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Relaxation dynamics of semiflexible treelike small-world polymer networks
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We study the relaxation dynamics of the polymer networks that are constructed based on a degree distribution
specific to small-world networks. The employed building algorithm generates polymers with a large variety of
architectures, thus allowing for a detailed study of the structural transition from a pure linear chain to dendritic
polymer networks. This is done by varying a single parameter p, which measures the randomness in the degree of
the network’s nodes. The dynamics is investigated in the framework of the generalized Gaussian structures model
by monitoring the influence of the parameter p and of the stiffness parameter q on the behavior of the relaxation
quantities: averaged monomer displacement, storage modulus, and loss modulus. The structure properties of
the constructed polymers are described by the mean-square radius of gyration. In the absence of stiffness, in
the intermediate frequencies domain of the dynamical quantities we encounter different behaviours, such as a
dendritic behavior followed by a linear one for very small values of p or a single well-marked dendritic behavior
for higher values of p. The stiffness parameter q influences drastically the relaxation dynamics of these polymer
networks and in general no evident scaling regions were encountered. However, for some values of the parameter
set (p, q), such as (0.8, 0.4), an extremely short constant slope region, less than one order of magnitude, was
found.
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I. INTRODUCTION

Small-world network is the first well-succeeded model
that explains some peculiar properties of real complex net-
works, such as technological, economic, and transport net-
works [1–5], chemical-reaction networks [6], protein-protein
interaction networks [7,8], protein residue network [9],
genetic networks [10–12], brain networks [13–15], food
webs [16–19], social networks [20–22], and computer net-
works [23,24]. While the first theoretical model of small-
world networks was introduced by Watts and Strogatz [25],
in the recent years, given their relevance for diverse realistic
situations, many other theoretical models or variants have
been developed [26–30]. These networks share the same
topological property: the diameter grows logarithmically with
the size of the network [31], which means that the distances
between any nodes keep small. Here the diameter is defined
as the largest distance between two nodes calculated in terms
of links connecting them. In the present study we use an
algorithm [32] that creates treelike networks starting from a
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Poisson-like degree distribution, which is one of the main
consequence of the small-world effect. Based on this algo-
rithm, the degree of each node, i.e., the number of its nearest
neighbors, is randomly chosen from the degree distribution of
the initial Watts-Strogatz small-world model [25]. We set the
value of the minimum allowed degree equal to two, ensuring
that during the growing process all the newly created nodes
have at least one open link and the construction of the net-
works will never stop by itself, but only when the desired size
is reached. At this point all open nodes, i.e., peripheral nodes,
receive the degree one and the construction algorithm stops.
Our model enables us to monitor in details the transition from
a linear chain to a disordered dendritic-like or hyperbranched
structure by changing the value of a single parameter. It
is important to stress that many scale-free network models
show small-world behavior, namely, the diameter remains
very small when the network’s size increases [31]. One of the
most important topological difference between small-world
networks and scale-free networks is that the later exhibit hubs,
which are nodes with very high degree.

Given the relatively straightforward manner, offered by
the Gaussian models, by which many measurable relaxation
forms are related by the set of eigenmodes of the system,
we choose to perform our study in the framework of the
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generalized Gaussian structures (GGS) model [33–38], em-
ploying the Rouse-type approach [39]. Being the natural
extension of the classical Rouse-Zimm chain models [39,40]
to incorporate polymers with complex architectures, the GGS
model has been successfully used for describing the dy-
namics of various flexible polymer systems, such as den-
drimers and their derivates [36,41–44], star polymers [36,45],
hyperbranched polymers [46–48], fractal polymer net-
works [49,50], small-world polymer networks [26,32,34,51],
scale-free polymer networks [52,53], multihierarchical and
multilayered polymer networks [54–59], and comb-of-comb
polymer networks [60].

The GGS model inherits all the limitations of its pre-
decessors; it does not account for the excluded volume in-
teractions, the entanglement constraints, and the stiffness
effects. It is worth mentioning that, for dry polymer net-
works and polymer melts the excluded volume effects are
rather screened. Regarding the entanglement effects, they are
negligible for polymer networks with short network strands
between the cross-link points, as it is the case of our networks.
However, in the literature there are known models which
account for at least one of the aforementioned effects. In
this article we continue this research quest by introducing
the stiffness effects in the manner of Refs. [33,61–63] to
small-world networks constructed from a degree distribution.
The inclusion of stiffness effects is motivated by the fact that
they influence considerably the dynamics of many biological
macromolecules [64–66], such as proteins or DNA. It has
been shown that excluded volume acts on local scales as an
effective bending rigidity because of the exclusion of large
bending angles [67]. In a very general fashion, the stiffness
effects are taken into account by fixing the angles between
nearest-neighboring bonds and the orientations between all
other bonds are found by assuming that the bonds are freely
rotating. The imposed restrictions recover the basic properties
related to semiflexibility of polymers and many theoretical
models use them as their basic foundation [33,61–63,68–75].
Consequently, these new considerations will increase the
number of non-vanishing elements of the dynamical matrix
of semiflexible polymers in comparison with the fully flexible
polymers case. However, also in this case, based on numerical
and sometimes analytical methods, one can determine the
whole eigenvalue spectrum of the dynamical matrix, which al-
lows to solve the dynamics of semiflexible polymer networks.
For describing the mechanical relaxation of the semiflexi-
ble treelike small-world polymer structures we analyze the
dynamical behaviors of the average monomer displacement
and of the storage and loss moduli, while for the structure
properties we investigate the behavior of their mean-square
radius of gyration.

The use of the aforementioned construction algorithm
leads to the obtaining of structures whose geometries range
from pure linear chains to branched and hyperbranched net-
works. In this respect, the present work centers on two
fundamental issues in polymer science, how the geometry
of the polymer influences its dynamics and the synthesis of
macromolecules with controlled topologies. Regarding the
relationship between polymer geometry and its dynamics, we
monitor the smooth transition from pure chain systems to
branched and hyperbranched networks and highlight how this

transition is reflected by the dynamical behaviors of different
relaxation quantities. The control of the topology is achieved
through the parameter set which allows us to predict the type
of the obtained structure.

II. CONSTRUCTION MODEL

In this section we briefly present our algorithm which
builds treelike networks starting from a degree distribution
specific to small-world networks. Our model maintains the
basic features of other small-world network models, but, in
contrast to the others, it returns treelike structures. Our mo-
tivation resides in the fact that to develop theoretical models
for hyperbranched polymers the employed building algorithm
must create only treelike networks. However, it is worth
mentioning that experimentally a transition between networks
with loops and treelike networks could be realized [76,77]
and the degree of the nodes keeps unaltered during such
experiments. All small-world network models lead to a degree
distribution having a Poisson function [26,27,31,32]:

pk = e−2p (2p)k−2

(k − 2)!
, (1)

which is valid for k � 2, while p1 = 0. In Eq. (1) we denoted
with pk the probability that a node has k links. The parameter
p measures the randomness of the network, having values
between 0.0, which corresponds to a regular network (a ring or
a line for example) and 1.0, which corresponds to a complete
random network. The form of Eq. (1) provides good hints re-
garding the topology of the resulting network. For low values
of p, more precisely for p < 0.5, the most frequent degree
in the network is 2, i.e., we have a predominantly linearlike
topology. For p = 0.5 the degrees 2 and 3 have the highest
probability to occur, while for p = 1.0 one gets the degrees 3
and 4 as the most probable, resulting random hyperbranched
structures with short strands between the cross-link points.
One can conclude from Eq. (1) that an increase of parameter p
leads to the obtaining of a broader distribution of the degrees
and the nodes with higher degrees will appear more often. For
more details concerning these points the reader is advised to
consult the discussion of Fig. 1 in Ref. [32].

In this paper we construct our networks in a treelike fashion
with the degree distribution given by Eq. (1) and following in-
depth the procedure of Ref. [32]. The building algorithm of a
small-world network consisting of N = 50 nodes and p = 0.5
is displayed in Fig. 1. The numbers displayed in the figure
correspond to the chronological order in which the nodes were
created. Our algorithm can be resumed as: (i) Create the first
node, choose at random its degree k1 from Eq. (1) and link
k1 new nodes to node 1; (ii) Select randomly an open node α,
choose at random its degree kα from Eq. (1) and link kα − 1
new nodes to node α. The last step is iterated until we obtain
a network with N nodes. It is important to stress that the
construction of every realization does not stop by itself for
lack of open nodes. The constructed networks will be called as
treelike Small-World Networks and in Fig. 1 we emphasize the
treelike aspect of the network by displaying it as a dendritic
structure. Nodes from the same generation are depicted by the
same color.
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FIG. 1. Example of treelike small-world network constructed
from the degree distribution, Eq. (1), having N = 50 nodes and
p = 0.5.

III. THEORETICAL MODEL

In this section, we present the basic concepts of the
semiflexible treelike polymers (STPs) model employed in
this study and summarize the main formulas concerning the
relaxation patterns. For more details concerning the model
one can follow the Appendix A and the references within. The
dynamics of semiflexible polymer network of N beads having
the position vectors Ri (i = 1, 2, . . . , N ) is described by the
Langevin equations, which for the Y component of the posi-
tion vector Ri = {Xi,Yi, Zi} can be written as [34,36,48,52]

ζ
∂Yi(t )

∂t
+ ∂VSTP({Rk})

∂Yi
= f̃i(t ), (2)

where f̃i is the Y component of the stochastic force acting on
the ith bead, ζ denotes the friction coefficient, and VSTP({Rk})
is the potential which accounts for the connections between
beads and for the semiflexibility effects. The potential en-
ergy VSTP is harmonic and can be written as VSTP({Rk}) =
K
2

∑N
i, j=1 ASTP

i j Ri · R j , where K is the elasticity constant and
ASTP is the dynamical matrix. All nonvanishing elements
of the matrix ASTP can be written in term of the stiffness
parameter, q, as shown in details in Appendix A.

The monomer displacement, averaged over the fluctuat-
ing forces and over all positions of monomers, is given
by [33,36]

〈〈Y 〉〉 = t

N
+ 1

N

N∑

n=2

1 − exp (−λnt )

λn
, (3)

where λn are the eigenvalues of ASTP. The last equation is
identical with Eq. (A9) from Appendix A, for a proper choice
of the constants.

Apart from 〈〈Y 〉〉, a quantity which may be accessed
through micromechanical manipulations, classical experi-
ments focus on the mechanical and dielectric relaxation. An
experimentally readily accessible quantity is the complex
dynamic modulus, G∗(ω), which is usually determined by
applying an external harmonic strain to the system. Even

more familiar are the storage G′(ω) and the loss G′′(ω)
moduli [78–81], which represent the real and the imaginary
components of G∗(ω).

For very dilute solutions and for ω > 0 the storage and loss
moduli in the Rouse-type formalism are given by

G′(ω) = νkBT
1

N

N∑

n=2

ω2

ω2 + (2σλn)2
(4)

and

G′′(ω) = νkBT
1

N

N∑

n=2

2σωλn

ω2 + (2σλn)2
. (5)

In Eqs. (4) and (5), ν is the number of polymer segments
(beads) per unit volume and λn are the eigenvalues of ASTP.
In these equations the vanishing eigenvalue (λ1 = 0), which
corresponds to the translation of the system as a whole, is
neglected. Here our main interest is in the scaling or non-
scaling behavior of the relaxation moduli, thus we choose to
display the results in terms of the reduced storage and loss
moduli by setting νkBT/N = 1 and the bond rate constant
σ = K

ζ
= 3kBT

l2ζ
= 1 in Eqs. (4) and (5), where KB is the Boltz-

mann constant, T is the temperature, and l2 is the mean-square
length for each bond vector.

IV. RESULTS

In this section we present the results obtained for the
semiflexible treelike small-world polymer networks (SSWNs)
which were built by using the degree distribution given by
Eq. (1). Naturally, these networks depend on two parameters:
the number of nodes, N , and the randomness parameter, p,
which appears in the considered degree distribution, Eq. (1).
The theoretical model for the relaxation dynamics introduces
additionally the stiffness parameter, q. Given the fact that the
overall procedure of creating the networks deals with random-
ness, all structure and dynamical quantities are averaged over
statistical ensembles. In this respect, we have averaged over S
different realizations of the algorithm for each parameters’ set
(N, p, q), in such a way that the product NS is kept constant.
This manner ensures an averaging over the same number of
eigenvalues, although the size of the networks changes. All
results to be presented in this section have been obtained for
SSWNs of size N = 4000 nodes and averaged over S = 250
realizations.

A. Eigenvalue spectrum

In Fig. 2 we analyze the particular impact of each pa-
rameter on the eigenvalue spectrum of the matrix ASTP. This
analysis is motivated by the dependence of the dynamic
[see Eqs. (3)–(5)] and structure quantities (see Appendix B)
on the entire eigenvalue spectrum.

A quantity that captures the large scale behavior of the
eigenvalues is the spectral density, n(λ). Figure 2(a) displays
the eigenvalue spectral density of the matrix ASTP for SSWNs
with p fixed to 0.1 and the stiffness parameter varying from
0.0 to 0.8, the first value corresponding to the fully flexible
bonds case. Our main focus is the region of small eigen-
values which gives the largest contribution to the dynamical
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FIG. 2. Eigenvalue spectra for SSWNs with N = 4000 nodes and S = 250 realizations. Other parameters are: (a) p = 0.1 and q is variable,
(b) p = 0.5 and q is variable, and (c) p is variable and q = 0.4.

quantities. Remarkably, in this eigenvalue region the spectral
density obeys power-law behavior, n(λ) ∼ λ−β , regardless of
the employed bond stiffness value. Going from fully flexible
to very stiff bonds the power-law exponent changes from
β = 0.49 to β = 0.77; the first value being in good agreement
with the theoretical expected value 0.5 for ideal Rouse chains
(p = 0; q = 0), whence one can infer that the networks have
linearlike topology. The larger values of β show that the
behavior of spectral density deviates strongly from that of
an ideal chain when stiffness is considered. Reliable infor-
mation about the structure topology can be extracted from
the particular type of eigenvalue 1. The eigenvalue 1 appears
nondegenerate in the spectrum of pure linear chain. In con-
trast, the eigenvalue 1 appears degenerate in the eigenvalue
spectra of dendritic structures and it corresponds to a sequence
of beads connected in the starwise fashion. The fact that the
eigenvalue 1 appears degenerate highlights the existence of a
dendritic component of the achieved networks. Thus, beside
the linear chain component, there is also a rather significant
number of branched segments and the obtained structures are
called chainlike networks. In the eigenvalue spectrum of fully
flexible networks we notice the appearance of a “pseudo-gap”
right after the eigenvalue 1. It is due to the increase of the
degeneracy of eigenvalue 1 caused by the structural transition
from pure chain to chain like-networks. The “pseudo-gap”
is smoothed away by imposing bond stiffness, as the effect
of reducing the matrix sparsity. Figure 2(b) displays the
eigenvalues in ascending order for SSWNs with p set to
0.5 and q ranges from 0.0 to 0.8. These networks consist
of mixture of short linear segments and dendritic fragments
with various functionalities. The influence of bond stiffness on
the eigenvalue spectrum manifests mostly at its extremities;
with the rise of stiffness parameter, the largest eigenvalues are
increasing and the smallest eigenvalues are decreasing. It is
worth remarking that the total number of distinct eigenvalues
in the semiflexible case is larger than in the flexible one. This
is due to the fact that the matrix ASTP in the semiflexible case
is less sparse. The most degenerate eigenvalue is given by
λ = f /( f + q), where f is the functionality of the node. This
expression was also reported for all hyperbranched structures
studied in Refs. [33,61,68,69]. When q = 0 the expression
reduces to λ = 1, which is the most degenerate eigenvalue in
the fully flexible case. Figure 2(c) presents the eigenvalues in
ascending order for SSWNs with stiffness parameter set to 0.4

and the randomness parameter extending from 0.01 to 0.8. For
very low values of p we obtain networks chiefly composed by
linear segments, resulting an eigenvalue spectrum consisting
mainly of nondegenerate eigenvalues and, in the same time,
the degenerate ones having lower degeneracies. For high
values of p we have hyperbranched networks composed by
nodes with variable degree, which transform the eigenvalue
spectrum into a degenerated one, having the most degenerate
eigenvalue equal to λ ≈ f /( f + 0.4).

B. Mechanical relaxation

We continue the study of the SSWNs by focusing on
their mechanical relaxation dynamics. By choosing suitable
parameter set values, the impact of bond stiffness on the
mechanical relaxation of SSWNs is monitored in the dynam-
ical behavior of the storage modulus, while the influence
of the allowed degree of randomness is monitored in the
dynamical behavior of the loss modulus. In Fig. 3 we present
the results obtained for the storage modulus, G′(ω), calculated
based on Eq. (4) in which we set νkBT/N = 1 and σ = 1.
The randomness parameter is fixed to 0.1 in Fig. 3(a) and
to 0.5 in Fig. 3(b), while in both Figs. 3(a) and 3(b) the
stiffness parameter varies from 0.0 to 0.8. For a better viewing
of the dynamical behavior shown by the curves we plot
as inset panels their derivatives α′ = dlog10G′(ω)

dlog10ω
in semilog-

arithmic scale. Evidently from both panels are the limiting
connectivity-independent behaviors, namely, for very large
frequencies one has G′(ω) ∼ ω0 meaning single-bead me-
chanical response, whereas for very small frequencies one
finds G′(ω) ∼ ω2 representing the mechanical response of
the entire network. The microscopic characteristics (i.e., the
particular topology) of the polymer system reveal only in the
intermediate frequency region. Remarkably, the intermediate
frequency domain of the curves from Fig. 3(a) highlights
explicitly the reflection of the geometry of the constituent
parts of the network in the dynamical behavior of the storage
modulus. For all employed values of the parameter set, the
intermediate frequency domain of the curves decomposes into
two regions. In the region located at smaller intermediate
frequencies the curves are concave downward which indicates
a typical dendriticlike behavior. The curves in the region of
larger intermediate frequencies appear as straight lines which,
in the double logarithmic scales, denote power-law behavior.
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FIG. 3. Storage modulus and its derivative for SSWNs with N = 4000 and S = 250 realizations. (a) p = 0.1 and (b) p = 0.5 with the
stiffness parameter q being varied.

For the case of fully flexible bonds, the value of the slope in
the scaling region is 0.54 which is a trademark of linear chain
behavior. For the semiflexible case, the slope of the scaling
region corresponding to the relaxation of linear segments
decreases with the increase of stiffness, meaning that the rise
of bond stiffness slows the relaxation. It is worth mentioning
that for q = 0.6 and q = 0.8 the obtained plateau values
α′ ≈ 0.32, respectively α′ ≈ 0.26 are similar with those ob-
tained in Ref. [63] for linear segments and large values of
stiffness parameter.

In Fig. 3(b), where p = 0.5, the curves are concave down-
ward over the whole intermediate frequency domain. This
logarithmic behavior, specific to dendritic-type structures,
indicates that SSWNs with p = 0.5 relax more slowly than
those from Fig. 3(a). Even for q = 0 case, there is no evidence
of linear chain behavior. The chains between branching points
are rather short to get visible in the dynamical behavior
of G′(ω). Similar findings to ours have been reported for
dendrimers or some structurally disordered scale-free polymer
networks [33,61,82]. Stiffness manifests strongly at small
lengths scales, at rather long lengths scales its effects are
reduced. For q = 0.8 we observe a bump in the derivative at
the end of the large intermediate frequency domain. In these
very short relaxation times only few monomers are involved
and such large stiffness value produces strong effects. For
q = 0.6 this bump transforms into a very short region with
constant slope of α′ ≈ 0.22. Of course, when stiffness in-
creases its impact at small lengths scales get more pronounced
and, in our analytical modeling, we see this through the broad-
ening of the eigenvalue spectra. This is, also, the reason why
the curves reach slower the plateau behavior when stiffness
parameter grows.

Now, we turn our attention to the connections between
the geometry of the SSWNs and its reflection in the relax-
ation dynamics described by the loss modulus, under the
restrictions imposed by stiffness. Figure 4 displays the results
obtained for the loss modulus, calculated based on Eq. (5)
where we set νkBT/N = 1 and σ = 1. In the left-hand side
panel the stiffness parameter is set to q = 0.4, while in the
right-hand side panel it is set to q = 0.8. In both panels,
the randomness parameter varies from 0.01 to 0.8. In Fig. 4
we observe for all the curves a ω1 behavior for very low
frequencies and a ω−1 behavior for very high frequencies. In

the intermediate range the topology of the networks will come
into play. Again, to render the analysis more quantitative,
we plot in the inset of both panels of Fig. 4 the derivative
α′′ = d (log10G′′ )

d (log10ω) for all the curves of the main figure. In
Fig. 4(a), from the behavior of the curves in the intermediate
frequency domain one can easily distinguish a transition from
networks with more linear segments, achieved for p � 0.1,
to networks with highly branched architectures, obtained for
p > 0.2. The similarity between the structures obtained for
p = 0.01 and the pure linear chain (results denoted by circles)
is evident. In the region of small intermediate frequencies the
curve corresponding to p = 0.01 has slope value 0.47 and the
linear chain has 0.5, while in the region of larger intermediate
frequencies both curves have slope value 0.3. The value closer
to 0.5, which is typical for fully flexible Rouse chains, relates
to variability of the effective stiffness. At larger relaxation
times (small frequencies) a long semiflexible chain behaves
as a simple Rouse one, while at smaller relaxation times
(large frequencies) it goes as ω1/4 [63]. For larger values of
p, the curves in the intermediate frequency domain show a
very pronounced dendriticlike behavior. Only for p � 0.5, we
notice a narrow constant slope region located in the frequency
interval (0.3, 10).

In comparison with Fig. 4(a), in Fig. 4(b), where q = 0.8,
for the linear chain and for SSWNs with p = 0.01 the length
of the intermediate frequency region where stiffness is not
effective gets shortened. Instead, the length of the interme-
diate frequency region where stiffness is very effective gets
extended. In this region G′′(ω) ∼ ω0.24. For the networks
obtained for larger values of p there is no evidence of linear
chain behavior, most of the intermediate frequency domain is
governed by the logarithmic behavior indicating a slowing of
relaxation with the increasing of randomness parameter. At
higher intermediate frequencies, the region with logarithmic
behavior is followed by either a short region of constant slope
α′′ ≈ 0.22 for p = 0.1 or by a short region enclosed between
two points of extreme (a local minimum and a second peak)
for p � 0.2. This relaxation sequence between the two points
of extreme gets apparent only for high q values and it is due
to the gap in the eigenvalue spectrum of each network around
the value of 1.0. Specifically, the gap between the closest
eigenvalues of the eigenvalue 1, smaller and larger then 1.

022501-5



EDIELITON S. OLIVEIRA et al. PHYSICAL REVIEW E 100, 022501 (2019)

-6 -4 -2 0 2 4
log

10
ω

-2

0

2

4

lo
g 10

  G
’’

p=0.01
  0.1
  0.2
  0.5
  0.8
linear

(a)

-8 -6 -4 -2 0 2 4
log

10
ω

-1

-0.5

0

0.5

1

α’
’

q=0.4

-6 -4 -2 0 2 4
log

10
ω

-2

0

2

4

lo
g 10

  G
’’

p=0.01
  0.1
  0.2
  0.5
  0.8
linear

(b)

-8 -6 -4 -2 0 2 4
log

10
ω

-1

-0.5

0

0.5

1

α’
’

q=0.8

FIG. 4. Loss modulus and its derivative for SSWNs with N = 4000 and S = 250 realizations. (a) q = 0.4 and (b) q = 0.8 with p being
varied.

This gap is highly dependent on stiffness parameter, a fact
remarked also in the relaxation dynamics of recursive small-
world polymer networks [61]. Moreover, for p � 0.5 the
relaxation sequence presents a local minimum whose value
decreases with the increase of p, but there is no significant
shift on the frequency value at which the minimum appears
when p is increasing. This relaxation feature is not present in
Fig. 4(a) where the stiffness parameter was set to 0.4. It is
worth mentioning that similar behavior has been found also
for recursive small-world polymer networks [61]; however,
the jumps are higher.

Our theoretical results obtained for the mechanical moduli
are in good agreement with experimental rheological mea-
surements performed on some branched polymer systems.
The comparison between experimental and theoretical results
concerns the scaling behavior in the intermediate frequency
domain. The authors of Ref. [83] studied the linear viscoelas-
tic response of linear ω-zwitterionic and mono-, di-, and tri-ω-
zwitterionic three-arm star symmetric 1,4-polybutadienes. For
some of these end-functionalized polymer melts at the refer-
ence temperature of 27◦C they reported scaling exponents of
0.4, which is the value that we have obtained for SSWNs with
p = 0.1 and q = 0.4. In Ref. [84], the authors investigated the
rheological properties of dendronized polymers with genera-
tions 1–3 and backbone nominal degrees of polymerization in
the range of 50–3000. The obtained slopes in the intermediate
frequency region of the relaxation moduli range in the interval
0.5–0.7, which are similar to our findings for SSWNs with
p = 0.1 in the frequency range (0.001, 0.01) from Fig. 3(a)
or for SSWNs with p = 0.5 in the frequency range (0.01, 1)
from Fig. 3(b).

C. Relaxation patterns

Figure 5 shows the results obtained for the average
monomer displacement, 〈〈Y (t )〉〉, calculated based on Eq. (3).
In Figs. 5(a) and 5(b) we show the influence of the stiffness pa-
rameter on the motion of individual monomers and in Fig. 5(c)
we show how the monomer motion is affected when bond
stiffness is kept constant, but the network topology changes.
In the same manner as in the previous figures, the inset graphs
show the derivatives, α = d (log10〈〈Y 〉〉)

d (log10ω) , of the curves from the
main panel. Immediately apparent in all panels are the limit

cases of Eq. (3), namely, in the very short times domain one
has 〈〈Y (t )〉〉 ∼ t which is due to the diffusive motion of single
beads, while at very long times one reaches 〈〈Y (t )〉〉 ∼ t/N ,
which indicates that the structure moves as a whole. As before,
the structure-dependent aspects are given by the intermediate
time region.

In Fig. 5(a) we consider SSWNs with p = 0.1, meaning
that linearlike segments are predominant, but there is also a
quite significant number of dendritic segments. Even though
the linear component is prevailing, when the parameter q
is switched on, we do not observe a signature of chainlike
behavior in the intermediate time range. In this subdiffusive
regime, the average monomer displacement shows a logarith-
mic behavior which means that the network’s beads move
slowly due to the angular constraints on the orientations of the
bonds imposed by stiffness. The curve obtained for q = 0.8,
at the beginning of the intermediate time domain, shows a
short scaling region with α ≈ 0.72. This feature can be related
to the increase of the highest eigenvalues, as can be seen in
Fig. 2. When bond stiffness is not considered, 〈〈Y (t )〉〉 shows
linear chain behavior only for a short time interval where the
slope is α ≈ 0.5, the rest of the intermediate time domain
being governed by the logarithmic behavior. In Fig. 5(b) we
consider SSWNs with p = 0.5. When the angular constraints
imply a branch segment its movement possibilities are fewer
than those of a linear segment. In this regard, given the
fact that for p = 0.5 the dendritic architectures prevail the
network’s beads move very slowly. For all employed values
of q, the curves in the intermediate time domain show only
logarithmic behavior. Even for q = 0 no power-law behavior
was noticed. This result is related to the particular eigenvalue
spectra, namely, there is a difference mainly in the region
of high eigenvalues and there are eigenvalues with similar
degeneracies, one can consider Fig. 2(b) for more details.
This increase in the value of the higher eigenvalues makes
the local minimum to appear for times t ≈ 1, but it does
not transform into a constant slope region as in Fig. 5(a).
In Fig. 5(c) we consider SSWNs with the stiffness parameter
fixed to 0.4, and we monitor the influence of the topology of
the networks by varying the parameter p. The dendrimerlike
behavior, more precise a logarithmic behavior, is dominant,
due to the higher rate of monomers with functionality larger
than 2, especially for p > 0.2. Even for very small values
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FIG. 5. Average monomer displacement and its derivative for SSWNs with N = 4000 and S = 250 realizations. (a) p = 0.1 and q variable,
(b) p = 0.5 and q variable, and (c) q = 0.4 and p variable.

of p, such as 0.01, which corresponds to a high percentage
of linearlike segments, no scaling behavior is evident in the
intermediate time domain. This fact is due to the nonzero
value of the stiffness parameter. For values of p equal to 0.1
and 0.2 we see a monotonous decay in the intermediate time
region, while for larger values of p the decay gets narrower.

V. CONCLUSIONS

In this paper we have studied the structure properties and
the relaxation dynamics of several polymer networks which
were built by an algorithm that employs a degree distri-
bution specific to small-world networks. For describing the
relaxation process we have analyzed the dynamical behaviors
of the average monomer displacement under locally acting
forces and of the mechanical relaxation moduli. These are
readily measurable quantities in rheological measurements.
The analysis of the relaxation dynamics has centered on two
fundamental issues: the relationship between network archi-
tecture and its dynamics and the impact of stiffness strength
on the dynamical behavior of the relaxation quantities. The
stiffness has been included through the correlations between
bonds of a freely rotating chain, resulting an extended GGS
model in which the dynamics is described by a linear set
of Langevin equations coupled through a dynamical matrix.
Through the employed construction algorithm, the geometry
of the network is fully controlled by the randomness param-
eter. By increasing the randomness parameter, the resulted
structures evolve from linear chains to highly branched net-
works through several intermediate architectures.

The eigenvalue spectra provide reliable information about
the network’s topology. The particular behavior of the eigen-
value spectral density as well as the degeneracy of eigenvalue
1 have allowed us to identify not only the structure topology
as a whole but also that of its components. Furthermore, the
bond stiffness has a strong impact on the eigenvalue spectra
of the networks, namely, the highest eigenvalues increase and
the lowest eigenvalues decrease by the rise of the stiffness
strength. These aspects have strongly influenced the relaxation
dynamics of our networks.

For the fully flexible networks obtained for low values
of randomness parameter, the intermediate frequency domain
of the mechanical moduli decomposes into two regions, a
nonscaling region corresponding to the relaxation of the

dendritic constituents followed by a scaling region corre-
sponding to the relaxation of the linear chains. With the
increase of the randomness parameter the nonscaling region
increases which indicates that the dendritic shape is dominant.
When the stiffness effects are considered, in the intermediate
frequency domain of the mechanical moduli no linear chain
behavior is evidenced, except for very small values of p cor-
responding to networks with highly pronounced linear charac-
ter. The curves in the intermediate frequency domain follow a
logarithmic behavior which indicates a slow mechanical re-
laxation. For the networks created based on the parameter set
(p, q) = (0.8, 0.4) we encountered a constant slope region,
but its range is less than one order of magnitude.

In the intermediate time region of the averaged monomer
displacement no linear chain behavior is noticed, apart from a
very short power-law region with exponent α ≈ 0.5 obtained
for p = 0.1 and in the absence of stiffness. The intermediate
time domain of the averaged monomer displacement is ruled
by logarithmic behavior, meaning that the network’s beads
move very slowly before the whole network starts the diffu-
sive motion. Regarding the static properties of the networks
we have noticed that for networks with the same p the mean-
square radius of gyration increases with the increasing of the
stiffness value, while for networks with the same stiffness
value, this radius decreases with the increase of randomness
parameter p.

Remarkably, our theoretical findings are well supported
by mechanical relaxation experiments performed on den-
dronized polymers and on melts of linear and three-arm star
symmetric polybutadienes. We are confident that our results
can be of most interest for the experimental rheological
measurements on hyperbranched semiflexible polymer net-
works which display a mixture of linear and (hyper)branched
topology. We also hope that the recent polymer synthesis
techniques [85–94], which are able to create monomers with
high functionality will focus on polymer networks with our
considered topology.
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APPENDIX A: RELAXATION DYNAMICS
FOR SEMIFLEXIBLE POLYMERS

In the GGS framework, the semiflexibility is introduced
by restricting the orientations of the bonds and it is modeled
through the complementary interactions between the next-
nearest neighboring beads. The polymer network consists
of N beads, described by the set of position vectors Ri

(i = 1, 2, . . . , N ), which are connected to each other by elas-
tic springs, Da = Ri − R j . In this model all these springs have
the same elasticity constant K and obey a Gaussian statistics.
The dynamics of the polymer network is described by a set of
linear Langevin equations [34,36,48,52]:

ζ
∂Yi(t )

∂t
+ ∂VSTP({Rk})

∂Yi
= f̃i(t ), (A1)

where f̃i is the Y component of the usual stochastic Gaussian
force acting on the ith bead, with the properties 〈 f̃ (t )〉 = 0 and
〈 f̃i(t ) f̃ j (t ′)〉 = 2kBT ζ δi jδ(t − t ′). For semiflexible polymers
the bonds Da are correlated, thus they are not arbitrary [61]
and we can write the potential as

VSTP({Da}) = K

2

∑

a,b

WabDa · Db, (A2)

where the K is elasticity constant and the matrix elements
Wab can be determined analytically, see Refs. [33,61,95,96]
for more details.

The potential from Eqs. (A1) and (A2) can be expressed in
terms of position vectors as

VSTP({Rk}) = K

2

∑

i, j

ASTP
i j Ri · R j, (A3)

where the dynamical matrix is ASTP = GWGT , with the
matrix G being the incidence matrix [61]. The elements
of ASTP = (ASTP

i j ) are known in closed form [33,61,62] as
functions of functionalities and stiffness parameters; see, for
instance, Eqs. (3)–(5) from Ref. [61]. In this article we
consider an homogeneous stiffness situation, i.e., all junc-
tions experience the same stiffness parameter, for which the
stiffness parameter qi of the inner bead i with functionality
fi ( fi > 1) equals qi = q

fi−1 . Here the parameter q is a real
number between 0 and 1 and it will be the only parameter
that controls the stiffness effect. For q = 0 we obtain the
pure flexible polymer (no stiffness effect) while for q = 1 we
have the complete rigid limit for all junctions. The elements
of matrix ASTP can be written as a function of q and they
can be classified into three distinct groups with nonvanishing
values [61]. First, we have the diagonal elements, which are
equal to

ASTP
ii = 1 + q2

(
fik − 1 + q

)
(1 − q)

(A4)

if i is a peripheral node, fi = 1, and

ASTP
ii = fi

1 − q
+

∑

ik∈�i

q2

(
fik − 1 + q

)
(1 − q)

(A5)

if the node i has functionality fi > 1. In the last equation the
set �i contains only the neighboring nodes ik of node i.

In the second group we have the nondiagonal nearest-
neighboring elements of matrix ASTP. These elements are
equal to

ASTP
iik = − 1

1 − q
(A6)

if either i or ik is a peripheral bead and

ASTP
iik = −1 + q

1 − q
(A7)

if both i and ik beads have functionalities larger than 1.
The last group is formed by the nondiagonal next nearest-

neighboring elements. These depend only on the functionality
of bead ik which is a common nearest neighbor of the beads i
and iks and are expressed as

ASTP
iiks

= q(
fik − 1 + q

)
(1 − q)

. (A8)

The solution of Eq. (A1) is found by deploying a normal
mode analysis and after averaging both over the fluctuating
forces and over all the bead positions one obtains an expres-
sion that requires only the eigenvalues of the dynamical matrix
ASTP. Thus, the average monomer displacement along the Y
axis takes the following form [33,36]:

〈〈Y 〉〉 = 2l2K

Nζ
t + 2l2

N

N∑

n=2

1 − exp (−Kλnt/ζ )

λn
, (A9)

where λn are the eigenvalues of ASTP. In this paper we
considered for simplicity that 2l2K

ζ
= 1 and 2l2 = 1.

FIG. 6. Normalized radius of gyration for S = 1000 small-world
degree-distributed treelike networks with N = 1000 nodes.
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APPENDIX B: RADIUS OF GYRATION

A basic structural feature of a macromolecular system is
its radius of gyration. In the framework of the GGS model,
for both fully flexible and semiflexible polymers, the mean-
squared radius of gyration which represents a measure of
the size of the macromolecule can be calculated from an
expression involving the sum of the reciprocal of all nonzero
eigenvalues of the corresponding matrix [35,97–99]. Specifi-
cally, for the fully flexible polymers case one uses the eigen-
value spectrum of a matrix structure (connectivity matrix)
describing the connectivity of the polymer; instead, for the
more involved case where stiffness effects are accounted for,
the same expression holds, but one uses the eigenvalues of the
dynamical matrix ASTP. It reads as

R2
g = l2

N

N∑

n=2

1

λn
, (B1)

where for this quantity we consider l2 equal to 1.
In Fig. 6 we display as 2D contour plot the mean-squared

radius of gyration, Eq. (B1), for networks with N = 1000
vertices as a function of the parameter’s set (p, q). Here, the

parameter p ranges between 0.1 and 1.0 and the stiffness
parameter takes values from 0.0 to 0.9. We display the radius
of gyration R2

g normalized by the the radius R2
g0 calculated

for the lowest considered value of p and fully flexible net-
works, namely, (p, q) = (0.1, 0.0). In this way, one is able
to visualize the contraction or the expansion of SSWNs in
comparison to our reference. For a better visualization we
consider a color gradient and the exact value of the radius of
gyration can be mapped from the color box. Thus, the values
lower than 1 stand for a contraction of the radius of gyration
and the values higher than 1 correspond to an expansion. The
largest value shown in the figure, R2

g/R2
g0 = 6.89, was found

for networks with p = 0.1 and q = 0.9, which correspond to
a predominant linearlike topology and the highest considered
semiflexibility. We observe that for networks with the same
value of p the radius of gyration increases with the increasing
of the value of q, i.e., the semiflexibility expands the networks.
This feature is more proeminent for networks with more
linear segments (lower values of p). For networks with the
same stiffness parameter q the radius of gyration continues
to increase monotonously, but from high to low values of
p. The highest contraction was encountered for fully flexible
(q = 0.0) networks with p = 1.
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