
PHYSICAL REVIEW E 100, 022608 (2019)

Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids
in the presence of external fields and flow
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Relaxation of suspended magnetic nanoparticles occurs via Brownian rotational diffusion of the particle
as well as internal magnetization dynamics. The latter is often modeled by the stochastic Landau-Lifshitz
equation, but its numerical treatment becomes prohibitively expensive in many practical applications due to
a timescale separation between fast, Larmor-type precession and slow, barrier-crossing dynamics. Here, a
diffusion-jump model is proposed to take advantage of the timescale separation and to approximate barrier-
crossings as thermally activated jump processes that occur alongside rotational diffusion. The predictions of
our diffusion-jump model are compared to reference results obtained by solving the stochastic Landau-Lifshitz
equation coupled to rotational Brownian motion. Good agreement is found in the regime of high-energy barriers
where Néel relaxation can be considered a thermally activated rare event. While many works in the field have
neglected Néel relaxation altogether, our approach opens the possibility to efficiently include Néel relaxation
also into interacting many-particle models.
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I. INTRODUCTION

Magnetic nanoparticles that are suspended in a nonmag-
netic carrier fluid (so-called ferrofluids) show interesting phe-
nomena in the presence of external magnetic fields [1]. The
magnetoviscous effect, for example, has attracted consider-
able attention since the effective viscosity depends on an
externally applied magnetic field [2]. In recent years, there
has been growing interest also in biomedical applications of
magnetic nanoparticles [3,4].

From a modeling point of view, mesoscopic models of
ferrofluids have proven to be very fruitful, where individ-
ual magnetic nanoparticles are considered explicitly but the
solvent is treated as a viscous medium [2]. In the majority
of previous studies, the dynamics of suspended magnetic
nanoparticles has been modeled using the rigid-dipole approx-
imation, both for interacting as well as noninteracting systems
(see, e.g., Refs. [1,2,5–9] and references therein). The rigid-
dipole approximation assumes that the magnetic moment is
permanently locked within the particle. This approximation is
justified when particles are sufficiently large so that the mag-
netic anisotropy energy is much larger than thermal energy.
At the same time, the magnetic core of the particles must be
small enough so that it remains a magnetic single domain. In
addition, we allow particles to rotate within the suspending
viscous medium.

The rigid-dipole approximation breaks down when inter-
nal, so-called Néel, relaxation becomes important [10]. Such
situations occur, e.g., (i) for smaller or magnetically weak
particles where the energy barrier for Néel relaxation can be
overcome on relevant timescales, or (ii) when particle rotation
is severely hindered or nearly suppressed. Particles which fall
under category (i) are usually ignored in the modeling since
they are either considered irrelevant for viscous properties
[11] or are treated as a magnetic background [12]. In both

cases, however, internal relaxation needs to be accounted for
when considering, e.g., magnetorelaxometry or hyperthermia
applications.

Models beyond the rigid-dipole approximation have been
proposed by Shliomis and Stepanov [13,14] and by Coffey,
Cregg, and Kalmykov [10], where the Brownian rotational
diffusion of the particle is combined with the stochastic
Landau-Lifshitz equation to describe the internal magneti-
zation dynamics. Emerging biomedical applications such as
magnetorelaxometry and hyperthermia have sparked renewed
interest in the field [3,4,15]. Some authors studied the sim-
plified case of internal magnetization dynamics for a ran-
dom collection of fixed particle easy axis orientation [16].
Models with combined Brownian and Néel relaxation very
similar to that proposed by Shliomis and Stepanov were used
in Refs. [17] and [18] to simulate magnetization hysteresis
curves in oscillating external fields and magnetization relax-
ation of suspended multicore particles, respectively.

While the model proposed by Shliomis and Stepanov is
physically sound, its numerical simulation often runs into
practical difficulties due to a separation of timescales. For
magnetic nanoparticles on the order of 10 nm, the internal
timescale for magnetization diffusion in the Landau-Lifshitz
equation is typically much smaller than the Brownian and
Néel times. In such cases, straightforward simulations of the
Shliomis and Stepanov model is not only highly inefficient but
practically intractable since the Brownian and Néel relaxation
processes can not be simulated with reasonable computational
effort. To address this challenge, Berkov et al. simulated the
fast remagnetization process of interacting magnetic nanopar-
ticles with a hybrid scheme, where the positions and orienta-
tions of the particles are integrated with Langevin dynamics,
while the magnetic moments are equilibrated using a Monte
Carlo method [19]. The authors also showed the limitations
of the rigid-dipole approximation for correctly capturing the
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magnetization relaxation dynamics [20]. Ruta et al. [21] and
Jonasson et al. [22] used kinetic Monte Carlo schemes to sim-
ulate the magnetization response of frozen multicore particles
to oscillating magnetic fields.

Here, our aim is to benefit from the timescale separa-
tion to establish a well-founded and more efficient model
that is able to approximate the predictions of the Shliomis
and Stepanov model over the relevant long timescales. We
limit ourselves here to the case of noninteracting particles to
carefully develop and study this model that extends those in
Refs. [20–22] by including barrier crossings and Brownian
rotation, respectively, in a physically sound manner. As a
first step, we numerically solve the model of Shliomis and
Stepanov to obtain reference results for magnetization relax-
ation, dynamic magnetic susceptibility and magnetoviscosity
over a certain parameter range. To tackle the problem of
timescale separation, we propose a diffusion-jump model that
combines the nonequilibrium Brownian rotational dynamics
with jump processes that model the rare, thermally activated
magnetization reversals within each particle. By comparing
the predictions of the diffusion-jump model to the reference
results for the Shliomis and Stepanov model we establish the
range of validity of our model.

The paper is organized as follows. The model of Shliomis
and Stepanov is briefly reviewed in Sec. II, where we also give
its stochastic formulation. We introduce our diffusion-jump
model in Sec. III. Results of both models are shown and com-
pared in Sec. IV before we offer some conclusions in Sec. V.
A number of technical details are given in the Appendices.

II. MICROSCOPIC “EGG” MODEL

We here briefly summarize the so-called “egg model”
proposed by Shliomis and Stepanov to describe the internal
magnetization dynamics coupled to the Brownian rotation
of a magnetic nanoparticle. Further details can be found in
Ref. [14].

In the egg model, the state of the nanoparticle is described
by two vectors: (i) the orientation of the nanoparticle n; (ii) the
magnetic moment me, where the magnitude of the magnetic
moment m is constant and given by m = Msvm. The sponta-
neous magnetization of the magnetic material is denoted by
Ms and vm is the volume of the magnetic core of the nanoparti-
cle. Both e and n are treated as three-dimensional unit vectors.
The resulting magnetization is given by M = nm〈e〉, where
n is the number density of magnetic nanoparticles and 〈•〉
denotes thermal averages. For point (i) above, we assume the
particle is rotationally symmetric so that its orientation can
be described by the unit vector n. The implicit assumption
made for (ii) is that the magnetic nanoparticle is sufficiently
small so that it can be treated as a magnetic monodomain.
For Cobalt and magnetite, for example, this assumption is
fulfilled for particle diameters less than approximately 24 and
70 nm, respectively [1]. Since this formulation allows the
magnetic moment (“yolk”) to rotate inside the particle, the
corresponding model is also know as “egg model.”

In the following we assume that the nanoparticles are
spherical. Generalizations to treat particles which are ellip-
soids of revolution can be done in a similar manner as in the
chain model of ferrofluids [6,23]. Furthermore, we assume

the nanoparticles have uniaxial anisotropy. Then, we let the
orientation of the particle n coincide with the direction of the
easy axis of the magnetic material, so that the energy in an
external magnetic field H is given by

U (e, n) = −me · H − Kvm(e · n)2, (1)

with K the anisotropy constant of the magnetic material [1].
It is important to emphasize that the egg model disregards
interactions between the nanoparticles and is therefore valid
only in the ultra-dilute limit. The equilibrium properties of the
model are described by the Boltzmann distribution,

Feq(e, n) = 1

Zeq
exp [e · h + κ (e · n)2], (2)

and have been discussed in detail in Ref. [1]. In Eq. (2) we in-
troduced the dimensionless magnetic field h = mH/kBT, h =
|h| is the Langevin parameter, and the dimensionless
anisotropy constant κ = Kvm/kBT , where kB and T denote
Boltzmann’s constant and temperature, respectively.

To couple the internal magnetization dynamics of the
nanoparticle to its rotational Brownian motion, Shliomis and
Stepanov suggested the following Fokker-Planck equation for
the time-dependent joint probability density F (e, n; t ) [14]:
∂F

∂t
= −(Le + Ln) · [�F ] − Le · [ωLF ]

+
(

1

2τB
(Le + Ln) · F (Le + Ln) + 1

2τD
Le · FLe

)

×
[

U

kBT
+ ln F

]
, (3)

with the rotational operators Le = e × ∂/∂e and Ln = n ×
∂/∂n. The Brownian rotational relaxation time of the particle
is defined as τB = 3ηsvh/kBT , where ηs is the solvent viscos-
ity and vh the hydrodynamic volume of the nanoparticle. The
second characteristic time in Eq. (3) is the internal rotational
diffusion time, τD = Msvm/(2αγ kBT ), with α the dimension-
less damping parameter and γ the gyromagnetic ratio. The
Larmor frequency is defined as and given here by [14]

ωL = γ Heff = − γ

m

∂U

∂e
= H + 2KM−1

s (e · n)n. (4)

For later use, we note that we can rewrite this expression as
τDωL = 1

2α
h + κ

α
(e · n)n. Finally, the vector � denotes one

half of the vorticity of an externally applied flow field. By
construction, the equilibrium probability density Eq. (2) is a
stationary solution of Eq. (3) for � = 0.

We here also give the stochastic formulation corresponding
to the Fokker-Planck Eq. (3), which provides further insight
into the model and serves as a starting point for numer-
ical solutions. Inserting the potential U from Eq. (1) and
identifying drift and diffusion coefficients from Eq. (3), we
follow standard procedures [24] to formulate the correspond-
ing stochastic differential equations for the random vectors
et and nt ,

d

dt
et =

[
� + ωL + 1

2τ0
et × h + 1

τD
κ (et · nt )et × nt

]

× et + [
b(e)

t + b(n)
t

] × et , (5)

d

dt
nt =

[
� + 1

2τB
(et × h)

]
× nt + b(n)

t × nt , (6)
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where the Brownian contributions b(e)
t , b(n)

t are independent
three-dimensional Gaussian random variables with zero mean,
〈b(e)

t 〉= 〈b(n)
t 〉= 0, and variance 〈b(e)

t b(e)
s 〉 = (1/τD)δ(t − s)I,

〈b(n)
t b(n)

s 〉 = (1/τB)δ(t − s)I, 〈b(e)
t b(n)

s 〉 = 0, where δ(t ) de-
notes the Dirac delta function and I the three-dimensional unit
matrix. In Eq. (5) we defined the effective relaxation time τ0

by

1

τ0
= 1

τB
+ 1

τD
. (7)

Further details on the derivation of Eqs. (5) and (6) are
provided in Appendix B.

Some comments seem in order. First, in the rigid-dipole
approximation the magnetization direction is always aligned
with the easy axis of the particle, et = nt , and Eq. (6) reduces
to the standard ferrofluid model of noninteracting magnetic
nanoparticles [2]. Without fluctuations and for stationary
particles, the above equation for e, Eq. (5), reduces to the
Landau-Lifshitz equation. Here, since fluctuations are added
only on the precession term but not on the relaxation term,
the equation reduces for stationary particles to the “stochastic
Landau-Lifshitz” equation [25]. When fluctuations are added
on precession and relaxation term, the model coincides with
the one used in Ref. [18] in the low-damping regime appro-
priate for magnetic nanoparticles. This connection is easily
established by relating the quantities b(e)

t to the fluctuating
fields Hf

t = b(e)
t /γ used in Refs. [18,25]. The variance of

the fluctuating fields is given by 〈Hf
t Hf

s〉 = 2DLLGδ(t − s)I
with DLLG = αkBT/(γ m). Note that some authors introduce
the renormalized gyromagnetic ratio γ → γ /(1 + α2) so that
DLLG = α/(1 + α2)(kBT/γ m) [25].

III. DIFFUSION-JUMP MODEL

For typical magnetic nanoparticles made of magnetite with
diameters of some 10 nm, the basic timescale of internal
magnetization diffusion τD in the Landau-Lifshitz equation
is on the order of 10−10 . . . 10−9 s, while the Brownian
and Néel relaxation are typically much slower with τN,τB ≈
10−7 . . . 10−5s in standard solvents and ambient temperature
[1,19]. Although the egg model presented above remains
valid in these cases, the condition τD � τB, τN implies that
the numerical solution of Eqs. (5) and (6) will become very
inefficient or even impractical with standard computational
resources.

The Néel relaxation time τN increases very strongly with
the magnetic volume of the particle and for τN → ∞ the
rigid-dipole approximation becomes exact. But what are the
corrections when τN is large but finite? We are interested in
the situation τN � τD where Néel relaxation becomes a rare
event compared with internal diffusion. In this regime, Néel
relaxation is a thermally activated process that corresponds
to large magnetic anisotropy energies compared to thermal
energy, κ � 1 (see Appendix C and Eq. (C22) for a derivation
of Brown’s classical result of the Néel relaxation time in this
regime). Estimates for magnetite particles (K ≈ 104 J/m3)
with core diameters of 15 and 20 nm give κ ≈ 4 and κ ≈ 10 at
ambient temperatures, respectively. Under such conditions, it
is reasonable to assume that the magnetic moment will be well
aligned with the easy axis of the magnetic particle, e ≈ ±n.

We therefore model Néel relaxation as a Poisson process with
rate λ of jumps e � −e. For a Poisson process, the probability
that no jump has occurred over the time interval 
t equals
exp [−λ
t], while the probability for exactly one jump in 
t
equals 1 − exp [−λ
t] [24]. It is important to emphasize that
the probability of two or more jumps in 
t is negligible for
Poisson processes. This condition is fulfilled for large enough
κ and small enough time intervals 
t . While this requirement
for Poisson processes is always met in the cases considered
below, it is important to emphasize that the assumption e ≈
±n is much more restrictive and limits the model to the
regime of rather large magnetic anisotropy energies compared
to thermal energy.

Adopting the approximation e = ±n, the particle orienta-
tion n is no longer an independent degree of freedom. Let
f (e; t ) denote the probability density to find the magnetization
orientation e at time t . We propose the following diffusion-
jump process as a model for the magnetization dynamics

∂

∂t
f (e; t ) = L f (e; t ) +

∫
[w(e|e′) f (e′; t )

−w(e′|e) f (e; t )]de′, (8)

where L denotes the Fokker-Planck operator describing ro-
tational diffusion subject to the external magnetic field and
vorticity in the rigid-dipole approximation [1,2]. The second
term on the right-hand side of Eq. (8) models jump processes
with transition rates w. Here and in the following,

∫ • de
denote integration over the three-dimensional unit sphere.
Equations of the Eq. (8) type are known as “differential
Chapman-Kolmogorov” equations [24].

The above assumption that e = ±n suggests that the tran-
sition rates w vanish unless e′ = −e. Also, for thermal activa-
tion, the rate depends on the energy of the initial state and the
barrier, but is independent of the final states. Therefore, we
approximate the transition rates as

w(e′|e) = δ(e′ + e)λ(e), (9)

so that Eq. (8) simplifies to

∂

∂t
f (e; t ) = L f (e; t ) + [λ(−e) f (−e; t ) − λ(e) f (e; t )]. (10)

We note that Eqs. (8) and (10) conserve the normalization of
the probability density

∫
f (e; t )de = 1.

Next, we require the Boltzmann equilibrium feq(e) =
exp [e · h]/zeq to be a stationary solution to the differential
Chapman-Kolmogorov equation in the absence of flow, � =
0. Since L feq = 0, this requirement is met when the jump rates
satisfy the detailed balance condition:

λ(−e)

λ(e)
= feq(e)

feq(−e)
= exp [2e · h]. (11)

We use the ansatz λ(e) = λ0r(|e · h|) exp [−e · h] which satis-
fies Eq. (11) identically for arbitrary rate factors r. Due to its
interpretation as a transition rate, the dimensionless factor r
should be nonnegative, r(x) � 0. We also require r(0) = 1 so
that λ0 denotes the transition rate in the absence of an external
field. As shown below, the identification λ0 = 1/(2τN) leads
to a correct description of the Néel relaxation on the timescale
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τN. Note that λ0 can be identified with the probability flux J̄y,
Eq. (C21), across the anisotropy barrier.

With the explicit form of the operator L, we thus propose
the following diffusion-jump process to add internal Néel
relaxation to the rotational Brownian motion of magnetic
nanoparticles in the presence of external fields and flow,

∂

∂t
f (e; t ) = −Le ·

[(
� + 1

2τB
e×h

)
f (e; t )

]
+ 1

2τB
L2

e f (e; t )

+ r(|e · h|)
2τN

[ee·h f (−e; t ) − e−e·h f (e; t )]. (12)

In the limit τN → ∞, the jump processes described by the
last term on the right-hand side of Eq. (12) vanish and the
model reduces to the classical model within the rigid-dipole
approximation. For finite values of τN, the model goes be-
yond the rigid-dipole approximation by including thermally
activated magnetization reversals. When rotational motion
of the particle is suppressed, τB → ∞ and � = 0, internal
magnetization reversals become the only relaxation mode. It
is important to emphasize that we expect the model Eq. (12)
to be a valid approximation to the egg model Eq. (3) for
κ � 1. Otherwise, the assumption of perfect alignment of
magnetization and easy axis and of a thermally activated jump
process are not justified.

By construction, the diffusion-jump model Eq. (12) con-
serves the normalization of probability,

∫
f (e; t )de = 1, and

has feq as a stationary solution for � = 0. Furthermore,
we can derive the time evolution equation for the reduced
magnetization from the differential Chapman-Kolmogorov
Eq. (12) in a standard manner. Let 〈e〉t = ∫

e f (e; t )de denote
the mean magnetization direction at time t . Then d

dt 〈e〉t =∫
e ∂

∂t f (e; t )de and upon inserting the right-hand side of
Eq. (12) for ∂

∂t f we arrive at the equation for the expectation
value of the reduced magnetization,

d

dt
〈e〉t = 〈L†e〉t + 1

2τN

[∫
r(|e · h|)ee·he f (−e; t )de

−〈r(|e · h|)e−e·he〉t

]
, (13)

where L† denotes the transpose of the Fokker-Planck operator
defined above. The term 〈L†e〉t appears identically in the
rigid-dipole model and can be taken over from Ref. [5] (the
calculations can also be found in other references, like, e.g.,
Ref. [26]). The term proportional to τ−1

N is new and models
Néel relaxation. With the change of integration variable e →
e′ = −e and noting that the Jacobian of this transformation
is one, we find that both terms in the square bracket add
up to −τ−1

N 〈re−e·he〉t . Putting these results together gives the
magnetization equation

d

dt
〈e〉t = � × 〈e〉t + 1

2τB
(h − 〈ee〉t · h) − 1

τB
〈e〉t

− 1

τN
〈r(|e · h|)e−e·he〉t . (14)

The first three terms on the right-hand side of Eq. (12)
correspond to the rotation with the flow vorticity, the external
magnetic field and Brownian relaxation, respectively, and

appear identically in the rigid-dipole model [2,5]. The last
term proportional to τ−1

N is new and describes Néel relaxation.
In the absence of an external field, h = 0, this term simplifies
to −τ−1

N 〈e〉t as it should. In the presence of an external field,
the Néel term in general depends on the particular form of
the rate factor r. In equilibrium, however, it is readily verified
that this term vanishes, 〈re−e·he〉eq = 0, due to symmetry,
irrespective of the choice of r. Therefore, as expected, the
additional Néel relaxation term does not change the equilib-
rium magnetization. In the following, we study properties of
this model and explore its range of validity by comparison to
simulations of the egg model of Sec. II.

To fully specify the model, we need to fix the modifi-
cation of the transition rate due to the externally applied
field described by r. While the calculation of λ0 from the
model in Sec. II is standard, the corresponding result in
the presence of an external field is unfortunately not available
(see also Appendix C), to the best of our knowledge. We
show below that the magnetization relaxation and magnetic
susceptibility are independent of the particular choice of r.
But to make further progress for calculating the rotational
viscosity, we will use in Sec. IV C the phenomenological
expression r(x) = cosh(ax) with parameter a in the range 0 �
a � 1. Then, the transition rates can be expressed as λ(e) =
(4τN)−1{exp [−(1 − a)e · h] + exp [−(1 + a)e · h]}. For a =
0, λ simplifies to an Arrhenius-like expression. Note that
the “Glauber”-like choice r(x) = sech(x) leading to λ(e) =
(2τN)−1[1 + tanh(−e · h)] also satisfies detailed balance and
therefore is equally admissible. For the present case, both
choices give very similar results for a = 0 (see the discussion
in the Appendix D).

IV. RESULTS

A. Magnetization relaxation

Probing the relaxation of the magnetization after switching
off a strong ordering field is not only a common method
to study the orientational dynamics but is also used as a
diagnostic tool in biomedicine [3]. Here, we study the mag-
netization relaxation by starting all simulations in a perfectly
oriented initial state and follow the orientational dynamics in
the absence of external fields, h = � = 0. We use a Heun
algorithm to integrate Eqs. (5) and (6) numerically with an
ensemble of 105 independent realizations. The time step is
chosen as 2×10−3τD.

For the egg model, we find the short time behavior 〈e〉t =
1 − t/τ0 + O(t2). Therefore, the initial magnetization decay
is determined by τ0. For longer times, we expect a different
behavior due to Brownian and Néel relaxation. In fact, for the
diffusion-jump model we find from Eq. (14) for the magneti-
zation relaxation d

dt 〈e〉t = −τ−1
eff 〈e〉t , i.e., a single-exponential

decay with the effective relaxation time τeff given by

1

τeff
= 1

τB
+ 1

τN
. (15)

Note that contrary to τ0 defined in Eq. (7), τeff is defined as the
effective relaxation time resulting from Brownian and Néel
relaxation. Since we are considering magnetization relaxation
in the absence of external fields, this result holds for all
admissible choices of rate factors r.
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FIG. 1. Magnetization relaxation from perfectly oriented initial state in the absence of external fields is shown on a semilogarithmic plot.
Left panel shows the relaxation versus scaled time t/τB, where τB/τD = 10 and different values of κ (increasing from left to right) were chosen.
The inset is a zoom into the initial relaxation for times smaller than τD. The right panel shows the magnetization relaxation when κ = 5 is
fixed, time is scaled with τN, and different ratios τB/τD are considered.

In Fig. 1, the magnetization relaxation is shown for differ-
ent values of the anisotropy constant κ . Except for a short-
time initial transient of order τ0, we find that the relaxation
can be very well described by a single-exponential decay
with effective relaxation time τeff for all values of κ and τB

investigated.
The effective relaxation times τeff are extracted from a

single-exponential fit to the magnetization decay. We only
consider times t > τD to exclude the fast initial transient. The
resulting relaxation times are shown in Fig. 2. As κ is in-
creased, τeff approaches τB as expected from Eq. (15) since the
corresponding Néel relaxation time τN becomes much longer
than τB. For not too small values of κ , the approximation
τN ≈ τD

√
πeκ/(2κ3/2) derived by Brown (and rederived in

the present context in Appendix C) is quite accurate. The

FIG. 2. Effective magnetization relaxation times τeff as a func-
tion of κ for different values of τB/τD. Symbols correspond to
numerical results from exponential fits to relaxation curves shown
in Fig. 1, while lines correspond to the expected value from Eq. (15)
with τN calculated from Brown’s expression.

resulting effective relaxation times are shown in Fig. 2 and
approximate the numerical results from the magnetization
decay quite accurately.

B. Magnetic susceptibility

The response of suspended magnetic nanoparticles to ex-
ternally applied magnetic fields does not only provide insight
into the system (e.g., concentration of magnetic material,
relaxation modes) but is also important for applications such
as hyperthermia [27,28].

To calculate the magnetic susceptibility within the
diffusion-jump model of Sec. III, we consider only the first-
order magnetization response to weak, time-dependent ex-
ternal fields |h(t )| � 1. Thus, to first order in h we obtain
〈ee〉t · h(t ) ≈ 〈ee〉eq · h(t ) = (1/3)h(t ). Furthermore, 〈r(e ·
h)e−e·he〉t ≈ 〈(1 − e · h)e〉t = 〈e〉t − (1/3)h(t ). Note that we
have assumed r(x) = 1 + O(x2) for x → 0, which is consis-
tent with the requirement r(−x) = r(x). Consequently, the
magnetic susceptibility is independent of the particular form
of r. In the absence of external flow, � = 0, and with the
above results we obtain

d

dt
〈e〉t = − 1

τeff
〈e〉t + 1

3τeff
h(t ), (16)

with the effective relaxation time τeff defined in Eq. (15). For
given time-dependent field h(t ) = mH(t )/kBT , Eq. (16) can
be solved to find the induced magnetization M(t ) = nm〈e〉t .
For weak, time-dependent external fields H(t ), the induced
magnetization can be expressed in terms of the dynamic mag-
netic susceptibility χ (t ) as M(t ) = ∫ t

0 χ (t − t ′)H(t ′)dt ′. For
sinusoidally varying external fields H(t ) = H0 sin(ωt ) and
|H0| small enough, the induced magnetization is proportional
to H0 and varies with the same frequency ω,

M(t ) = [χ ′(ω) sin(ωt ) − χ ′′(ω) cos(ωt )]H0. (17)

Equation (17) defines the storage and loss part of the dynamic
susceptibility, χ ′ and χ ′′, respectively. In terms of reduced
units, Eq. (17) can be rewritten as 〈e〉t = χ−1

0 [χ ′(ω) sin(ωt ) −
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FIG. 3. Scaled real part of the magnetic susceptibility, χ ′/χ0, as a function of dimensionless frequency ω of the applied field. In the left and
right panel, the frequency is scaled with the Brownian and effective relaxation time, τB and τeff , respectively. Numerical results for different
values of κ are shown. For the simulations of the egg model, the Brownian relaxation time was chosen as τB = 10τD. Solid lines show the
Debye law corresponding to Eq. (18).

χ ′′(ω) cos(ωt )]h0. From Eq. (16) we find that the diffusion-
jump model predicts a Debye law for the dynamic magnetic
susceptibility with effective relaxation time τeff ,

χ ′
D(ω) = χ0

1 + (τeffω)2
, χ ′′

D(ω) = χ0τeffω

1 + (τeffω)2
, (18)

where χ0 = nm2/(3kBT ) denotes the Langevin susceptibility.
For the egg model of Sec. II, Shliomis and Stepanov de-
rived in Ref. [14] the approximate expression 3χ∗ = 2χ⊥ +
χ‖/(1 + iωτeff ) with χ⊥ = χ0(1 − S2), χ‖ = χ0(1 + 2S2), for
the complex susceptibility for not too high frequencies. See
Appendix A for the definition of S2. For large values of the
anisotropy constant κ where S2 → 1, their expression agrees
with Eq. (18).

Thanks to the fluctuation-dissipation theorem, the suscep-
tibility can in principle be obtained from the Fourier transfor-
mation of the magnetization relaxation studied in Sec. IV A.
For the diffusion-jump model, we obtain the same expres-
sions, Eqs. (16) and (18), via this route. For the numerical
evaluation of χ ′, χ ′′ predicted by the egg model, we here
prefer to use Eq. (17) and simulate directly the magneti-
zation response to an oscillating external field for a range
of frequencies. To ensure that the external field is weak
enough so that the system remains in the linear response
regime, we require |h0| = |mH0/kBT | � 1. For the present
case, we found that simulations with |h0| = 0.2 and 0.5 gave
results that are indistinguishable within our numerical accu-
racy and therefore have used |h0| = 0.5 for computational
convenience.

Figure 3 shows χ ′, the real or storage part of the suscep-
tibility, as a function of frequency ω of the applied field. As
the value of κ is increased, we observe that χ ′ approaches
the Debye law, Eq. (18). When frequency is scaled with the
effective relaxation time τeff , reasonable data collapse of χ ′
is observed for our simulations if ω � τ−1

eff and not too small
values of κ . It is worth to mention that the predictions of
the diffusion-jump model are not reliable at high frequencies

ω � 10τ−1
B even for relatively large values of κ since the

intermediate plateau is not captured by Eq. (18). Finally, we
remark that for low values of κ , we find that the egg model
predicts an undershoot with negative values of χ ′ at high
frequencies. Contrary to the case considered in Ref. [29], here
the negative values of χ ′ are due to the Larmor precession
and not due to inertia effects since we consider a noninertial
model.

Figure 4 shows the imaginary or loss part of the suscep-
tibility as a function of frequency of the applied field. As
expected, we observe that the position of the main loss peak
moves to smaller frequencies as the value of the anisotropy
constant κ increases. While the position of this peak is rather
well described by Eq. (18) due to the increase of τeff with
increasing κ , the model fails to account for the decreasing
height of the peak for small values of κ . The numerical
data also show a high frequency peak around the Larmor
frequency, which is also not captured by the diffusion-jump
model Eq. (18). We want to emphasize that the diffusion-
jump model is supposed to describe the long-time, small
frequency regime and therefore deviations at high frequencies
are expected. When the applied frequency is scaled with the
effective relaxation time τeff , we observe a rather good data
collapse for ω � 10τ−1

eff that approaches the Debye law with
increasing κ .

C. Magnetoviscosity

The increase of the effective viscosity of a suspension of
magnetic nanoparticles due to an externally applied magnetic
field is known as the magnetoviscous effect [1,2,7]. From
the balance of viscous torques and the torques exerted by
the externally applied magnetic field with magnitude H , the
rotational viscosity can be defined as [1,2]

ηrot = M⊥H

4�
, (19)
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FIG. 4. Same as described in the caption of Fig. 3 but for the imaginary part of the magnetic susceptibility, χ ′′.

where M⊥ denotes the magnetization component perpendic-
ular to the applied field. In viscometric flows, the mag-
nitude of the vorticity can be expressed as � = γ̇ /2,
where γ̇ is the applied shear rate. With the perpendicu-
lar magnetization M⊥ = nm〈e⊥〉, we can express Eq. (19)
also as ηrot = 3

2ηsφ〈e⊥〉h/(τBγ̇ ), where φ = nvh is the hy-
drodynamic volume fraction and ηs the viscosity of the
solvent.

Within the rigid-dipole approximation, the rotational vis-
cosity becomes ηSh

rot = (3/2)ηsφhL2
1 (h)/[h − L1(h)], where

L1(h) = coth(h) − 1/h denotes the Langevin function [5].
Taking into account thermally activated Néel relaxation pro-
cesses, the value of the rotational viscosity decreases. For
the egg model in Sec. II, approximate expressions have been
derived in Refs. [1,13,30],

ηSt
rot = 3

2
ηsφ ×

{
h2

18 (1 + 2S2) τeff
τB

for h � 1
35L2

2 S2
2

14+5L2S2+16L4S4
for h > κ

, (20)

where Ln(h) = 〈Pn(e · ĥ)〉eq and Pn(x) are Legendre poly-
nomials. The quantities S2, S4 are defined in Appendix A.
Equations (20) correspond to the experimentally relevant case
τD � τB. Some of the limitations of Eqs. (20) have been
overcome in Ref. [31] where the expression

ηMSZ
rot = ηsat

rot
[3 + 2κS2]hL2

1 (h)

3h + 2κS2[2 + hL1(h)]L1(h)
(21)

for the rotational viscosity was derived. The authors of
Ref. [31] point out that the value at saturation

ηsat
rot = 3

2
ηsφ

2κS2

3 + 2κS2
(22)

is reduced due to finite magnetic anisotropy and recovers the
rigid-dipole limit ηsat

rot → 3
2ηsφ for κ → ∞.

Within the diffusion-jump model, the rotational viscosity
is found to be given by

ηDJ
rot = ηsat

rot
hL2

1 (h)

h − L1(h)

[
1 + τB

τN
�(h)

]−1

, (23)

where �(h) is a deceasing function of h such that �(0) = 1 and
� → 0 for h → ∞. In the rigid-dipole limit τN/τB → ∞, ηDJ

rot
reduces to ηSh

rot as it should. It is only for intermediate values
of h that the detailed form of the function �(h) becomes
important. The derivation of the rotational viscosity for the
diffusion-jump model and the resulting form of �(h) are given
in Appendix D.

Figure 5 shows the rotational viscosity ηrot as a function
of the Langevin parameter h. The solid black line shows
the rigid-dipole limit κ → ∞. We observe that finite values
of κ lead to a substantial decrease of ηrot compared to the
rigid-dipole limit. Furthermore, the quadratic approximation
Eq. (20) is found to be well obeyed for weak enough fields h �
0.5. For larger fields, the second approximation in Eq. (20) is
found to underpredict the simulation results, with the notable
exception of small anisotropy constants κ = 2 where a good
agreement is found (not shown). In the right panel of Fig. 5,
the numerical results obtained for the egg model are compared
to the diffusion-jump model Eq. (23). For the comparison, we
choose the rate factor r in the form r = cosh(e · h) so that
�(h) = �1(h) is given by Eq. (D9) for a = 1 (see Appendix D
for further details). With this choice of r, we observe that
the diffusion-jump model reproduces the rotational viscosity
of the egg model rather well for weak and strong fields,
with some notable discrepancies for intermediate values
of h.

While Eqs. (23) and (20) refer to the important case of
weak shear rates, it is well-known that ferrofluids also exhibit
viscoelastic effects [2,32,33]. In the rigid-dipole approxi-
mation, the expression ηSh

rot = (1/4)ηsφh2[1 + (τB�)2]−1 for
h � 1 was derived in Ref. [26] to describe the decrease in
viscosity with increasing flow rate. In Fig. 6, the rotational
viscosity is shown as a function of applied shear rate. A New-
tonian plateau is reached at low shear rates for all parameter
values investigated. We find that finite values of the anisotropy
parameter κ not only reduce the value of the Newtonian
plateau of the rotational viscosity compared to the rigid-dipole
case, also the onset of shear thinning moves to higher shear
rates. We also observe that the data for κ = 8 are already quite
close to the analytical result for rigid dipoles.
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FIG. 5. The scaled rotational viscosity as a function of the Langevin parameter of the applied external field for different values of the
dimensionless magnetic anisotropy constant κ . The left panel shows weak external fields with symbols showing numerical results for the egg
model and lines the first of Eqs. (20). The right panel shows the same numerical data but for a larger range of Langevin parameters. The lines
here correspond to diffusion-jump model, Eq. (23), for a special form of the rate factor r (see text).

V. CONCLUSIONS

Here, we study the effect of finite magnetic anisotropy on
the magnetization relaxation, dynamic magnetic susceptibility
and rotational viscosity of suspended magnetic nanoparticles.
Overall, strong deviations from the frequently used rigid-
dipole model are observed. Approximate analytical formulas
that have been proposed in the literature are found to have a
limited range of applicability.

In view of the timescale gap τD � τB, τN, we here propose
an improvement on the rigid-dipole approximation in terms

FIG. 6. The rotational viscosity as a function of dimension-
less shear rate for different values of the dimensionless magnetic
anisotropy constant κ . The Brownian relaxation time was chosen
as τB/τD = 10 and a moderate magnetic field of strength h = 1 was
applied. The dashed line is the analytical result for the rigid-dipole
approximation in weak magnetic fields.

of a diffusion-jump model that includes thermally activated
magnetization reversals. We assume that the magnetization
direction coincides with the easy axis of the particle and
that the magnetization reversals can be modeled as instan-
taneous jumps according to a Poisson process. From its
construction, the model is expected to be valid for high
magnetic anisotropies κ and on timescales t � τB, τN. On
these timescales, the magnetization relaxation is to an ex-
cellent approximation single-exponential and therefore very
well described by the model. Furthermore, the dynamic mag-
netic susceptibility is also reasonably well described by the
diffusion-jump model for low enough frequencies and large
enough values of κ . The diffusion-jump model is able to
describe the magnetoviscosity well for weak and strong ex-
ternal fields, with some discrepancies at intermediate field
strengths. Since we have proposed the field-dependence of
the jump rates ad hoc, it is plausible that the prediction of the
diffusion-jump model Eq. (12) can be improved by choosing a
different functional form of r(|e · h|) which describes how the
external fields modifies the jump rates. Much more satisfying
would be a systematic derivation of the field-dependence of
the transition rates. Very recently, coarse-graining approaches
have been proposed [34] that could be used to address this
issue.

In the present work, we have considered the case of non-
interacting magnetic nanoparticles to develop and test the
diffusion-jump model. From a theoretical point of view as
well as for a number of practical applications, interactions
between magnetic nanoparticles are of great interest. The-
oretical and simulation studies building on the rigid-dipole
approximation have shown that steric and dipolar interac-
tions can significantly modify the susceptibility and magneto-
viscosity [2,7,9,35–37]. The diffusion-jump model proposed
here offers the possibility to extend these works to efficiently
include Néel relaxation by incorporating magnetization rever-
sals as a Poisson jump process satisfying the detailed balance
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condition Eq. (11). For weakly interacting particles and in the
absence of an external field, for example, the rates can be
approximated by λ ≈ λ0 and therefore the Poisson processes
are independent. In general, the interaction of dipolar particles
lead to a coupling of the Poisson processes via the local
magnetic field-dependence of λ.
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APPENDIX A: EQUILIBRIUM ALIGNMENT
OF MAGNETIZATION AND EASY AXIS

We can ask how well the direction of the easy axis n
and the magnetization e are aligned with each other under
equilibrium conditions. The alignment can be quantified in
terms of the order parameter S2 = 〈P2(e · n)〉eq with P2(x) =
(3x2 − 1)/2 the second Legendre polynomial and the averages
are performed with Feq [1].

From the equilibrium Boltzmann distribution Eq. (2) we
find

S2 = 1

Zeq

∫
ee·h

∫ (
3

2
(e · n)2 − 1

2

)
eκ (e·n)2

dn de (A1)

=
∫ 1

0

(
3
2 (e · n)2 − 1

2

)
eκz2

dz∫ 1
0 eκz2 dz

(A2)

= 3

4
√

κDa(
√

κ )
− 3

4κ
− 1

2
, (A3)

where Da(x) = e−x2 ∫ x
0 ey2

dy denotes the Dawson integral.
Comparison of this analytical result with simulations of the
egg model in equilibrium is shown in Fig. 7. Note that the
result Eq. (A3) is independent of h, τB and α. As expected,
S2 increases monotonically with κ since a higher anisotropy
constant leads to a better alignment of magnetic moment and
easy axis orientation. The limiting behavior is

S2 = 2κ

15
+ 4κ2

315
− 8κ3

4725
− 16κ4

31185
+ O(κ5) for κ � 1,

(A4)

S2 = 1 − 3

2κ
− 3

4κ2
+ 15

16κ3
+ O(κ−4) for κ → ∞.

(A5)

Similarly we can define S4 = 〈P4(e · n)〉eq with the fourth-
order Legendre polynomial P4(x) = (35x4 − 30x2 + 3)/8.
Note that due to the symmetry n → −n, only averages of even
Legendre polynomials are nonzero. The integration gives

S4 = 5(2κ − 21)

32κ3/2Da(
√

κ )
+ 3(κ + 5)

8κ
+ 105

32κ2
, (A6)

FIG. 7. The alignment order parameters Sn = 〈Pn(e · n)〉eq with
n = 2 (top) and n = 4 (bottom) as a function of the dimensionless
anisotropy energy κ for different values of τB/τD.

with the limiting behavior

S4 = 4κ2

315
+ 16κ3

10395
+ O(κ4) for κ � 1, (A7)

S4 = 1 − 5

κ
+ 25

4κ2
+ O(κ−3) for κ → ∞. (A8)

The increase of S2 and S4 with κ is shown in Fig. 7.
Excellent agreement of the numerical solutions with the exact
results Eqs. (A3) and (A6) is found. It is interesting to note
that convergence to perfect alignment S2, S4 → 1 for κ →
∞ is rather slow so that even for κ = 5 the order param-
eter S2 ≈ 0.65, S4 ≈ 0.29, i.e., significant deviations from
perfect alignment that would correspond to the rigid-dipole
approximation.

APPENDIX B: STOCHASTIC FORMULATION
OF “EGG MODEL”

Our aim here is to find the stochastic differential equations
for the random vectors et and nt corresponding to Eq. (3). To
this end, we rewrite the Fokker-Planck Eq. (3) as

∂F

∂t
= −Le · [AeF ] − Ln · [AnF ] + 1

2

(
Le

Ln

)(
Le

Ln

)
: DF,

(B1)

and we identify the drift terms, which in the present case are
effective angular velocities,

Ae = � + ωL + 1

2τ0
e × h + 1

τD
κ (e · n)e × n, (B2)

An = � + 1

2τB
e × h. (B3)

The diffusion matrix D appearing in Eq. (B1) is given by

D =
(

1/τ0I 1/τBI
1/τBI 1/τBI

)
, (B4)

where I denotes the three-dimensional unit matrix.

022608-9



PATRICK ILG PHYSICAL REVIEW E 100, 022608 (2019)

Equation (B1) is of the general form of the Fokker-Planck
equation, where the drift terms can be rewritten due to −Le ·
[AeP] = − ∂

∂e · (Ae × eP) and similarly for Ln. To exploit the
general relation between Fokker-Planck and corresponding
stochastic differential equations [24], we decompose the sym-
metric matrix D as

D = B · BT . (B5)

To recover Eq. (B4), the matrix B can be chosen as

B =
(

1/
√

τ0I 1/
√

τBI
0 1/

√
τBI

)
, (B6)

and 0 is the three-dimensional matrix consisting only of
zeros. Therefore, the stochastic differential equations for et , nt

corresponding to Eq. (B1) read(
det

dnt

)
= −

(
et × Ae

nt × An

)
dt

−
(

et × [
dW(e)

t

/√
τ0 + dW(n)

t

/√
τB

]
nt × dW(n)

t

/√
τB

)
, (B7)

where W(e)
t , W(n)

t are independent, three-dimensional Wiener
processes. Inserting the expression for the drift terms
Eqs. (B2) and (B3) and the matrix B from Eq. (B6) into
Eq. (B7) leads to Eqs. (5) and (6).

APPENDIX C: ESTIMATE OF NÉEL RELAXATION TIME

We are interested in the case where the Néel relaxation pro-
cess can be described as a thermally activated magnetization
reversal with spontaneous jumps e → −e over the anisotropy
barrier to populate the energy minima e = ±n parallel to the
easy axis of the nanoparticle.

We follow Brown’s classical treatment and use transition
state theory to estimate the effective rate of barrier crossings
[10]. To this end, we must first map the Fokker-Planck Eq. (3)
in the variables e, n onto an effective one-dimensional equa-
tion for the reaction coordinate y. We choose as reaction coor-
dinate y = e · n. From the definition −1 � y � 1 and y < 0
and y > 0 distinguish the two energy wells corresponding
to parallel and antiparallel alignment. Thus, we define the
instantaneous probability density of the reaction coordinate

ψ (y; t ) =
∫∫

δ(e · n − y)F (e, n; t )dnde. (C1)

From Eq. (3) we can derive the time evolution equation for ψ

as

∂

∂t
ψ (y; t ) =

∫∫
δ(e · n − y)

∂

∂t
F (e, n; t )dn de

= − ∂

∂y
Jy(y; t ), (C2)

Jy(y; t ) =
∫∫

[Je − Jn] · (e × n)δ(e · n − y)dn de, (C3)

with

Je− Jn =
[
ωL + 1

2τD
e × h + 1

τD
κ (e · n)e × n

]
F− 1

2τD
LeF.

(C4)

We can distinguish different contributions to the flux Jy, such
as diffusion

Jd
y (y; t ) =

∫∫ [
− 1

2τD
LeF (e, n; t )

]
·(e × n)δ(e · n − y)dn de (C5)

= − 1

τD
yψ (y; t ) − 1

2τD
∂y(1 − y2)ψ (y; t ), (C6)

the anisotropy energy,

Jκ
y (y; t ) = κ

τD

∫∫
(e · n)(e × n)2F (e, n; t )δ(e · n − y)dn de

(C7)

= κ

τD
y(1 − y2)ψ (y; t ), (C8)

and the contribution of an external magnetic field

Jh
y (y; t ) =

∫∫ [
ωL + 1

2τD
e × h

]
· (e × n)F (e, n; t )

× δ(e · n − y)dn de (C9)

= 1

2τD

∫∫ [
1

α
h · (e × n) + h · n − (e · h)(e · n)

]
× F (e, n; t )δ(e · n − y)dn de. (C10)

We can simplify Eqs. (C6) and (C8) as

τD
(
Jd

y + Jκ
y

) = 1
2 (1 − y2)eκy2

∂y[e−κy2
ψ]. (C11)

We immediately verify that the flux Jd
y + Jκ

y vanishes when
evaluated with the equilibrium probability density,

ψ0(y) = Ceκy2
, C−1 = 2

∫ 1

0
eκy2

dy =
√

π

κ
erfi(

√
κ ). (C12)

From Eq. (C11) we can follow the usual steps in tran-
sition state theory [24] to derive an approximate expres-
sion for the probability flux over the barrier for large κ as
follows:

2τDe−κy2(
Jd

y + Ja
y

) = (1 − y2)∂y[e−κy2
ψ (y; t )], (C13)

2τD

∫ 0

−1
e−κy2(

Jd
y + Ja

y

)
dy =

∫ 0

−1
(1 − y2)∂y[e−κy2

ψ (y; t )]dy

(C14)

= (1 − y2)e−κy2
ψ |0−1−

∫ 0

−1
(−2y)e−κy2

ψ (y; t )dy (C15)

= ψ (0; t ) − e−κy2
ψ |0−1 (C16)

= e−κψ (−1; t ) (C17)

≈ e−κψ0(−1) = C, (C18)

where, following transition state theory, we assumed that the
probability density in the energy minimum, ψ (−1), can be
approximated by the equilibrium value ψ0(−1). For the left-
hand side, original transition state theory uses saddle point
integration. Here, in a similar spirit we can define

2τD

∫ 0

−1
e−κy2(

Jd
y + Ja

y

)
dy = J̄y2τD

∫ 0

−1
e−κy2

dy (C19)

= J̄yτD

√
π

κ
erf (

√
κ ). (C20)
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FIG. 8. Probability flux J̄y across the anisotropy barrier,
Eq. (C21), and asymptotic result for large barriers, Eq. (C22), due
to Brown.

Putting these results together we obtain

J̄y = 1

τD

κ/π

erf (
√

κ )erfi(
√

κ )
(C21)

κ�1= 1

τD

κ3/2

√
π eκ

= 1

2τN
, (C22)

where the expression for τN agrees with Brown’s result for
large barriers [10]. Therefore, we find that Brown’s expression
for the Néel relaxation time is not affected by the coupling to
rotational Brownian motion, at least in the absence of external
fields. Figure 8 shows a comparison of Eqs. (C21) and (C22).

As a side remark, we note that transition state theory ex-
pressions for the flux are usually expressed as J = t̂ kTST with
kTST = ωmin

2π
e−Umin/kBT and transmission coefficient t̂ = ωmax/ξ

with friction coefficient ξ and ωmax a measure for the second
derivative of the potential energy at the maximum. The present
results are in agreement with those general expressions for
kTST = 1/τN and t̂ = 1/2.

Finally, we want to emphasize that Eq. (C10) shows that
an external magnetic field changes the rate Jy of barrier
crossings in a nontrivial manner and therefore lead to a mod-
ification of the effective Néel relaxation time. Unfortunately,
the corresponding expression is given only in implicit form.
Therefore, we treat the magnetic field-induced modification
of the transition rates as an unknown contribution.

APPENDIX D: ROTATIONAL VISCOSITY
FOR DIFFUSION-JUMP MODEL

To calculate the stationary nonequilibrium solution of
Eq. (14) for weak flow, |�| � 1, we use the ansatz

f (e) = feq(e)[1 + (e − 〈e〉eq ) · a], (D1)

with the equilibrium probability density feq(e) =
z−1

eq exp [e · h], zeq = 4π sinh(h)/h and 〈•〉eq here denote
averages taken with feq. We want to determine the unknown
vector a to first order in �. With Eq. (D1) we can calculate

expectation values such as

〈e〉 = 〈e〉eq + (〈ee〉eq − 〈e〉eq〈e〉eq ) · a (D2)

= L1ĥ + (
L2 − L2

1

)
(a · ĥ)ĥ + L1

h
a, (D3)

where the quantities Ln have been defined after Eq. (20) and
ĥ = h/h denotes the unit vector in the direction of the applied
field. Similar calculations lead to 〈ee〉 · ĥ = Oĥ + (L2/h)a,
where the term O is irrelevant for the rotational viscosity.
Details of the calculation can be found, e.g., in Refs. [6,26].

To calculate 〈re−e·he〉 we first note that this quantity
vanishes in equilibrium, 〈re−e·he〉eq = 0, due to the detailed
balance condition Eq. (11). Next, due to uniaxial symmetry
we have

〈re−e·hee〉eq = R1ĥĥ + R2I, (D4)

where the term R1 is irrelevant for the rotational viscosity and
R2 = 1

2 (I0 − I2) with

In = 〈(e · ĥ)nr(e · h)e−e·h〉eq (D5)

= 1

2hn sinh(h)

∫ h

−h
ynr(y)dy. (D6)

Therefore, the ansatz Eq. (D1) leads to 〈re−e·he〉 =
R1(a · ĥ)ĥ + R2a.

Inserting these expressions into Eq. (14) gives an equation
for the unknown a and the resulting magnetization from
Eq. (D2). For the rotational viscosity, only the component per-
pendicular to the applied field is of importance and the explicit
form of R1 is irrelevant. We therefore apply the orthogonal
projector I − ĥĥ to Eq. (14), which, in the stationary states,
leads to

0 = L1� × ĥ − L2 + 2L1/h

2τB

(
1 + τB

τN
�(h)

)
a⊥, (D7)

where a⊥ = a − (a · ĥ)ĥ and �(h) = 2hR2/[h − L1]. With a⊥
at hand, the perpendicular magnetization component is deter-
mined by 〈e⊥〉 = (L1/h)a⊥. From Eq. (19) we therefore find
the rotational viscosity to be given by

ηrot = ηsat
rot

hL2
1 (h)

h − L1(h)

[
1 + τB

τN
�(h)

]−1

, (D8)

where ηsat
rot denotes the saturation value of the rotational

viscosity. We note that the above derivation leads to the
expression ηsat

rot = 3
2ηsφ which, as discussed in Sec. IV C, is

valid only in the rigid-dipole limit. Therefore, we instead use
the corrected Eq. (22) for the saturation value ηsat

rot .
The function �(h) depends on the particular form of the rate

r(x). In the simplest case r(x) = 1 we find In = h/[(n + 1)
sinh(h)] for n even and therefore R2 = h/[3 sinh(h)]. More
generally, if we set r(x) = cosh(ax) with an unknown param-
eter a, 0 � a � 1, we find I0 = sinh(ah)/[a sinh(h)]. Using
a similar calculation for I2 and substituting the result we

022608-11
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FIG. 9. The dimensionless function �a(h) defined in Eq. (D9) for
selected values of the parameter a as well �G for Glauber rates.

find

�a(h) = 2 sinh(ah)L1(ah)

a2 sinh(h)[h − L1(h)]
. (D9)

The function �a(h) is bounded, 0 � � � 1 and monotonously
decreasing with increasing h. The limiting behaviors are

�a(h) = 1 − [1 − a2/2]h2/5 + [41 − 28a2 + 5a4]h4/1400 +
O(h6) for h → 0 and �a(h) ≈ (2/a2h)e−(1−a)h → 0 for
h → ∞. Figure 9 shows a plot of the function �a(h) for some
values of a. We include in Fig. 9 also the function �G(h) that
corresponds to the choice r(x) = sech(x) which describes
Glauber-like rate functions λG = (2τN)−1[1 + tanh(−e · h)].
Since the corresponding integrals In from Eq. (D6) lead to
cumbersome expressions, we only show here the numerical
result for �G(h). We observe that Arrhenius (a = 0) and
Glauber rates lead to very similar results for �(h).

Since the first-order expansion of �a is independent of a, we
obtain ηrot = 1

4ηsφqh2τN/(τN + τB), q = (1 + 3/[2κS2])−1,
for h � 1 independent of the particular form of the rate factor
r. The same result for the rotational viscosity in weak fields
was obtained in Ref. [13] directly from the egg model for the
case τB � τD but with q replaced by q0 = (1 + 2S2)/3. Since
q, q0 → 1 for large κ , both results asymptotically reduce to
the rigid-dipole result. In the opposite limit of very strong
magnetic fields, Eq. (D8) predicts that the rotational viscosity
reaches the asymptotic value ηsat

rot = (3/2)ηsφq for h → ∞.
Shliomis and Stepanov [13] found that the rigid-dipole limit
value is reduced not by a factor q but q∞ = 35S2

2/[16S4 +
5S2 + 14]. As discussed in Ref. [31], both expressions be-
have very similar for large κ . It is interesting to note that
q → 1 converges only slowly as the anisotropy constant κ is
increased (see Fig. 7).
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