that

Q =
√

6π

5

⎛⎜⎝Re α22 − α20√
6

−Im α22 −Re α21

−Im α22 −Re α22 − α20√
6

Im α21

−Re α21 Im α21

√
2
3α20

⎞⎟⎠.

(5.1)
The alignment tensor satisfies the eigenvalue equation

Q n̂±,0 = λ±,0 n̂±,0, (5.2)

where {λ±,0} are the three eigenvalues and {n̂±,0} are the
associated eigenvectors. Equation (5.2) is solved numerically
using Jacobi’s transformation [58]. We follow Eppenga and
Frenkel [59] and define the nematic order parameter S via

S = λ+, (5.3)

where λ+ is the largest eigenvalue of the alignment tensor. The
nematic director is then given as n̂ = n̂+. The eigenvalues can
thus be ordered through the inequality λ− � λ0 < λ+ where
the equality holds in the absence of biaxial symmetry. Because
TrQ = 0, 0 � S � 1 [59] (see also Appendix C).

We now want to derive explicit expressions for the three
eigenvalues of Q in terms of the expansion coefficients of
the odf. To that end we remind ourselves that because of the
presence of the two external potentials un and up and if our
system is ordered, n̂ will be pointing in some direction in
the x-z plane. Because the eigenspace of Q is spanned by
three pairwise orthogonal vectors, one of the two remaining
eigenvectors must also lie in the x-z plane and the third one
must coincide with êy.

Inserting in Eq. (5.2), êy as one of the eigenvectors of Q,
one immediately realizes that êy can only be an eigenvector
of Q if one assumes that in Eq. (5.1), Im α21 = Im α22 = 0.
Applying this rationale, the alignment tensor becomes

Q =
√

6π

5

⎛⎜⎝Re α22 − α20√
6

0 −Re α21

0 −Re α22 − α20√
6

0

−Re α21 0
√

2
3α20

⎞⎟⎠.

(5.4)
The secular equation corresponding to Eq. (5.4) is easy to
solve and gives the set of eigenvalues of Q as

λ− = −
√

6π

5

(
Re α22 + α20√

6

)
, (5.5a)

λ0 =
√

6π

5

[
1

2

(
Re α22 + α20√

6

)
− �

2

]
, (5.5b)

λ+ =
√

6π

5

[
1

2

(
Re α22 + α20√

6

)
+ �

2

]
, (5.5c)
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where

� =

√√√√(Re α22 −
√

3

2
α20

)2

+ (2 Re α21)2. (5.6)

The expansion coefficients α20, Re α21, and Re α22 can be
obtained with the aid of Eq. (4.5).

In Appendix C we consider an idealized odf describing a
perfectly ordered nematic phase. In this case, Eq. (5.2) can be
solved analytically. The results of these considerations indi-
cate that S = 1 is always obtained regardless of the direction
of n̂ in the -x − z plane.

If the contribution proportional to Hp dominates the struc-
ture of the nematic liquid crystal, this nematic phase becomes
polar. In this case, S is insufficient to fully characterize the de-
gree of order in the polar nematic phase. Therefore, we follow
Gramzow and Klapp [60] and introduce components
of the polarization vector P̃ via

P̃x =
∫

dω α(ω)ux(ω) = −
√

8π

3
Re α11, (5.7a)

P̃y =
∫

dω α(ω)uy(ω) =
√

8π

3
Im α11, (5.7b)

P̃z =
∫

dω α(ω)uz(ω) =
√

4π

3
α10, (5.7c)

where the polarization is defined as

P =
√

P̃2
x + P̃2

y + P̃2
z . (5.8)

This allows us to compute the unit polarization vector via

P̂ = P̃
P

= Pxêx + Pyêy + Pzêz. (5.9)

To gain deeper insight into the structure of the liquid
crystal in the presence of uext we also consider the odf. From
Eqs. (4.6) and (4.7) the odf can easily be obtained. However,
to enhance the clarity of its visualization, we employ a rotated
coordinate system. The protocol for this rotation is very sim-
ilar to that described in Appendix A of the paper by Skutnik
et al. [47].

We define an axis of rotation through the relationship

k̃
′ = n̂ × êy

|n̂ × êy| , (5.10)

where the angle of rotation is given by cos φ′ = n̂ · êy. It
is then possible to construct a rotation tensor through the
expression [47]

R(k′, φ′) = K sin φ′ + 1 cos φ′, (5.11)

where 1 is the unit tensor and the traceless, skew-symmetric,
second-rank tensor K is given by

K =

⎛⎜⎝ 0 −k′
3 k′

2

k′
3 0 −k′

1

−k′
2 k1 0

⎞⎟⎠ (5.12)

and {k′
i} are components of the vector k̃

′
.

To make sure that all three eigenvectors of Q coincide with
an axis of the rotated coordinate system, a second rotation
is required. To that end we define a second axis of rotation
k̂

′′
through the expression given in Eq. (5.10) replacing,

however, n̂ and êy by n̂0 and êx, respectively. Together with a
second angle of rotation defined similarly through the relation
cos φ′′ = n̂0 · êx we then replace in Eqs. (5.11) and (5.12) the
respective variables by φ′′ and components of k̂

′′
. This gives a

second rotation tensor R. The full rotation is then effected by
the joint tensor

R = R(k̂
′
, φ′)R(k̂

′′
, φ′′). (5.13)

We can now compute new angles θ̃ and ϕ̃ from the expres-
sion

n̂rot =

⎛⎜⎝sin θ̃ cos ϕ̃

sin θ̃ sin ϕ̃

cos θ̃

⎞⎟⎠ = Rn̂, (5.14)

where some precaution needs to be taken to make sure that
the azimuthal angle ϕ̃ is computed so that n̂rot is given for
the correct quadrant of the x̃-̃y plane of the rotated coordinate
system.

Note that if the system would exhibit perfect nematic
order, n̂T

rot = (0,±1, 0) and one would therefore expect α to
exhibit two very sharp maxima at θ̃ = π

2 and ϕ̃ = ±π
2 . This is

because in the nematic phase, n̂rot and −n̂rot describe the same
physical situation.

VI. RESULTS

Henceforth, we give all physical quantities in the cus-
tomary dimensionless (i.e., “reduced”) units as listed in
Appendix B of the book by Allen and Tildesley [61]. For
example, energy is expressed in units of the depth ε of the
attractive trough, length in units of the hard-core diameter σ ,
and temperature in units of ε/kB.

A. Phase behavior and order without a polar field

Throughout this work we use weak nematic fields Hn by
setting the coupling constant H ′

n to small values. These small
values should be viewed as a compromise. On the one hand,
H ′

n is small enough to make sure that the formation of a
nematic liquid is mostly due to the choice of a particular
thermodynamic state. On the other hand, H ′

n is large enough
to guarantee that for Ĥp = 0, n̂ = êz where êT

z = (0, 0, 1) is
pointing in the z direction of a space-fixed Cartesian coordi-
nate system.

At this point it needs to be emphasized that if we choose an
unphysical starting configuration characterized by n̂ · êz = 0,
the iterative solution of Eqs. (4.10) and (4.11) together with
Eq. (4.12) gives solutions that, once convergence has been
achieved, are characterized by n̂ · êz = 1. This consistency
relation is also satisfied off coexistence.

In Fig. 1 we present a plot of the phase diagram in the
absence of the polar field. The plot shows that at sufficiently
low temperatures T a low-density gas (G) phase coexists
with a nematic (N) liquid. At a temperature T = Ttr � 0.96
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FIG. 1. The phase diagram of the liquid crystal in temperature
(T )–density (ρ) representation for ε′ = 0.40 [see Eq. (2.7b)] and
Hn = 5.0 × 10−2 [see Eq. (2.16)]; ( ) N , ( ), L, ( ) G phases (see
text). The inset shows an enhancement of a part of the phase diagram.

a triple point exists at which G and N phases coexist with an
“ordinary” (i.e., nearly isotropic) liquid phase (L) (see below).

Above Ttr , G, and L phases coexist until the critical point is
reached where both phases lose their physical meaning. The
critical temperature Tc � 1.43 is overestimated by roughly
17% as revealed by comparing Tc in Fig. 1 with Tc � 1.219
reported by Vega et al. [62] for an isotropic square-well fluid
(see below).

This mismatch between our version of DFT and the com-
puter simulation data of Vega et al. is a consequence of
our treatment of F ex

0 at the level of a first-order perturba-
tion approach. This quantitative inadequacy of a first-order
perturbative treatment of F ex

0 is quite well understood [29].
However, no attempts are made to improve the description
of the G-L portion of the phase diagram because we are
eventually interested in the switching between a “normal”
(i.e., nonpolar) and a polar N phase.

Nevertheless, it should be noted that strategies exist to
bring the near-critical region of the phase diagram into a more
or less quantitative agreement with computer simulation data
[63]. The critical density ρc � 0.299 obtained by Vega et al.
[62] is in much better agreement with our value ρc � 0.31.
This reflects the capacity of our AMMF approach to describe
packing phenomena in dense L or N phases adequately.

Notice also that there is a small contribution to �F ex from
uaniso even though in the isotropic phase members of the set of
expansion coefficients {αlm}l>0 of α vanish altogether. How-
ever, as already explained above α00 = 1/

√
4π and therefore

a contribution β�F ex/V = ρ2u00/4π exists in an isotropic
phase. This is a small contribution indeed because one can
easily verify from Eq. (3.18) and using the results presented in
Appendix C of Ref. [29] that �F ex/Fsw = 1

10βεε′2 = 1.6 ×
10−2βε.

From this result one therefore expects the phase diagram in
Fig. 1 above the triple point to correspond to that of the truly
isotropic square-well fluid (i.e., the one for which ϕanis = 0) to
a very good approximation. Therefore, the earlier comparison
with the simulation data by Vega et al. [62] is regarded as
being physically meaningful.

Besides the phase coexistence between G and L phases
above T � Ttr an inspection of Fig. 1 reveals a separate
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FIG. 2. Plots of the nematic order parameter S as a function
of temperature T along the various phase boundaries shown in
Fig. 1; ( ) G, ( ) L, and ( ) N phases. The vertical lines demarcate
T = Ttr ( ) and T = Tc ( ), respectively. The horizontal line
(· · · ) represents the threshold value SLdG = 1

3 obtained from the LdG
theory (see text). In the curve corresponding to the L phase, the upper
branch refers to phase coexistence with the N phase whereas the
lower branch is computed at coexistence with G phase (see Fig. 1).
Note the different scales used on the ordinate.

coexistence between L and N phases. It turns out that in
this case the two-phase region is very narrow indicating
that these two phases are characterized by almost the same
densities at coexistence; however, the two phases can easily
be distinguished on the basis of S as we shall see shortly.

As inferred from the inset in Fig. 1 we can rule out the exis-
tence of an (unphysical) critical point at which L and N phases
would lose their physical meaning. This is consistent with the
LdG theory of the L-N phase transition [10]. However, one
has to bear in mind that this is a purely phenomenological
theory with little predictive power despite its usefulness in
understanding the nature of the L-N phase transition.

A somewhat peculiar feature of our treatment is a minute
residual nematic order in the G and L phases. This is a conse-
quence of the nonvanishing external potential un in Eq. (2.15).
Comparing S for the N and G phases in the temperature range
T � Ttr one sees from the plot in Fig. 2 that S in the N phase
exceeds its counterpart in the G phase by roughly a factor
of 40. For T � Ttr , S in the N phase decreases weakly with
T until it almost reaches the threshold value of the nematic
order parameter at the L-N phase transition SLdG = 1

3 obtained
from the LdG theory [43]. A slightly larger threshold value
of S � 0.36 has been reported by Püschel-Schlotthauer et al.
on the basis of finite-size scaling for a model system closely
related to the present one [40]. At T = Tc, the branches of
S for the G and L phases merge as they must because both
phases lose their physical significance at the critical point.

At this point it is instructive to consider directly the odf
for a state of relatively large nematic order. The plot of α

in Fig. 3(a) exhibits two relatively diffuse spots in the θ̃–ϕ̃

plane. As we explained in Sec. V, we rotated the original
coordinate system so that in the new one n̂rot [see Eq. (5.14)]
corresponds to a point on the unit sphere in the direction of
ễy. This corresponds to the spot centered on θ̃ = ϕ̃ = π

2 in
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FIG. 3. The orientation distribution function α(ω) in the N phase
as a function of the transformed polar and azimuthal angles θ̃ and φ̃,
respectively (see Sec. V). To make the plots look more symmetric,
the azimuthal angle has been shifted by π so that ϕ̃ ∈ [−π, π ]. The
value of α(ω) can be read off the attached color bars. The plots
have been obtained for H ′

n = 5.0 × 10−2 and H ′
p = 0.0; (a) T = 1.20

and (b) T = 0.75 at phase coexistence above and below Ttr � 0.96,
respectively (see Fig. 1).

Fig. 3(a). Because one cannot distinguish between n̂rot and
−n̂rot a second spot is visible in Fig. 3(a). Its center is located
at the same value of θ̃ but at ϕ̃ = −π

2 . This refers to an
antipodal spot in the −ễy direction on the surface of the unit
sphere. Thus, the structure of α reflects the symmetry of the
nematic phase.

The odf presented in Fig. 3(a) has been computed for T =
1.20. An inspection of Fig. 2 reveals that at this temperature, S
in the N phase at phase coexistence is relatively low and only
slightly larger than the threshold value of SLdG = 1

3 predicted
by the LdG theory. This is reflected by the rather diffuse
structure of the odf plotted in Fig. 3(a). If the temperature is
lowered to T = 0.75 the plot of S for the N phase in Fig. 2
shows that S � 0.80 which is more than a factor of 2 larger
than S at T = 1.20. The structure of the odf at the lower tem-
perature again reflects this. As the plot in Fig. 3(b) illustrates
that the general symmetry of the odf remains unaltered but the
spots are now much more focused and brighter. The more the
spots are focused and confined to a narrow region in the θ̃ -̃ϕ
plane the larger is the nematic order parameter.

We also emphasize that the odf’s plotted in Figs. 3(a) and
3(b) satisfy Eq. (2.13). Whereas the odf shown in Fig. 3(b)
essentially vanishes outside of the two bright central spots,
the corresponding plot in Fig. 3(a) is essentially nonzero ev-
erywhere in the θ̃ -̃ϕ plane. This is reflected by the background
in Fig. 3(a) which appears to be rather fuzzy and tinged in
purple.

B. Impact of the polar field

If we now turn on the polar field Hp, the width of the
two-phase region happens to be remarkably insensitive as a
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FIG. 4. As Fig. 1, but in the presence of the polar field. The phase
diagram has been obtained for Hp = 0.75; ( ) L phase, ( ) G phase.

comparison between plots in Figs. 1 and 4 indicate. However,
the topology of the phase diagram changes if the polar field is
turned on. Comparing the plot in Fig. 1 with the one presented
in Fig. 4 one notices that for a nonvanishing polar field the
coexistence between L and N phases is absent. This makes
sense because with the polar field all phases are ordered to a
lesser or larger extent (see also below).

However, the phase diagram in Fig. 4 exhibits a clear
shoulder at about the same T and ρ at which the triple point
in the plot of the corresponding phase diagram in Fig. 1 is
observed. This shoulder is therefore perceived as a vestige of
that triple point.

Similar effects have been observed in an earlier DFT study
by Cattes et al. [64]. These authors studied a suspension
of magnetic nanocolloids in an apolar solvent by means of
classical DFT. For the orientation dependence of the inter-
action between the nanocolloids they adopted the classical,
three-dimensional Heisenberg model.

Even though the phase diagrams for this system differ from
the ones observed here, a triple point exists at which a gas
phase coexists with an isotropic and a polar liquid phase.
This triple point vanishes if the suspension is exposed to a
sufficiently strong magnetic field. Cattes et al. also observed
that critical lines are completely suppressed if the suspension
is exposed to a magnetic field regardless of how weak this
field is [64].

In general, the presence (or absence) of L-N phase coexis-
tence can be rationalized as follows. In the absence of Hp one
has two liquidlike phases of different symmetry: the N phase
in which one has a well defined nematic director pointing
along the z axis and the L phase that is nearly isotropic.
Because of the different symmetry of both phases it is not
possible to construct a continuous path in thermodynamic
state space that would carry one from one phase to the other
which precludes the existence of an L-N critical point [65].
This is very much akin to the situation encountered in “ordi-
nary” liquid and solid phases. If Hp is turned on all phases
possess a substantial amount of polar order all the way to the
critical point as plots of P in Fig. 5 reveal. Thus, applying
the above symmetry argument to this situation L-N phase
coexistence should disappear and that is indeed what we see in
Fig. 4.
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FIG. 5. Plots of the nematic order parameter S [see Eq. (5.3)] and
the polarization P [see Eq. (5.8)] as functions of the temperature T ;
( ) S and ( ) P in the N and L phases, ( ) S and ( ) P in the G phase.
The curves have been obtained for H ′

p = 0.75 (see also Fig. 4). The
dotted horizontal line represents SLdG = 1

3 (see text).

We now turn to a more detailed analysis of the nematic
order parameter S and the polarization P in the case of
nonvanishing Hp in Fig. 5. Plots of both quantities are now
continuous functions of T because of the different topology
of the corresponding phase diagram shown in Fig. 4. The plot
of S for the N and L phases exhibits a sigmoidal shape with
an inflection point at about the temperature Tinf � Ttr � 0.96
(see Fig. 1). Interestingly, at Tinf , S for the N phase agrees
remarkably well with the LdG prediction [43].

At about T � Tinf , S in the L phase falls below the thresh-
old value SLdG obtained from the phenomenological LdG
theory [43]. For T > Tinf , S in the L phase decays rather
quickly and approaches the low values of the nearly tem-
perature independent curve for S in the G phase and decays
monotonically. The two curves for S in the L and G phases
merge at the critical point (i.e., at T = Tc) at which both
curves end.

The plot of P in the N and L phases reveals the same
sigmoidal shape as the one for S (see Fig. 5). However, P is
lower than S for T � Tinf . The curves representing S and P
intersect at T � Tinf . Beyond that intersection P exceeds S by
a fair amount. P in the G phase always exceeds S and decays
monotonically towards the critical point.

Whereas this observation seems to be a bit counterintu-
itive at first, it is relatively easy to explain. From the parity
of the spherical harmonics [see Eq. (A.47) of Ref. [32]]
one realizes that upon the transformation ω → ω′ = −ω =
(π − θ, ϕ + π ), Ylm(−ω) → −Ylm(ω) if l is odd whereas
Ylm(−ω) → Ylm(ω) if l is an even integer. Hence, for odd
l , the transformation of the spherical harmonics is identical
with that of P̂ [see Eqs. (5.7a)–(5.7c)], whereas for even l it is
equivalent to that of Q [see Eq. (5.4)].

Suppose now that we have a perfectly “P-like” odf that is
[see Eq. (B2)]

αP(ω) =
∑
2l+1
m

αlmYlm(ω), l ∈ N0. (6.1)

From the orthogonality of spherical harmonics [see Eq. (A.39)
of Ref. [32]] it is then immediately clear that Q = 0 because
all its elements {α2m} vanish identically. As a consequence,
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FIG. 6. As Fig. 3, but for H ′
p = 0.75. We emphasize the different

scales used for the color bars attached to the right of each part of the
figure; (a) T = 0.75, (b) T = 1.00, (c) T = 1.20, and the plots refer
to the L phase (see Fig. 5).

the system may have a relatively large P but S = 0. If α is
perfectly “Q-like” that is if

αQ(ω) =
∑

2l
m

αlmYlm(ω), l ∈ N (6.2)

then P = 0 by the same token as before. However, in general
the odf will have a mixed P- and Q-like character, that is α =
ζαP + (1 − ζ )αQ where 0 � ζ � 1 is a mixing parameter that
will depend on the strength of the fields H ′

n, H ′
p as well as on

the thermodynamic state.
On the basis of these considerations one can rationalize

the plots in Fig. 5. At low T the nematic order is substantial
and so is the polar order. Here the odf in the N phase should
possess nearly equal amounts of P- and Q-like character.
Towards T � Tinf the Q-like character of α is lost rather
quickly whereas its P-like character prevails all the way to
the critical point.

In the G phase nematic order is rather weak indicated by
low values of S regardless of T . This is because the small
value of H ′

n = 5.0 × 10−2 causes only a minute amount of
residual nematic order in the G phase which in the absence
of Hn would be isotropic. The relatively strong polar field
with H ′

p = 0.75 causes a fair amount of polar order in the
G phase until the critical temperature has been reached. The
weak monotonic decay of P is due to the enhanced thermal
energy in the system as T → Tc.

These features are corroborate by the odf presented in
Fig. 6. The plot of α in Fig. 6(a) exhibits two peaks as in
Figs. 3(a) and 3(b) located at the same positions. The spherical
symmetry of each peak of the odf already noted for H ′

p = 0

and their localization in the θ̃ -̃ϕ plane is also preserved, only
this time the maximum of α at ϕ̃ = −π

2 is smaller than the
one at ϕ̃ = π

2 .
The relative sharpness and this asymmetry in the peak

height together indicate that the odf is of mixed P and Q type.
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FIG. 7. Plots of components nα of the nematic director n̂ and of
components Pα of the unit polarization vector P̂ as functions of the
coupling constant H ′

p; (�) nx, ( ) nz; ( ) Px, ( ) Pz. The curves have
been obtained for H ′

n = 1.25 × 10−1 at a temperature T = 0.85.

This also suggests that part of the Q-type structure of the odf
is submerged by the P-like peak at ϕ̃ = π

2 . According to the
above line of arguments one would anticipate a relatively large
value of both S and P. This is indeed what one observes from
the corresponding plots of both quantities for the N phase in
Fig. 5.

As T increases the plot of α in Fig. 6(b) reveals a number
of interesting characteristics. First, the maxima of the odf are
reduced four to five times compared with the plot in Fig. 6(a).
Second, the spots of α are less localized at points in the θ̃ -̃ϕ
plane. This holds in particular for the Q-like structure in the
lower half of the θ̃ -̃ϕ plane (i.e., for ϕ̃ < 0). The more diffuse
structure of αQ suggests that S decreases; the more localized
structure of αP suggests that P remains relatively high and
that is indeed what is reflected by the plots of both quantities
in Fig. 5 in the higher-density phase.

Finally, at the highest T the plot in Fig. 6(c) shows that
the maximum of α at θ̃ = π

2 and ϕ̃ = π
2 is again reduced by

a factor of about 4 compared with the same spot in Fig. 6(b).
The Q-type structure of the odf is completely lost except for
a hardly visible ring of slightly higher values of α; only the
P-like structure is still clearly visible but has become rather
diffuse. This explains why at T = 1.20, S in the L phase is
quite low whereas P still remains rather substantial as the plot
in Fig. 5 indicates.

C. Switching between nonpolar and polar nematic phases

To illustrate the coupling between nonpolar and polar
nematic order we plot in Fig. 7 components of the nematic
director n̂ and of the unit polarization vector P̂ as functions of
the coupling strength of the polar field H ′

p. The plots illustrate
the reorientation process that takes place when the strength
of the polar field increases. For H ′

p � 0.70 one sees that n̂
and P̂ are aligned with Hn (i.e., the z axis) and Hp (i.e.,
the x axis), respectively. Apparently, the polar field is still
too weak to interfere with the orientation of n̂ enforced by
Hn; components of n̂ and P̂ remain constant at first as H ′

n
increases.

At about H ′
p � 0.70 components of n̂ and P̂ exhibit dis-

continuous changes. For example, nx jumps to about 0.50

whereas nz drops from 1.00 to about 0.87. This indicates a
misalignment of n̂ with the z axis.

One also notices from Fig. 7 that nx < Px and that nz > Pz

at the threshold field strength of H ′
p � 0.70. This illustrates

that first upon rotation towards the x axis, n̂ lags behind
P̂. Second, it shows that in any realistic treatment of the
switching process, n̂ and P̂ should be treated as independent
degrees of freedom as pointed out earlier by Jarkova et al.
[15].

Rather than looking at components of n̂ and P̂ separately as
in Fig. 7, it might also be instructive to look at the angle ϑ =
arccos (n̂ · P̂) as a function of the coupling constant H ′

p of the
polar field Hp (see Fig. 8). For Hp � 0.70 the angle between
the two vectors n̂ and P̂ turns out to be ϑ = 90◦ and does
not exhibit any dependence on H ′

p. Thus the rigid alignment
approximation of Brochard and de Gennes [14] is invalid for
coupling strengths of Hp � 0.70.

At the threshold Hp � 0.70, ϑ drops discontinuously to
about 10◦. This indicates that now n̂ and P̂ are pointing in
some direction in the x-z plane but that they are not collinear.
The relatively small value of ϑ indicates that now the rigid
anchoring assumption is satisfied to a good approximation.
Further increase of Hp then causes ϑ to decrease monotoni-
cally reflecting the increasing validity of the rigid anchoring
approximation. Finally, this approximation becomes exact for
all values of Hp larger than the one at which ϑ = 0 for the
first time. Thus, in this regime n̂ and P̂ are collinear vectors as
conjectured by Brochard and de Gennes [14].

Notice in particular that at H ′
p = 0.75, n̂ and P̂ are fully

aligned with each other. Hence with respect to the phase
diagram presented in Fig. 4 this means that on the high-
density side we are dealing with liquid phases characterized
by the same symmetry all the way to the critical point.
Thus, applying the rationale of Landau and Lifshitz [65] this
observation corroborates our finding that the separate L-N
phase coexistence shown in Fig. 1 should disappear in the
presence of (a sufficiently strong) polar field.

Even though the switching process in the x-z plane is
illustrated by the plots in Fig. 7, these plots do not permit
us to conclude anything about the physical nature of the
phases before and after the threshold value of H ′

n � 0.70. To
unravel the quality of the phases participating in the switching
process it is instructive to plot the nematic order parameter S
and the polarization P as functions of the coupling constant
H ′

p in Fig. 9. Not unexpectedly, S is rather insensitive to
H ′

p regardless of the strength of the polar field. From the
magnitude of S in Fig. 9 we conclude that over the whole
range of H ′

p considered we are dealing with a nematic phase.
However, for Hp � 0.70, P attains a minute positive value

which is independent of H ′
p. Thus, for Hp � 0.70 the liquid

crystal is approximately nonpolar. At Hp � 0.70, where all
four curves in Fig. 7 exhibit a discontinuity, P in Fig. 9
changes discontinuously as well as one might have guessed.
When this happens a polar nematic phase is thermodynami-
cally stable as one infers from the magnitude of P. For Hp �
0.70, P increases monotonically until it reaches a plateau at
about H ′

p � 0.73. This plateau corresponds to the maximum
polarization possible under the present thermodynamic condi-
tions.
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FIG. 8. Plot of the angle ϑ as a function of the coupling strength
H ′

p of the polar field Hp. Notice also the broken ordinate.

Even though S in Fig. 9 varies only slightly with H ′
p it

also exhibits a discontinuous change at about H ′
p � 0.70. It

then passes through a very weak maximum and exhibits a
kink at H ′

p at which Px reaches its plateau and the polarization
becomes saturated.

The nematic order parameter was measured in small angle
neutron scattering (SANS) experiments for various concen-
trations of magnetic nanoplatelets in a ferromagnetic nematic
liquid crystal as a function of the strength of an applied
magnetic field by Mertelj et al. [66]. For a highly ordered
phase (S ≈ 0.75), the experimental data show a rather weak
dependence on the strength of this field similar to our data
plotted in Fig. 9.

The plots in Figs. 7–9 are fully corroborated by changes
in the odf plotted in Fig. 10. For example, just before the
discontinuous change in S and P shown in Fig. 9 at H ′

p =
0.700 the plot in Fig. 10(a) shows that the odf has a nearly
perfect Q-like structure. Here α has two maxima of equal
height located at θ̃ = π

2 and ϕ̃ = ±π
2 . This reflects that we

are dealing with an unpolar nematic phase. This conclusion is
supported by Fig. 9 which shows that S � 0.754 and P � 0.05
at H ′

p �� 0.70.
At a slightly larger value of H ′

p = 0.701 the plot in
Fig. 10(b) reveals that now we have an odf that has mixed Q-
and P-like character. This is reflected by the unequal height
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FIG. 9. As Fig. 7, but for the nematic order parameter S ( ) (right
ordinate) and the polarization P ( ) (left ordinate) (cf. Fig. 7).
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FIG. 10. As Fig. 3, but for H ′
n = 1.25 × 10−1 and T = 0.85.

(a) H ′
p = 0.700, (b) H ′

p = 0.701, (c) H ′
p = 0.731.

of the maxima of α. Last but not least, at H ′
p = 0.731 the odf

still remains of mixed Q- and P-like character. However, the
magnitude of the maximum of α at ϕ̃ = −π

2 is smaller than
that at ϕ̃ = π

2 which is now more focused and bright. This
corresponds to S � 0.754 and P � 0.60 in Fig. 7. Hence, we
conclude that a polar nematic phase is now thermodynami-
cally stable.

VII. DISCUSSION AND CONCLUSIONS

In this paper we investigate a ferromagnetic nematic liquid
crystal in an external, polar field by means of classical DFT.
We believe this to be the first study of a ferromagnetic nematic
liquid crystal based upon a molecular picture. The thermal
behavior of our model system is governed by two elementary
principles of thermodynamics stated in Eqs. (4.2) and (4.9).
These lead to coupled sets of nonlinear algebraic equations
[see Eqs. (4.10)–(4.12)] which we solve simultaneously and
numerically.

Our key results can be summarized as follows. First, the
model system is capable of forming a ferromagnetic nematic
phase in the presence of a weak nematic and an orthogonal
polar field. The ferromagnetic nematic phase is characterized
by substantial nematic order in addition to polar order (i.e.,
“magnetization”). To obtain a ferromagnetic nematic phase
in related experiments one is usually concerned with suspen-
sions of magnetic nanoplatelets immersed in a nematic liquid
crystal. As pointed out by Mertelj and Lisjak [16] the shape
of the nanoparticles matters greatly as far as the stability is
concerned. In our model system we avoid these stability is-
sues by treating the magnetic nanoparticles implicitly through
an additional coupling of the orientation of a liquid-crystal
molecule to an external polar field. This approach has the
additional advantage that we do not have to deal with a sus-
pension. Experimentally, there are many additional problems
with these suspensions, flocculation and aggregation being
only two of them (see Sec. 4 of Ref. [4] for a comprehensive
discussion).
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Second, our simplified model system is sufficiently real-
istic to describe one of the key processes in ferromagnetic
nematic liquid crystals, that is the capability of a reorientation
of the director field in response to an external magnetic field.
For example, it was demonstrated experimentally that the
transmittance intensity profile varies in response to an alter-
nating magnetic field (see Fig. 3 in Ref. [21]). This variation
is a fingerprint of the periodic reorientation of the director
field. The liquid crystal can thus be viewed as a switchable
device.

The switching process manifests itself in our model system
in various ways. First of all, we observe a threshold for the
strength of the polar field beyond which the reorientation of
the director field begins. The existence of such a threshold is
considered to be “One of the most important discoveries in
the control of [liquid crystals] by electric and magnetic fields
. . . .” [23].

Another manifestation of the threshold of the strength of
Hp is the sudden change of the angle ϑ between n̂ and P̂ from
90◦ to about 10◦. As the strength of Hp increases beyond the
threshold value, ϑ decreases continuously until it completely
vanishes. This prompts us to conclude that, in line with the
conjecture by by Jarkova et al. [15] and earlier by Burylov
and Raikher [24], n̂ and P̂ should be treated as independent
degrees of freedom. A second conclusion is that the so-called
“rigid anchoring condition” introduced by Brochard and de
Gennes [14] in their seminal work is justified to a very good
approximation beyond the threshold value of Hp. However, the
rigid anchoring approximation is invalid below the threshold.
This follows from the observation that ϑ = 90◦ despite the
fact that in this regime the liquid crystal already possesses
weak polar order.

The third key finding concerns the temperature dependence
of nematic and polar order. If one raises the temperature T at a
constant and sufficiently strong field Hp, the system possesses
polar nematic order at lower T . Nematic order is then quickly
lost as reflected by a monotonic and continuous decay of
the nematic order parameter S. Whereas a similar decay is
observed for the polarization P in the L phase, its polarization
remains quite substantial all the way to the gas-liquid critical
point.

This seemingly puzzling observation has a relatively sim-
ple explanation. For example, one realizes from the definition
of P that it is related to coefficients {α1m} whereas S is related
to the largest eigenvalue of the alignment tensor Q. Elements
of the latter can be expressed in terms of the expansion
coefficients {α2m}. Expansion coefficients {αlm} themselves
are related to spherical harmonics {Ylm}. For odd values of
the integers l , all Ylm exhibit point symmetry with respect
to the transformation ω → ω′ = −ω and therefore transform
like P; for even l , Ylm exhibits the same symmetry with
respect to a line that is observed for Q upon the transformation
ω → ω′ = −ω.

One can then envision to construct a P-like odf exclusively
based upon coefficients {αlm} for odd integers l . Likewise, one
can construct a Q-like odf based upon expansion coefficients
for which l is an even integer. Because the spherical har-
monics form a complete orthonormal set of basis functions,
a P-like odf would give nonzero values only for {α1m} and
vanishing coefficients {α2m}. In this case P would be nonzero

whereas S would vanish. By the same token we can argue
that a Q-like odf would only give P = 0. Most odf’s are
composed of P- and Q-like portions and will therefore give
rise to nonzero values of S and P simultaneously.

We demonstrate that in a properly rotated frame of ref-
erence the structures of P- and Q-like odf’s are particularly
simple. In a color-coded representation a Q-like odf consists
of two spots on the unit sphere where one is antipodal to the
other. For a P-like odf one of the two spots is missing owing
to the (di)polar nature of the liquid crystal.

It should also be noted that regardless of the specific situa-
tion under study, the color-coded odf always exhibts two spots
in the θ̃ -̃ϕ plane. These spots are always radially symmetric,
that is symmetric with respect to an axis through their centers
and normal to the θ̃ -̃ϕ plane. Therefore, the system always
has uniaxial symmetry regardless of the thermodynamic con-
ditions and the relative strengths of Hn and Hp. The radial
symmetry of the spots of the odf is the reason for why the
biaxiality order parameter η is always zero.

It has recently been shown by Skutnik et al. [47] that a
substantial biaxiality requires an odf with more than just one
symmetry axis. Looking again at color-coded odf’s in Fig. 7
of Ref. [47] one realizes that for phases of biaxial symmetry
the odf appears to be elliptically deformed in the θ -ϕ′ plane
(which is different from the θ̃ -̃ϕ plane used here). Thus, the
odf has a semimajor and a semiminor axis as its symmetry
elements and therefore η �= 0 has been observed in the Monte
Carlo simulations by Skutnik et al.

Unfortunately, we find it rather difficult to make more
direct contact with experiments beyond the points discussed
above. In this respect we fully agree with Garbovskiy and
Glushenko [4] who state that “. . .experimental data and the-
oretical predictions are not easy to compare.” Nevertheless,
there are possible interfaces between this work and experi-
ments that one may perhaps want to carry out in the future.

For example, one of the key ingredients of the present
theory is the AMMF approximation represented by Eq. (3.8).
It involves at its core the radial pair correlation function g0 in
an isotropic phase and a suitable choice for the anisotropic
interaction potential u1. The former can be obtained for
molecular liquids by measuring the static structure factor
in neutron scattering experiments (see Fig. 5 of Ref. [67]).
Neutron scattering has also been used by Mertelj et al. [66]
to investigate the structure of ferromagnetic nematic liquid
crystals.

Using information about a molecule’s electronic structure
(i.e., such as multipole moments, polarizabilities, etc.; see
Chap. 2 of Ref. [32]) one could devise an approximate form
for u1. With this experimental information one could then
obtain an ansatz for g in Eq. (3.8) and with this all relevant
information of an experimental system such as the phase
diagram, details of the switching process, or the odf.

The latter can also be measured independently in electron
paramagnetic resonance spectroscopy [68]. With this experi-
mental information and with a suitable transformation through
Eqs. (5.10)–(5.14) one could determine the expansion coeffi-
cients {α1m} and {α2m} from Eq. (4.5). This gives one access
to P through Eqs. (5.7a)–(5.7c) and to Q from Eq. (5.4).
The nematic order parameter can then be computed from
Eq. (5.5c) where it needs to be stressed that all these equations
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are exact. With the nematic order parameter one can solve
Eq. (5.2) to obtain the nematic director n̂. Thus, one could
investigate magneto-optic properties of the material under
investigation following the analysis just outlined [19–21].

In addition, the direct measurement of the odf and its
comparison with the one obtained through the protocol based
upon the AMMF approximation for the orientation dependent
pair correlation function one could assess quantitatively the
robustness of the DFT proposed in this work.
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APPENDIX A: ORIENTATION DEPENDENCE
OF THE HESS-SU MODEL POTENTIAL

In this Appendix we demonstrate that the orientation de-
pendence of uaniso in Eq. (2.7b) is the same as in the model
proposed by Hess and Su [31] for the special case in which
only their coupling constant ε1 is nonzero.

Let us define a real, symmetric, traceless, second-rank
tensor [cf. Eq. (2.12)]

U(i) = ûiûi − 1
3 1, i = 1, 2, (A1)

where 1 is the unit tensor and components of ûi are defined
analogously to the expressions given in Eqs. (2.14a)–(2.14c).
Using Eq. (B.11) of Ref. [32] we have

U(1) : U(2) = U (1)
αβ U (2)

βα , (A2)

where we use the Einstein repeated index summation conven-
tion. Equations (A1) and (A2) are equivalent to Eqs. (5) and
(7), respectively and to the first term on the right-hand side
of Eq. (9) in the paper by Hess and Su [31]. Equation (A2) is
sometimes referred to as the Frobenius inner product [69].

From Eqs. (A1) and (A2) it is easy to verify that we can
rewrite the latter as

U (1)
αβ U (2)

βα = (û1û1)αβ (û2û2)βα

− 1
3 [(û1û1)αα + (û2û2)αα] + 1

3

= (û1û1)αβ (û2û2)βα − 1
3 , (A3)

where we have used Eqs. (B.19) of Ref. [32], the identity 1 :
1 = 3, and (û1û1)αα = (û2û2)αα = 1. We now use the identity
[cf. Eq. (B.16) of Ref. [32]]

û1û1 : û2û2 = (û1 · û2)2, (A4)

which is easy to verify. The identity then permits us to rewrite
Eq. (A2) as

U(1) : U(2) = (û1 · û2)2 − 1
3 = 2

3 P2(x), (A5)

which is equivalent to the orientation dependence of uaniso in
our model [see Eq. (2.7b)] except for trivial numerical factors.

APPENDIX B: ANALYTICAL INTEGRATION
OVER ORIENTATIONS

In this Appendix we present details of the integrations over
orientations in Eq. (3.9). Consider the integral

I ≡
∫∫∫

dω1 dω2 dω α(ω1)α(ω2)�l1l2l (ω1, ω2, ω). (B1)

Because the external potential uext in Eq. (2.17) depends
on the angles ϕ and θ , the odf will as well. Therefore, it
is advantageous to expand the odf in the basis of spherical
harmonics according to

α(ω) =
∑
lm

αlmYlm(ω), (B2)

where elements of the set {αlm} are (complex) expansion
coefficients. Thus, we can rewrite Eq. (B1) as

I =
∑
l1 l2 l

m1m2m

C(l1l2l; m1m2m)
∫

dωY∗
lm(ω)

×
∑
L1M1

αL1M1

∫
dω1 Yl1m1 (ω1)YL1M1 (ω1)

×
∑
L2M2

αL2M2

∫
dω1 Yl2m2 (ω2)YL2M2 (ω2), (B3)

where Eq. (2.4) has also been employed.
The tenfold summation in this expression can be reduced

quite considerably by utilizing properties of the spherical
harmonics. For example, one realizes that I vanishes unless
l = m = 0 [see Eq. (A.38) of Ref. [32]]. The two selection
rules for nonzero Clebsch-Gordan coefficients (see Sec. II)
then imply that l1 = l2 and that m1 = −m2. Consequently the
sixfold summation over l1, l2, l , m1, m2, and m collapses to a
twofold one and Eq. (B3) can be simplified to

I =
√

4π
∑
lm

C(ll0; mm0)

×
∑
L1M1

αL1M1

∫
dω1 Ylm(ω1)YL1M1 (ω1)

×
∑
L2M2

αL2M2

∫
dω1 Ylm(ω2)YL2M2 (ω2). (B4)

Because the spherical harmonics form a complete set of
orthonormal basis functions, the remaining two integrations
vanish (see Eq. (A.39) of Ref. [32]) unless l = L1 = L2,
m = M1, and m = M2. This permits us to rewrite Eq. (B4)
compactly as

I =
√

4π
∑
lm

(−1)l+m

√
2l + 1

αlmαlm, (B5)

where Eqs. (A.3) und (A.150) of Ref. [32] have also been
used.

APPENDIX C: ANALYSIS OF Q IN AN IDEALIZED
SYSTEM

In this Appendix we will demonstrate the validity of the
expressions presented in Eqs. (5.5a)–(5.6). Focusing on the

022702-16



MOLECULAR THEORY OF A FERROMAGNETIC NEMATIC … PHYSICAL REVIEW E 100, 022702 (2019)

x-z plane we choose an idealized odf expressed as [see
Eq. (A.32) of Ref. [32]]

α(ω) = 1
2 [δ(ω − ω′) + δ(ω + ω′)]

= 1
2 [δ(x − x′)δ(ϕ) + δ(x + x′)δ(ϕ + π )], (C1)

where we use the shorthand notation x = cos θ and x′ =
cos θ ′. This idealized odf represents two infinitely sharp peaks
located on opposite sides of the unit sphere. The underlying
assumption is that the liquid crystal is perfectly ordered along
some direction in the x-z plane. This form of the odf also
reflects the indistinguishability of n̂ and −n̂ in the nematic
phase [cf., Figs. 3(a) and 3(b)]. Because of this symmetry it
turns out that each of the two products of δ functions generates
the same result. Thus, we can replace Eq. (C1) by the simpler
expression

α(ω) = δ(x − x′)δ(ϕ). (C2)

From Eq. (4.5) we therefore obtain

α20 =
√

5

4π

∫ 1

−1
dx

1

2
(3x2 − 1)δ(x − x′)

∫ 2π

0
dϕ δ(ϕ)

=
√

5

4π

∫ 1

−1
dx

1

2
(3x2 − 1)δ(x − x′)

=
√

5

4π

1

2
(3x′2 − 1), (C3)

where we utilized the well-known properties of the Dirac δ

function. By essentially the same algebraic manipulations we
obtain

Re α21 =
√

5

4π

√
3

2
x′
√

1 − x′2, (C4a)

Re α22 =
√

5

4π

√
3

8
(1 − x′2). (C4b)

A couple of comments apply at this point. First, the integral
over dϕ on the first line of Eq. (C3) is unity on account of

the definition of the Dirac δ function. Second, replacing the
product of the two δ functions by the other term in Eq. (C1)
would not change anything because x enters the integrand in
Eq. (C3) quadratically.

A more subtle point arises seemingly because for α21 and
α22 the integrand contains a factor of eimϕ where m = 1, 2.
Thus, the integral involving∫ 2π

0
dϕ [cos(mϕ) + i sin(mϕ)]δ(ϕ) = 1 (C5)

whereas∫ 2π

0
dϕ [cos(mϕ) + i sin(mϕ)]δ(ϕ + π ) = (−1)m. (C6)

The integrands leading to the expressions given in Eqs. (C4a)
and (C4b) are of the general form,∫ 1

−1
dx f (x)[δ(x − x′) + (−1)mδ(x + x′)],

where f (x) = − f (−x) in the case of Re α21 whereas f (x) =
f (−x) for Re α22. Thus, even in case of Re α21 using the full
odf as introduced in Eq. (C1) would only generate two times
the expression given in Eq. (C4a).

With the expressions derived in Eqs. (C3) and (C4b) it
therefore follows from Eq. (5.5a) that λ− = − 1

2 ; one also finds
from Eqs. (5.5b) and (5.5c) that λ0 = 1

4 − �
2 and λ+ = 1

4 +
�
2 , respectively. Using Eqs. (C3)–(C4b) we can also compute

� = 3

2

√
1

4
(2 − 4x′2)2 + 4x′2(1 − x′2) = 3

2
(C7)

from Eq. (5.6).
Consequently, for the idealized odf introduced in Eq. (C1)

we obtain λ0 = λ− = − 1
2 and λ+ = 1. From Eq. (5.3) this

gives S = 1. Perhaps not surprisingly, the eigenvectors as-
sociated with λ−, λ0, and λ+ are given by n̂T

− = (0, 1, 0),
n̂T

0 = (cos θ, 0, sin θ ), and n̂T
+ = (− sin θ, 0, cos θ ).

[1] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and
M. Shelley, Nat. Mater. 3, 307 (2004).

[2] A. B. G. M. Leferink op Reinink, E. van den Pol, A. V.
Petukhov, G. J. Vroege, and H. N. W. Lekkerkerker, Eur. Phys.
J.: Spec. Top. 222, 3053 (2013).

[3] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama,
Nat. Mater. 1, 64 (2002).

[4] Y. Garbovskiy and A. Glushchenko, Nanomaterials 7, 361
(2017).

[5] J.-H. Kim, M. Yoneya, and H. Yokoyama, Nature (London) 420,
159 (2002).

[6] P. Malik and K. K. Raina, Opt. Mater. 27, 613 (2004).
[7] W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu,

and H. Yang, Adv. Mater. 22, 468 (2010).
[8] E. van den Pol, A. V. Petukhov, D. M. E. Thies-Weesie, D. V.

Byelov, and G. J. Vroege, Phys. Rev. Lett. 103, 258301 (2009).
[9] T. Ostapenko, D. B. Wiant, S. N. Sprunt, A. Jákli, and J. T.

Gleeson, Phys. Rev. Lett. 101, 247801 (2008).

[10] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Oxford Science Publications, Oxford, 1995).

[11] W. Maier and A. Saupe, Z. Naturforsch. A 15, 287 (1960).
[12] M. Born, Sitz. Kön. Preuss. Akad. Wiss. 30, 614 (1916).
[13] M. Born, Ann. Phys. 360, 177 (1918).
[14] F. Brochard and P. G. de Gennes, J. Phys. 31, 691 (1970).
[15] E. Jarkova, H. Pleiner, H.-W. Müller, A. Fink, and H. R. Brand,

Eur. Phys. J. E 5, 583 (2001).
[16] A. Mertelj and D. Lisjak, Liq. Cryst. Rev. 5, 1 (2017).
[17] A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, Nature
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