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Nonequilibrium probability flux of a thermally driven micromachine
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We discuss the nonequilibrium statistical mechanics of a thermally driven micromachine consisting of three
spheres and two harmonic springs [Y. Hosaka et al., J. Phys. Soc. Jpn. 86, 113801 (2017)]. We obtain the
nonequilibrium steady state probability distribution function of such a micromachine and calculate its probability
flux in the corresponding configuration space. The resulting probability flux can be expressed in terms of a
frequency matrix that is used to distinguish between a nonequilibrium steady state and a thermal equilibrium
state satisfying detailed balance. The frequency matrix is shown to be proportional to the temperature difference
between the spheres. We obtain a linear relation between the eigenvalue of the frequency matrix and the average
velocity of a thermally driven micromachine that can undergo a directed motion in a viscous fluid. This relation
is consistent with the scallop theorem for a deterministic three-sphere microswimmer.
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I. INTRODUCTION

Microswimmers are tiny machines that swim in a fluid and
they are expected to be used in microfluidics and microsys-
tems [1]. Over the length scale of microswimmers, the fluid
forces acting on them are dominated by the frictional viscous
forces. By transforming chemical energy into mechanical en-
ergy, however, microswimmers change their shape and move
efficiently in viscous environments. According to Purcell’s
scallop theorem, time-reversible body motion cannot be used
for locomotion in a Newtonian fluid [2,3]. As one of the
simplest models exhibiting broken time-reversal symmetry,
Najafi and Golestanian proposed a three-sphere swimmer
[4,5], in which three in-line spheres are linked by two arms
of varying length. Recently, such a swimmer has been exper-
imentally realized by using colloidal beads manipulated by
optical tweezers [6] or by controlling ferromagnetic particles
at an air-water interface [7,8].

Recently, the present authors have proposed a general-
ized three-sphere microswimmer model in which the spheres
are connected by two harmonic springs, i.e., an elastic mi-
croswimmer [9,10]. A similar model was also considered by
other people [11–13]. Later, our model was further extended
to a thermally driven elastic microswimmer [14], suggesting
a mechanism for locomotion that is purely induced by ther-
mal fluctuations without any external forcing. As depicted
in Fig. 1, the key assumption is that the three spheres are
in equilibrium with independent heat baths characterized by
different temperatures. In such a situation, heat transfer occurs
inside the micromachine from a hotter sphere to a colder one,
driving the whole system out of equilibrium. We have shown
that a combination of heat transfer and hydrodynamic inter-
actions among the spheres can lead to directional locomotion
in a steady state [14]. Our model has a similarity to a class
of thermal ratchet models [15–17], and the suggested new
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mechanism is relevant to nonequilibrium dynamics of proteins
and enzymes in biological systems [18,19].

For a thermally driven elastic micromachine, the average
velocity was calculated to be [14]

〈V 〉 = kB(T3 − T1)

96πη�2
, (1)

where kB is the Boltzmann constant, T1 and T3 are the tem-
peratures of the first and the third spheres (see Fig. 1), η

is the viscosity of the surrounding fluid, and � is the natu-
ral length of the two springs. This result indicates that the
swimming direction is from a colder sphere to a hotter one,
and the velocity does not depend on the temperature of the
middle sphere. Moreover, we demonstrated that the average
velocity is determined by the net heat flow between the first
and the third spheres (see Sec. VI later) [14]. This result
is consistent with the theoretical framework of “stochastic
energetics” [20–22]. However, a more detailed analysis based
on nonequilibrium statistical mechanics is required in order
to clarify the physical mechanism for the locomotion of a
thermally driven micromachine.

It is well known that systems in thermodynamic equilib-
rium obey detailed balance meaning that transition rates be-
tween any two microscopic states are pairwise balanced [23].
For nonequilibrium steady state situations, however, detailed
balance is broken and a probability flux loop should exist
in a configuration phase space [24–27]. Such a probability
flux has been experimentally measured in the periodic beating
of a flagellum from Chlamydomonas reinhardtii and in the
nonperiodic fluctuations of primary cilia of epithelial cells
[28]. A similar analysis was performed for nonequilibrium
shape fluctuations of semiflexible filaments in a viscoelastic
environment [29,30]. Since the existence of a probability flux
loop is a direct verification of a nonequilibrium steady state, it
is a useful concept to characterize driven systems.

In this paper, we discuss the nonequilibrium statistical
mechanics of a thermally driven micromachine consisting of
three spheres and two harmonic springs [14]. We obtain the
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FIG. 1. Thermally driven elastic three-sphere micromachine.
Three spheres are connected by two identical harmonic springs
characterized by the elastic constant K and the natural length �. The
time-dependent positions of the spheres are denoted by xi(t ) (i =
1, 2, 3) in a one-dimensional coordinate system, and ζi is the friction
coefficient for the ith sphere. The three spheres are in equilibrium
with independent heat baths at temperatures Ti. In this paper, we
do not take into account hydrodynamic interactions acting between
different spheres.

steady state conformational distribution function of such a
micromachine and calculate its probability flux in the corre-
sponding configuration space. The obtained probability flux
will be expressed in terms of a frequency matrix to discuss the
nonequilibrium steady state of a micromachine. The main pur-
pose of our work is to understand the physical mechanism that
underlies the locomotion of a thermally driven micromachine
within the nonequilibrium statistical mechanics. To this aim,
we shall obtain a relation connecting the eigenvalue of the
frequency matrix to the average velocity of a thermally driven
micromachine as shown in Eq. (1). With this relation, we show
explicitly that the concept of Purcell’s scallop theorem can
be generalized for thermally driven micromachines. Together
with the results in Ref. [14], the present study provides a
unified description of the locomotion of a stochastic elastic
micromachine.

In the next section, we explain our model of a thermally
driven three-sphere micromachine by introducing the coupled
Langevin equations for the two spring extensions. In Sec. III,
we determine the steady state probability distribution function
of an elastic micromachine. By employing the Fokker-Planck
equation in Sec. IV, we obtain the steady state probability flux
in the configuration space. From the Gaussian probability flux,
we calculate the frequency matrix and the flux rotor. In Sec. V,
the average velocity of a micromachine will be expressed in
terms of the obtained quantities characterizing the scale of
nonequilibrium. Finally, a summary of our work and some
discussion are given in Sec. VI. In the Appendix, we give a
matrix representation of linear stochastic dynamical systems,
which is useful to understand our results from a general point
of view.

II. THERMALLY DRIVEN THREE-SPHERE
MICROMACHINE

We first explain the model of a thermally driven elastic mi-
cromachine that was introduced before by the present authors
[14]. As schematically shown in Fig. 1, this model consists of
three hard spheres connected by two harmonic springs. For
the sake of simplicity, we assume that the two springs are
identical, and the common spring constant and the natural
length are given by K and �, respectively. Then the total elastic

energy is given by

E = K

2
(x2 − x1 − �)2 + K

2
(x3 − x2 − �)2, (2)

where xi(t ) (i = 1, 2, 3) are the positions of the three spheres
in a one-dimensional coordinate system, and we also assume
x1 < x2 < x3 without loss of generality. In our previous model
for an elastic swimmer [9,10], the natural length of each
spring was assumed to undergo a prescribed cyclic motion in
time, �(t ), representing internal states of the micromachine.
However, for a thermally driven micromachine [14], as we
discuss in this paper, � is taken to be a constant.

We consider a situation in which the three spheres are
in thermal equilibrium with independent heat baths at tem-
peratures Ti (i = 1, 2, 3) [14]. When these temperatures are
different, the system is inevitably driven out of equilibrium
because heat flux from a hotter sphere to a colder one is
generated. The equations of motion of the three spheres are
written in the form of Langevin equations as

ẋ1 = K

ζ1
(x2 − x1 − �) +

(
2T1

ζ1

)1/2

ξ1, (3)

ẋ2 = − K

ζ2
(x2 − x1 − �) + K

ζ2
(x3 − x2 − �) +

(
2T2

ζ2

)1/2

ξ2,

(4)

ẋ3 = − K

ζ3
(x3 − x2 − �) +

(
2T3

ζ3

)1/2

ξ3, (5)

where the dot indicates the time derivative, ζi (i = 1, 2, 3) is
the friction coefficient for the ith sphere, and the Boltzmann
constant is set to unity hereafter [except in Eqs. (51) and
(53)]. Furthermore, ξi(t ) (i = 1, 2, 3) is a zero mean and
unit variance Gaussian white noise, independent for all the
spheres:

〈ξi(t )〉 = 0, (6)

〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′). (7)

In contrast to Ref. [14], we do not consider hydrodynamic
interactions acting between different spheres in Eqs. (3)–(5).
Hence, the locomotion of a micromachine is not explicitly
taken into account in this paper, but such a treatment is
sufficient for the statistical analysis of the configurational
properties. Corrections due to hydrodynamic interactions will
briefly be discussed in Sec. VI.

In the following argument, it is convenient to introduce the
two spring extensions with respect to �:

r12 = x2 − x1 − �, r23 = x3 − x2 − �. (8)

From Eqs. (3)–(5), we obtain the Langevin equations for r12(t )
and r23(t ) as [31,32]

ṙ12 = − K

ζ12
r12 + K

ζ2
r23 +

(
2T12

ζ12

)1/2

ξ12, (9)

ṙ23 = K

ζ2
r12 − K

ζ23
r23 +

(
2T23

ζ23

)1/2

ξ23. (10)
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Here we have introduced the relevant effective friction coeffi-
cient

ζi j = ζiζ j

ζi + ζ j
, (11)

and the mobility-weighted average temperature

Ti j = ζ jTi + ζiTj

ζi + ζ j
. (12)

The average temperatures T12 and T23 can be regarded as
two effective temperatures characterizing nonequilibrium be-
haviors of a thermally driven micromachine in the reduced
configuration space, i.e., in the (r12, r23) space.

The definition of the effective temperature Ti j arises from
the condition that the newly defined noises ξ12(t ) and ξ23(t ) in
Eqs. (9) and (10), respectively, satisfy the following statistical
properties:

〈ξ12(t )〉 = 〈ξ23(t )〉 = 0, (13)

〈ξ12(t )ξ12(t ′)〉 = δ(t − t ′), (14)

〈ξ23(t )ξ23(t ′)〉 = δ(t − t ′), (15)

〈ξ12(t )ξ23(t ′)〉 = −T2

ζ2

(
ζ12ζ23

T12T23

)1/2

δ(t − t ′). (16)

It is important to note that the strength of the cross-correlation
〈ξ12(t )ξ23(t ′)〉 in Eq. (16) is negative and its amplitude differs
from unity. This noise property turns out to be important when
we discuss the Fokker-Planck equation for the probability
distribution function in Sec. IV.

III. STEADY STATE DISTRIBUTION FUNCTION

A. Covariance matrix

In this section, we shall investigate the conformational
distribution of r12 and r23 that obey the coupled Langevin
equations given by Eqs. (9) and (10). For this purpose, we
introduce a Fourier representation of any function f (t ) as

f (t ) =
∫ ∞

−∞

dω

2π
f [ω]eiωt , (17)

where ω is the frequency and f [ω] is the Fourier component.
We rewrite Eqs. (9) and (10) in terms of r12[ω] and r23[ω] and
solve for them. After some calculations, they become

r12[ω] = −1

b

[(
iωζ2

K
+ ζ2

ζ23

)(
2T12

ζ12

)1/2

ξ12[ω]

+
(

2T23

ζ23

)1/2

ξ23[ω]

]
, (18)

r23[ω] = −1

b

[(
iωζ2

K
+ ζ2

ζ12

)(
2T23

ζ23

)1/2

ξ23[ω]

+
(

2T12

ζ12

)1/2

ξ12[ω]

]
, (19)

where the common quantity b in the denominators is

b = ζ2

K
ω2 − iζ2

(
1

ζ12
+ 1

ζ23

)
ω + K

ζ2

(
1 − ζ 2

2

ζ12ζ23

)
. (20)

Using Eqs. (18) and (19), one can calculate the three
correlation functions 〈r12[ω]r12[ω′]〉, 〈r23[ω]r23[ω′]〉, and
〈r12[ω]r23[ω′]〉 in the frequency domain. Then the two vari-
ances σ 2

12, σ 2
23 and the covariance σ13 (or the equal-time

correlation functions) are obtained as

σ 2
12 =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
〈r12[ω]r12[ω′]〉

= 1

K
(T12 + ζ12
), (21)

σ 2
23 =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
〈r23[ω]r23[ω′]〉

= 1

K
(T23 + ζ23
), (22)

σ13 =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
〈r12[ω]r23[ω′]〉 = ζ2


K
, (23)

where we have used the notation


 = ζ12ζ23(T12 + T23 − 2T2)

(ζ12 + ζ23)
(
ζ 2

2 − ζ12ζ23
) . (24)

With these results, we construct a symmetric covariance
matrix C defined by

C =
(

σ 2
12 σ13

σ13 σ 2
23

)
. (25)

Then the inverse of the covariance matrix can be simply given
by

C−1 = 1

σ 2
12σ

2
23(1 − ρ2)

(
σ 2

23 −σ13

−σ13 σ 2
12

)
, (26)

where the correlation factor ρ is defined by

ρ = σ13

σ12σ23
= ζ2


[(T12 + ζ12
)(T23 + ζ23
)]1/2
. (27)

Notice that the absolute value of the correlation factor should
satisfy the condition |ρ| < 1. As explained in Ref. [24] and
summarized in the Appendix, the steady state covariance
matrix can generally be obtained by solving the corresponding
Lyapunov equation [see Eq. (A4)].

When the three friction coefficients are all identical, i.e.,
ζ1 = ζ2 = ζ3, the above correlation factor reduces to

ρ = 2(T1 + T3 − 2T2)

[(7T1 + 4T2 + T3)(T1 + 4T2 + 7T3)]1/2
. (28)

Here, we see that ρ generally vanishes when T1 + T3 = 2T2,
i.e., the temperature of the middle sphere coincides with the
average temperature between the first and the third spheres.
Obviously, ρ vanishes in thermal equilibrium, T1 = T2 = T3,
although ρ = 0 does not mean that the micromachine is in
thermal equilibrium.

B. Distribution function

Next we consider the steady state probability distribution
function p(r), where r = (r12, r23)T and “T” indicates the
transpose. Owing to the reproductive property of Gaussian
distributions [23], p(r) should also be a Gaussian function for
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FIG. 2. Dimensionless probability distribution function p(r)�2

given by Eq. (30) as a function of r12/� and r23/�. The parameters
are (a) ζ1 = ζ2 = ζ3, τ1 = 1/900, τ2 = 41/900, and τ3 = 81/900
(these temperatures satisfy τ1 + τ3 = 2τ2); (b) ζ1 = ζ2 = ζ3, τ1 =
τ3 = 25/900, and τ2 = 41/900; (c) ζ1/ζ2 = 0.5, ζ3/ζ2 = 5, τ1 =
1/900, τ2 = 41/900, and τ3 = 81/900 [these temperatures are the
same as in (a)]; (d) ζ1/ζ2 = 0.5, ζ3/ζ2 = 5, τ1 = τ3 = 25/900, and
τ2 = 41/900 [these temperatures are the same as in (b)].

the present linear problem and is given by

p(r) = N exp

[
−1

2
rTC−1r

]
, (29)

where N is the normalization factor. Using Eq. (26) for C−1,
we can write the explicit form of the distribution function as

p(r) = 1

2πσ12σ23(1−ρ2)1/2

× exp

[
− 1

2(1 − ρ2)

(
r2

12

σ 2
12

−2ρ
r12r23

σ12σ23
+ r2

23

σ 2
23

)]
, (30)

together with Eqs. (21), (22), and (27). Despite the fact that
the micromachine is out of equilibrium, the extensions of
the two springs obey the Boltzmann-type distribution that
is characterized by the effective temperatures T12 and T23

[31]. Our further analysis crucially depends on the result of
Eq. (30).

Let us introduce the dimensionless temperature parameter

τi = 2Ti

K�2
, (31)

which is the ratio between the thermal energy of each sphere
and the spring elastic energy (recall kB = 1). In Fig. 2, we
plot the dimensionless steady state distribution function p(r)
in Eq. (30) as a function of r12/� and r23/� for different
parameter combinations. The absolute value of the friction
coefficient is not required for these plots because we are focus-
ing only on the stationary state distribution. The parameters
in Fig. 2(a) are ζ1 = ζ2 = ζ3, τ1 = 1/900, τ2 = 41/900, and

τ3 = 81/900. Notice that these temperatures satisfy τ1 + τ3 =
2τ2 and hence ρ = 0 according to Eq. (28). This means that
the distribution function p(r) is simply a product of two
Gaussian functions, and there is no correlation between r12

and r23 for these temperatures. The distribution function is
elongated in the r23 direction because τ1 < τ3.

The parameters in Fig. 2(b) are ζ1 = ζ2 = ζ3, τ1 = τ3 =
25/900, and τ2 = 41/900. Here the temperatures of the first
and the third spheres are identical although the correlation fac-
tor obtained from Eq. (28) is negative, ρ < 0. The correlation
between r12 and r23 causes a tilt of the elongated distribution
and the tilt direction has a negative slope. Here the whole
plot is symmetric with respect to the straight line r12 = r23.
In spite of the correlation between r12 and r23, the system
is thermally balanced because the effective temperatures T12

and T23 are identical. As we mention in the next section, the
micromachine behaves as if it were in thermal equilibrium in
the reduced configuration space.

Keeping the temperature parameters τi the same as in
Figs. 2(a) and 2(b), we introduce asymmetries in the friction
coefficients, e.g., ζ1/ζ2 = 0.5 and ζ3/ζ2 = 5, in Figs. 2(c)
and 2(d), respectively. Then the correlation factor should
be estimated according to Eq. (27). In Fig. 2(c), there is a
negative correlation between r12 and r23 owing to the different
friction coefficients. On the other hand, Fig. 2(d) is no longer
symmetric with respect to the line r12 = r23. Since T12 �= T23

in this case [see Eq. (12)], the system is not thermally balanced
and exhibits nonequilibrium behaviors.

So far, we have calculated the steady state conformational
distribution function p of a thermally driven micromachine.
We have shown that it is given by a Gaussian function
characterized by the covariance matrix C. In the next section,
we shall calculate the probability flux by using the obtained
distribution function.

IV. PROBABILITY FLUX AND RELATED QUANTITIES

A. Probability flux

Next, we calculate the probability flux that can be used to
characterize the nonequilibrium properties of a three-sphere
micromachine. The Fokker-Planck equation corresponding to
Eqs. (9) and (10) can be written for the time-dependent con-
formational probability distribution function p(r, t ) as [33,34]

ṗ = −∇ · j, (32)

expressing the fact that probability is neither created nor
annihilated. In the above, the two-dimensional nabla operator
indicates ∇ = (∂/∂r12, ∂/∂r23)T in the configuration space
and the vector j = ( j12, j23)T is the two-dimensional proba-
bility flux given by

j = Arp − D∇p, (33)

where the matrices A and D are

A =
(−K/ζ12 K/ζ2

K/ζ2 −K/ζ23

)
(34)

and

D =
(

T12/ζ12 −T2/ζ2

−T2/ζ2 T23/ζ23

)
, (35)
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respectively. Here A describes the linear deterministic dynam-
ics (without noise) in Eqs. (9) and (10), whereas D is called
the diffusion matrix (see also the Appendix). The nonzero off-
diagonal components of D originate from the noise correlation
shown in Eq. (16).

In a steady state, i.e., ṗ = 0, the probability flux j(r) can
be obtained from Eq. (33) by using the Gaussian probability
distribution function p in Eq. (30):

j12(r) =
[

K

(
r23

ζ2
− r12

ζ12

)
+ 1

(1 − ρ2)

{
T12r12

ζ12σ
2
12

+ ρ

σ12σ23

(
T2r12

ζ2
− T12r23

ζ12

)
− T2r23

ζ2σ
2
23

}]
p, (36)

j23(r) =
[

K

(
r12

ζ2
− r23

ζ23

)
+ 1

(1 − ρ2)

{
− T2r12

ζ2σ
2
12

+ ρ

σ12σ23

(
T2r23

ζ2
− T23r12

ζ23

)
+ T23r23

ζ23σ
2
23

}]
p. (37)

One can confirm that this probability flux is divergence-free,
i.e., ∇ · j = 0, so that the steady state condition is satisfied.

B. Frequency matrix

The above probability flux j can be conveniently expressed
in terms of a frequency matrix � as [24]

j = �rp, (38)

where the explicit expression of � is given by

� =

⎛
⎜⎜⎝

− K

ζ12
+ 1

(1 − ρ2)

(
T12

ζ12σ12
2

+ ρT2

σ12σ23ζ2

)
K

ζ2
− 1

(1 − ρ2)

(
T2

ζ2σ23
2

+ ρT12

σ12σ23ζ12

)

K

ζ2
− 1

(1 − ρ2)

(
T2

ζ2σ12
2

+ ρT23

σ12σ23ζ23

)
− K

ζ23
+ 1

(1 − ρ2)

(
T23

ζ23σ23
2

+ ρT2

σ12σ23ζ2

)
⎞
⎟⎟⎠. (39)

Since j is divergence-free, � should be a traceless matrix [25].
Using Eqs. (11) and (12), we indeed find that � is traceless.
In the Appendix, we generally show that the frequency matrix
� can be expressed as � = A + DC−1 within the matrix
formulation [see Eq. (A6)].

When the friction coefficients are identical, ζ1 = ζ2 =
ζ3 = ζ , the frequency matrix is simplified to

� = K (T1 − T3)

ζc

×
(

2(T1 + T3 − 2T2) −(7T1 + 4T2 + T3)
T1 + 4T2 + 7T3 −2(T1 + T3 − 2T2)

)
, (40)

where the quantity c in the denominators is

c = T 2
1 + 16T1T2 + 14T1T3 + 16T2T3 + T 2

3 . (41)

Here, we explicitly see that � is proportional to T1 − T3,
and hence the probability flux j vanishes when T1 = T3 for
any T2 of the middle sphere. Indeed, j = 0 or � = 0 is a
necessary and sufficient condition for physical situations in
which detailed balance is satisfied [24]. When the system
is in thermal equilibrium and detailed balance holds, the
probability of a transition between any two states is the same
as the probability of the reverse transition. As a result, a net
probability flux does not exist. In the Appendix, we generally
show that the necessary and sufficient condition for detailed
balance is given by the commutation relation AD − DAT = 0
[see Eq. (A7)].

When T1 �= T3, on the other hand, we have nonzero fre-
quency matrix �. Then detailed balance is violated and the
micromachine is in a nonequilibrium steady state. Hence the
frequency matrix is an important measure to quantify the out-
of-equilibrium properties of a thermally driven micromachine.
When T1 �= T3, the two eigenvalues of � in Eq. (40) are given

by

γ = ± i
√

3K (T1 − T3)

ζc1/2
. (42)

Since these eigenvalues are purely imaginary, the probability
current in the configuration space is rotational [24,27]. In the
above, the essential frequency scale is set by γ ∼ K/ζ which
characterizes the speed of the rotational motion.

In Fig. 3, we plot the dimensionless probability flux vector
j(r) in Eq. (38) as a function of r12/� and r23/� by using the
same parameter values as in Fig. 2. Note that the color scale

FIG. 3. Dimensionless probability flux vector j(r)ζ2�/K given
by Eq. (38) as a function of r12/� and r23/�. The parameter values
are the same as in Fig. 2. There is no probability flux in (b). The
color scale indicates the magnitude of the flux vector j.
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indicates the magnitude of the flux vector. In Figs. 3(a), 3(c)
and 3(d), clockwise flux loops can be clearly seen. When the
friction coefficients are identical as in Fig. 3(a), the existence
of a flux loop is consistent with a directed motion of a three-
sphere micromachine [14], as we further discuss in Sec. V.

In Fig. 3(b) with τ1 = τ3, however, the probability flux
does not exist simply because � = 0. Asymmetries both in
the temperatures and the friction coefficients lead to a flux
loop in Fig. 3(c). The presence of a flux loop in Fig. 3(d) even
for τ1 = τ3 is due to the asymmetry in the friction coefficients.
Although the case with different friction coefficients was not
studied in Ref. [14], we expect that a finite flux loop leads to
a directed motion of a three-sphere micromachine despite the
balanced temperature distribution.

C. Flux rotor

To further characterize the strength of the probability flux
loop in terms of a scalar quantity, we consider the following
flux rotor [35]:

s(r) = ∂

∂r12
j23 − ∂

∂r23
j12

= p
(
w0 + w12r2

12 + w23r2
23 + w13r12r23

)
ζ2ζ12ζ23σ

4
12σ

4
23(1 − ρ2)2

, (43)

where w0, w12, w23, and w13 are

w0 = σ 2
12σ

2
23(1 − ρ2)

[
ζ12ζ23T2

(
σ 2

12 − σ 2
23

)
+ ζ2σ12σ23ρ(ζ23T12 − ζ12T23)

]
, (44)

w12 = [
ζ2σ12σ23ρ(ζ12T23 − ζ23T12)

− Kζ23σ
2
12σ23(1 − ρ2)(ζ12σ23 − ζ2σ12ρ)

+ ζ12ζ23T2
(
σ 2

23 − ρ2σ 2
12

)]
σ 2

23, (45)

w23 = [
ζ2σ12σ23ρ(ζ12T23 − ζ23T12)

− Kζ12σ12σ
2
23(1 − ρ2)(ζ2σ23ρ − ζ23σ12)

− ζ12ζ23T2
(
σ 2

12 − ρ2σ 2
23

)]
σ 2

12, (46)

w13 = [
2ζ12ζ23T2ρ

(
σ 2

12 − σ 2
23

)
+ Kζ2σ12σ23(1 − ρ2)

(
ζ12σ

2
23 − ζ23σ

2
12

)
+ ζ2σ12σ23(1 + ρ2)(ζ23T12 − ζ12T23)

]
σ12σ23. (47)

In Fig. 4, we plot the dimensionless flux rotor s(r) in
Eq. (43) as a function of r12/� and r23/� by using the same
parameter values as in Fig. 2. In Figs. 4(a), 4(c) and 4(d),
the flux rotor s takes negative values around the origin of the
configuration space, r = 0, whereas it takes positive values in
the outer regions. In Fig. 4(a), the distribution of s is elongated
in the r23 direction, while there is no correlation between r12

and r23. The flux rotor vanishes in Fig. 4(b) simply because
� = 0 for τ1 = τ3. When the friction coefficients are different
as in Figs. 4(c) and 4(d), the flux rotor exhibits a negative
correlation.

As considered in Ref. [35], one can focus on the strength
of the flux rotor at the origin of the configuration space, i.e.,

FIG. 4. Dimensionless flux rotor s(r)ζ2�
2/K given by Eq. (43) as

a function of r12/� and r23/�. The parameter values are the same as
in Fig. 2. There is no flux rotor in (b).

s(r = 0). This quantity, denoted as s0, is given by

s0 = 1

2πζ2ζ12ζ23σ
3
12σ

3
23(1 − ρ2)3/2

× [
ζ12ζ23T2

(
σ 2

12 − σ 2
23

) + ζ2σ12σ23ρ(ζ23T12 − ζ12T23)
]
,

(48)

because only the term proportional to w0 in Eq. (43) remains.
When the friction coefficients are identical, ζ1 = ζ2 = ζ3 = ζ ,
Eq. (48) further reduces to

s0 = 16
√

3K2(T1 + T2 + T3)(T1 − T3)

πζc3/2
, (49)

where c is given by Eq. (41). Here the sign of s0 is purely
determined by the temperature difference T1 − T3. In Fig. 5,
we plot the dimensionless s0 as a function of T1/T2 and T3/T2

by using a color representation.

FIG. 5. Dimensionless flux rotor πζT2s0/(16
√

3K2) given by
Eq. (49) as a function of T1/T2 and T3/T2. The flux rotor is evaluated
at r = 0 when the friction coefficients are identical. Different curves
are the contour lines for the corresponding values.
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In this section, starting from the Fokker-Planck equation,
we have obtained the steady state probability flux j that
can be expressed in terms of the frequency matrix �. The
eigenvalues γ of the frequency matrix are purely imaginary
and proportional to the temperature difference. We have also
calculated the flux rotor s as a scalar quantity to characterize
the scale of nonequilibrium of a micromachine. In the next
section, we shall discuss the relation between these quantities
and the average velocity of a stochastic micromachine.

V. AVERAGE VELOCITY OF A MICROMACHINE

As mentioned before, the main purpose of this paper is to
understand the physical mechanism that underlies the locomo-
tion of a thermally driven micromachine within the nonequi-
librium statistical mechanics. When the friction coefficients
are identical, the average velocity is given by Eq. (1) which is
proportional to T1 − T3. This proportionality appears in sev-
eral scalar quantities such as the eigenvalues of the frequency
matrix, γ [see Eq. (42)], or the flux rotor at the origin, s0 [see
Eq. (49)]. Hence one can construct linear relations between
the average velocity and these scalar quantities.

For example, the absolute value of the average velocity can
be expressed in terms of γ as

|〈V 〉| = a

16
√

3�2

c1/2

K
|γ ′′|, (50)

where we have used Stokes’ law, ζ = 6πηa, for the friction
coefficient of a hard sphere, and γ ′′ indicates the imaginary
part of γ . For the sake of completeness, we rewrite the above
expression by recovering the Boltzmann constant and using
Eq. (41) as follows:

|〈V 〉| = a

16
√

3�2

× kB
(
T 2

1 + 16T1T2 + 14T1T3 + 16T2T3 + T 2
3

)1/2

K
|γ ′′|.
(51)

As mentioned before, γ ′′ has the dimension of frequency
and it determines the speed of the rotational motion of the
probability flux in the configuration space.

An interesting interpretation of the above expression can be
made by comparing it to the general form for the average ve-
locity of a three-sphere swimmer. When the two arms undergo
a prescribed deterministic motion, as in the original Najafi-
Golestanian model [4], the average velocity is given by [5]

V = G

2
(r12ṙ23 − ṙ12r23), (52)

where G ∼ a/�2 is a geometric factor that depends only on
the structural parameters of a swimmer, and the averaging is
performed by time integration in a full cycle. In the above
form, the averaging part is proportional to the enclosed area
(per unit time) that is swept in a full cycle in the configuration
space. Equation (52) can be regarded as a mathematical
representation of Purcell’s scallop theorem for a three-sphere
swimmer in low-Reynolds-number fluids [2,3].

For a thermally driven micromachine, 〈V 〉 is proportional
to a/�2 as in Eq. (52). Moreover, c1/2 in Eq. (50) can be

regarded as overall thermal energy, and c1/2/K essentially
represents the explored area in the configuration space by ran-
dom motions of the spheres. This interpretation is reasonable
because one can easily confirm the relation c1/2/K ∼ σ12σ23,
where σ12 and σ23 are the variances in Eqs. (21) and (22),
respectively.

While the timescale in the Najafi-Golestanian model is
given by the frequency of the periodic arm motions [5], the
corresponding timescale for a thermally driven micromachine
is set by the eigenvalue γ of the frequency matrix [see
Eq. (42)]. Hence Eq. (50) or Eq. (51) provides us with an
essential understanding concerning the locomotion of a ther-
mally driven micromachine. It is interesting to note that the
main concept of Purcell’s scallop theorem can be generalized
for thermally driven micromachines that undergo random
motions rather than deterministic cyclic motions.

In order to take into account the sign of the average veloc-
ity, namely, the direction of the locomotion, it is convenient
to use the flux rotor at the origin s0 [see Eq. (49)]. After
recovering the Boltzmann constant, the average velocity can
also be written as

〈V 〉 = − πa

256
√

3�2

× k2
B

(
T 2

1 + 16T1T2 + 14T1T3 + 16T2T3 + T 2
3

)3/2

K2(T1 + T2 + T3)
s0.

(53)

In the above, the sign of s0 determines the direction of the
locomotion. For example, when T1 < T3 as in Fig. 4(a) or
in Fig. 5, we have s0 < 0 and 〈V 〉 > 0. Although Eqs. (51)
and (53) are essentially equivalent, we consider that Eq. (51)
gives more physical insights to understand the locomotion of
a thermally driven micromachine.

VI. SUMMARY AND DISCUSSION

In this paper, we have discussed the nonequilibrium sta-
tistical mechanics of a thermally driven micromachine made
of three spheres and two harmonic springs as previously
proposed by the present authors [14]. First, we have calculated
the steady state conformational distribution function of such
a micromachine and showed that it is given by a Gaussian
function characterized by the covariance matrix [see Eq. (30)].
Using this distribution function, we have obtained the steady
state probability flux of a micromachine.

The distribution function can be expressed in terms of a
traceless frequency matrix [see Eqs. (39) and (40)]. When the
friction coefficients are all identical, we have shown that
the eigenvalues of the frequency matrix are proportional to the
temperature difference between the first and the third spheres
[see Eq. (40)]. Moreover, the scale of nonequilibrium of a
micromachine can quantitatively be characterized by the flux
rotor [see Eq. (43) or Eq. (48)]. As one of the main results of
this paper, the average velocity of a thermally driven machine
is expressed in terms of the eigenvalue of the frequency matrix
[see Eq. (50)]. This expression allows us to generalize the
concept of Purcell’s scallop theorem that is also applicable
for thermally driven stochastic micromachines.

022607-7



SOU, HOSAKA, YASUDA, AND KOMURA PHYSICAL REVIEW E 100, 022607 (2019)

An interesting situation to be discussed in more detail is the
case when ζ1 = ζ2 = ζ3 and T1 = T3 �= T2. Microscopically,
such a micromachine is in a nonequilibrium steady state
because the temperature of the second sphere is different
from those of the other two spheres. However, within the
configuration space (r12, r23), the two relevant average tem-
peratures are equal, i.e., T12 = T23. Hence the overall state
of a micromachine is effectively in thermal equilibrium and
detailed balance is satisfied, i.e., � = 0. This is the reason
why the average velocity in Eq. (1) vanishes when T1 = T3

regardless of the value of T2.
It is known that for some nonequilibrium systems, broken

detailed balance does not need to be apparent at larger scales,
and they can regain thermodynamic equilibrium when the
system is coarse grained [36,37]. In our analysis, the reduc-
tion of the configuration space has been implicitly assumed
because we have focused only on the distribution of r12 and
r23, while the center of mass motion of a micromachine has
been neglected. Within this level of description, an elastic
three-sphere micromachine behaves as if it were in thermal
equilibrium when T1 = T3.

In our previous paper [14], we argued that the average
velocity of a micromachine can be related to the ensemble av-
erage of heat flows in a steady state. According to “stochastic
energetics,” the heat gained by the ith sphere per unit time is
expressed as [20–22]

Q̇i = ζi(−ẋi + ξi )ẋi, (54)

where ẋi(t ) and ξi(t ) are given in Eqs. (3)–(5). When the
friction coefficients are identical, we showed that the average
velocity can also be expressed in terms of the lowest-order
average heat flows as

〈V 〉 = a

8K�2
(〈Q̇3〉 − 〈Q̇1〉). (55)

This relation states that the average velocity is determined by
the net heat flow between the first and the third spheres. Our
result in this paper indicates that the net heat flow between the
first and the third spheres is also proportional to the eigenvalue
of the frequency matrix γ or the flux rotor s0, as discussed in
Sec. V.

We mention here that our model of a three-sphere micro-
machine has a similarity to that of two overdamped, tethered
spheres coupled by a harmonic spring and also confined
between two walls [27,28]. Because these two spheres are
in contact with heat baths having different temperatures, the
system can be driven out of equilibrium. They numerically
showed that displacements obey a Gaussian distribution and
also found probability flux loops that demonstrate the broken
detailed balance [28]. In Ref. [27], an analytical expression of
the frequency matrix for this two-sphere model was shown to
be proportional to the temperature difference.

Clearly, the two displacements r12 and r23 in Eq. (8) corre-
spond to the sphere positions in their model. It is interesting
to note, for example, that our result of the frequency matrix in
Eq. (40) reduces to Eq. (42) in Ref. [27] when T2 = 0. When
T2 �= 0, however, the presence of the middle sphere changes
the structure of the frequency matrix as we have shown in
Eq. (39) or Eq. (40). Moreover, the important outcome of
this work is the relation between the average velocity and

the eigenvalue of the frequency matrix for a three-sphere
micromachine [see Eq. (50) or Eq. (51)]. Notice that a two-
sphere micromachine in a viscous fluid cannot have a directed
motion even if the temperatures are different [14].

As mentioned before, we have neglected long-ranged hy-
drodynamic interactions acting between different spheres. In
our previous paper [14], we explicitly took into account hy-
drodynamic interactions when the friction coefficients are all
identical. If hydrodynamic interactions are taken into account
in the present analysis, the variances and the covariance in
Eqs. (21)–(23) are modified in nonequilibrium situations.
Such hydrodynamic corrections should be proportional to a/�

within the lowest-order expansion. Moreover, such correc-
tions should vanish in thermal equilibrium, i.e., T1 = T2 = T3

because hydrodynamic interactions should not affect equilib-
rium statistical properties.

In the presence of hydrodynamic interactions, a thermally
driven elastic micromachine can undergo a directional motion
[14]. The presence of the middle sphere is essential for a direc-
tional motion because the hydrodynamic interactions among
the three spheres are responsible for it. Such a locomotion
should be distinguished from the traditional thermophoresis
(Ludwig-Soret effect) in which a temperature gradient in an
external fluid induces a directed motion of suspended particles
[38]. In our model, the locomotion of a micromachine is
purely induced by nonequilibrium fluctuations of internal
degrees of freedom. Here, the three spheres are in thermal
equilibrium with independent heat baths having different tem-
peratures, which is different from a situation where a tem-
perature gradient is externally imposed in a surrounding fluid
[38]. For example, we showed before, both analytically and
numerically, that a two-sphere elastic micromachine cannot
move even if the temperatures are different [14]. This clearly
indicates that the locomotion of a thermally driven microma-
chine cannot be explained within the standard thermophoresis,
although it is closely related to Purcell’s scallop theorem for
microswimmers under the force-free condition.

In the present work, we have shown that asymmetries in
the friction coefficients lead to a finite probability flux loop
[see Fig. 3(d)] or flux rotor [see Fig. 4(d)], anticipating a
locomotion of an asymmetric micromachine in a viscous fluid.
This prediction will be investigated in the future by perform-
ing numerical simulations of the coupled stochastic equations,
as given by Eqs. (3)–(5), in the presence of hydrodynamic
interactions. Notice that analytical treatment of a case with
different sphere sizes is more difficult because one needs to
take into account higher-order contributions in r12 and r23 as
well as in the sphere size a.

So far, various concepts have been proposed to quantita-
tively discuss whether a steady state is in thermal equilibrium
or not [37]. One of the most promising methods is to search
for the violation of the fluctuation-dissipation relation that is
guaranteed in thermal equilibrium situations [39,40]. How-
ever, it is not always easy to perform two separate measures
of the correlation function and of the response function for
the same system. Moreover, the measurement of the response
function can often be intrinsically invasive and is not suit-
able for biological systems. Moreover, the observation of
non-Gaussian distribution fluctuations is not a proof for the
nonequilibrium steady state [28,41]. Since the emergence of
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probability flux loops is a direct verification of a nonequi-
librium steady state, it can be a powerful method to study
systems that are driven out of equilibrium. We consider that
a thermally driven three-sphere micromachine is an excellent
example to show the usefulness of such an analysis.
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APPENDIX: MATRIX REPRESENTATION OF
STOCHASTIC DYNAMICAL SYSTEMS

Following closely the argument in Refs. [24,25], we shall
briefly review the general formulation of stochastic dynamical
systems using a matrix representation. Let us start from the
linear stochastic Langevin model

ṙ = Ar + ξ, (A1)

where r is an N-dimensional vector characterizing the state of
the system, A is an (N × N )-dimensional matrix describing
the linear deterministic dynamics, and ξ is an N-dimensional
vector representing the noise forcing. The time-dependent
covariance matrix is introduced by C = 〈r(t )rT(t ′)〉. Then the
diffusion matrix D is defined by the relation

〈ξ(t )ξT(t ′)〉 = 2Dδ(t − t ′). (A2)

From Eq. (A1), one can show that the time evolution of the
covariance matrix is given by

Ċ = AC + CAT + 2D. (A3)

When the system is in a steady state, i.e., Ċ = 0, the co-
variance matrix must obey the following Lyapunov equation:

AC + CAT + 2D = 0. (A4)

Hereafter, we use the same notation C for the covariance ma-
trix that satisfies the Lyapunov equation. It should be empha-
sized that the Lyapunov equation holds in both in-equilibrium
and out-of-equilibrium situations. Hence it can be regarded as
a generalized fluctuation-dissipation relation connecting the
fluctuations (C) and the deterministic dissipation (A).

For linear systems with Gaussian noise, the steady state
probability distribution function p is a Gaussian function as in
Eq. (29). In this case, the probability flux defined by Eq. (33)
becomes

j = Arp − D∇p = (A + DC−1)rp. (A5)

Hence the frequency matrix � introduced through the relation
j = �rp [see Eq. (38)] is given by

� = A + DC−1. (A6)

When � = 0 and hence detailed balance holds, we have
A + DC−1 = 0. After the elimination of C in the Lyapunov
equation, we then have

AD − DAT = 0. (A7)

This commutation relation holds if and only if the system is in
thermal equilibrium and satisfies detailed balance. Moreover,
whether or not detailed balance is satisfied is coordinate
invariant [24].

When � �= 0 and hence detailed balance is broken, the
system is in nonequilibrium steady state situations. In this
case, one can show that the following two relations hold:

AC + D = �C, CAT + D = −�C. (A8)

Obviously, the sum of these two relations gives again the
Lyapunov equation in Eq. (A4). One can also show that the
flow field, as expressed by �r, is perpendicular to the gradient
of the probability distribution, i.e., (�r) · ∇p = 0 [27].

Last but not least, the matrices C in Eq. (25), A in Eq. (34),
D in Eq. (35), and � in Eq. (39) obtained for a three-sphere
micromachine satisfy all the relations in this Appendix.
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