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Hemodynamic modeling is used to explore the origin, predict, and analyze the power spectrum of the
resting-state blood-oxygen-level-dependent (BOLD) signal measured by functional magnetic resonance imaging
(fMRI), which has been reported to have a power-law form, i.e., P( f ) ∝ f −s, where P( f ) is the power, f is the
frequency, and s > 0 is the power-law exponent. However, current fMRI experimental paradigms have limited
acquisition durations, affecting the spectral resolution of fMRI data at the low-frequency regime. Here, the
claimed power-law spectrum is investigated by using a recent hemodynamic model to analytically derive the
BOLD power spectrum, with parameters that are related to neurophysiology. The theoretical results show that,
for all realistic parameter combinations, the BOLD power spectrum is flat at f � 0.01 Hz, has a weak resonance
originating from intrinsic oscillations of vasodilatory response, and becomes a power law for high frequencies,
all of which is in agreement with an empirical data set that describes the spectrum of one subject and brain region.
However, the results are contrary to studies reporting a pure power-law spectrum at f � 0.2 Hz. The discrepancy
is attributed largely to data averaging employed by current approaches that averages together important properties
of the BOLD power spectrum, such as its resonance, that biases the spectrum to only show a power law. Data
averaging also reduces the high-frequency power-law exponent relative to individual cases. Overall, this work
demonstrates how the model can reproduce BOLD dynamics and further analyze its low-frequency behavior.
Moreover, it also uses the model to explain the impact of procedures, such as data averaging, on the reported
features of the BOLD power spectrum.
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I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) indirectly
detects brain activity through changes in oxygenation that
accompany it, based on measuring the blood-oxygen-level-
dependent (BOLD) signal [1]. Due to its high spatial reso-
lution, fMRI has led to substantial advances in understanding
brain organization by revealing brain regions activated dur-
ing behavioral manipulations (see the review in Ref. [2]). It
was initially believed that signal fluctuations unrelated to the
manipulation are driven largely by noise and do not provide
useful information. However, the pioneering work of Biswal
et al. changed this paradigm by demonstrating that, in the
absence of an experimenter-imposed task when a subject lies
quietly in the scanner (commonly referred to as the “resting
state,” although the brain is still active), spontaneous BOLD
signals are highly correlated among functionally related brain
regions [3]. This finding has driven interesting new avenues of
neuroimaging research, including investigations of the func-
tional topography of the brain, signal variability in evoked
responses, and abnormal intrinsic activity of the diseased
brain [4–6].

Power spectral analysis, which characterizes the energy
distribution of a signal with respect to frequency, reveals
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that spontaneous BOLD fluctuations predominantly occur at
low frequencies, with significant power only at frequencies
�0.2 Hz because of slow cerebrovascular responses [7–10].
The significance of these low-frequency fluctuations is not
fully understood but several findings suggest that they may
account for endogenous functional connectivity fluctuations,
autoregulatory vasomotion, intracellular calcium signaling, or
uncontrolled cognitive processes [9–13]. In order to properly
understand these BOLD fluctuations, it is important to char-
acterize the relevant power spectrum.

Several studies have reported that the power spectrum of
spontaneous BOLD follows a power law P( f ) ∝ f −s in the
limit of small frequencies ( f → 0), which is indicative of
scale-free properties [14], where P( f ) is the power, f is the
frequency, and s > 0 is the power-law exponent [7,15–19],
with large s indicating long-range memory [20] and small
s suggesting efficient information processing [17,21]. It has
also been reported that the exponent s differs between brain
regions [typically in the range 0–3, which is demonstrated by
the empirical data in Fig. 1(a)] and during task activation [17].
However, the precise mechanisms that lead to the emergence
of the power-law spectrum and differences in the reported
power-law exponents remain unclear.

Even though a power-law BOLD spectrum has been
widely reported, there are still several issues that need
to be systematically addressed to verify its existence and
better understand the low-frequency dynamics of BOLD and
their relation to physiology. First, current studies typically
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FIG. 1. Scanned and digitized BOLD power spectrum data. (a) Data for 18 cortical regions from Ref. [16]. Each curve is an average of
spectra from 17 subjects. (b) Data for the visual cortex (triangles) from Ref. [22], for the motor cortex (circles) from Ref. [23], and their
corresponding second-order low-pass filter fits (dashed lines) from Ref. [24]. The approximate power-law exponents (s) of the asymptotic
curves are also shown, with P( f ) ∝ f −s.

investigate the BOLD power spectrum at the frequency range
0.01 Hz � f � 0.2 Hz, as shown in Fig. 1, covering only
around one decade in frequency. Observation over such a
limited range is insufficient to conclude with certainty that the
data follow a power law and not some alternative distribution
such as a lognormal or stretched exponential [25,26]. Second,
it is also not known whether BOLD continues to exhibit a
power-law spectrum at f � 0.01 Hz [4] because experimental
paradigms with longer acquisition durations are necessary
to investigate this frequency range. Also, since a power law
would diverge as f → 0, there must be a lower bound fmin

such that a power-law spectrum ceases to exist at f < fmin. In
fact, empirical and theoretical works have suggested that the
BOLD power spectrum is flat at f � 0.02 Hz and transitions
to a power law at f � 0.08 Hz, as shown in Fig. 1(b) [22–24].
Third, our previous theoretical studies demonstrated that the
hemodynamic response resonates weakly at about 0.07 Hz,
originating from intrinsic oscillations of the vasodilatory
response [8,27], which is not reported in most studies
because of insufficient frequency resolution. Certainly, a
pure power-law spectrum cannot account for the existence of
this resonance. Fourth, analyses of low-frequency BOLD
often require interpolation of poorly resolved data or
multivoxel/multisubject averaging to increase the signal-to-
noise ratio. These introduce statistical artifacts that inevitably
change the behavior of the data, which result in power spectra
that may or may not represent the true underlying mechanisms
of the data [25]. Finally, fMRI data analysis is susceptible
to non-neuronal noise components, including physiological
fluctuations, thermal noise, and scanner noise, that can
inevitably influence the resulting BOLD power spectrum [28].

In this paper, we address the above concerns by analytically
deriving the BOLD power spectrum using a physiological
cortical hemodynamic model, which can accurately predict
the neurally driven BOLD signal via its hemodynamic mech-
anisms [27,29–33]. The advantage of using the model is
that the derived BOLD power spectrum is independent of
experimental artifacts, data preprocessing effects, and other
physiological confounds; thus, its low-frequency behavior can

be better analyzed, resolving issues in current fMRI spectral
studies. Furthermore, the model involves parameters that are
related to neurophysiology, hence it can reflect the intrinsic
variability of properties of different brain regions and different
subjects and can be used to explain the impact of data averag-
ing performed by current approaches on the reported features
of the BOLD power spectrum.

II. CORTICAL HEMODYNAMIC MODEL

BOLD fMRI has been used in a wide variety of studies,
leading to significant insights into brain activation and func-
tion. To better understand the physical principles underlying
BOLD, physically based mathematical models play an im-
portant role because they can unify a multitude of properties
and can systematically describe the dynamics in terms of
physiologically realistic parameters, resulting in predictions
that can guide further experimental explorations.

In this section, we outline the principles and processes
of a recent cortical hemodynamic model that can represent
BOLD dynamics. Then, we describe the resulting transfer
function from the model that predicts the BOLD response
to an arbitrary neural stimulus. This transfer function is cru-
cial for determining the analytic BOLD power spectrum in
Sec. III; our previous articles contain detailed discussions and
derivations [29–31,33].

A. Principles and processes

The hemodynamic model incorporates properties of corti-
cal tissue and quantifies dynamics using a physical approach
governed by the following principles.

The cortical vasculature is organized to efficiently transport
blood from arteries to veins throughout the cortex. First, the
cortical surface is covered by pial arteries and pial veins.
Then, pial arteries connect to intracortical arteries that pene-
trate the cortical tissue perpendicular to the surface and branch
out into smaller segments, i.e., arterioles and capillaries. Fi-
nally, the capillaries merge into venules and intracortical veins
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FIG. 2. Principles governing the cortical hemodynamic model.
Images adapted from Refs. [29,30]. (a) Cortical tissue is approxi-
mated as a poroelastic medium showing an approximately vertical
descending artery and ascending vein. (b) 2D cortical sheet showing
various sources and sinks of blood mass. The dashed circle represents
the activated region. (c) Details of vasculature are averaged out and
dynamics are calculated as local averages (mean field).

that run parallel to the intracortical arteries, then ascend to the
surface and join pial veins [34]. This structure of ascending
and descending cortical vessels is the first principle that gov-
erns the model, allowing the cortical tissue to be approximated
as a poroelastic medium where the vessels represent as the
“pores” within an elastic matrix, as shown in Fig. 2(a).

Despite the heterogeneity of the vasculature across the
layers of the cortex, Duvernoy and colleagues demonstrated
that on the plane of the cortex, each intracortical vein is
surrounded by a ring of intracortical arteries [34], with arteries
outnumbering the veins approximately 5–10 to 1. The periodic
architecture of arteries and veins and their perpendicular
orientations with respect to the cortical surface allows the
cortex to be modeled as a two-dimensional (2D) sheet that
aggregates the properties of the vasculature over the corti-
cal depth, as shown in Fig. 2(b). Finally, the model uses a

mean-field approach, wherein the properties and dynamics of
vessels are treated as local averages over scales �0.5 mm, as
shown in Fig. 2(c).

Using the above principles, the hemodynamic model can
quantify spatiotemporal changes of neurovascular quantities
that contribute to BOLD via coupled partial differential equa-
tions; the interactions of these quantities are shown in the
block diagram in Fig. 3. Briefly, the model considers that
neural activity activates nearby astrocytes. The astrocytes
produce a response called the neuroglial drive, which affects
the surrounding vasculature, leading to an increase in blood
inflow. Forces between blood and tissue lead to inflation of
the vasculature, similarly to the single-voxel temporal balloon
model [35,36], thereby changing blood mass and volume in
the activated region. Physical constraints, such as boundary
conditions, spatial continuity, and conservation of blood mass
and momentum, are then incorporated in the model to regulate
the total changes in blood flow and volume. The resulting
changes in blood flow and volume lead to variations in
the ratio between the blood’s oxygenated hemoglobin (oHb)
and deoxygenated hemoglobin (dHb) concentrations. Finally,
changes in blood volume and dHb concentration contribute
to changes in BOLD via a BOLD signal equation [36]. Full
details of the model and its mathematical formulation are
provided in our previous publications [29–31,33].

The above model has successfully predicted propagating
cortical hemodynamic waves in multiple fMRI experiments
[30,37,38], which have been experimentally validated us-
ing other methods such as two-photon microscopy [39] and
a data-driven model of effective connectivity [40]. These
propagating waves have also been observed in a number of
other recent studies [41,42]. The model has also been used
to develop methods that can deconvolve the spatiotemporal
variations of neurovascular signals that contribute to BOLD
[33,43]. More importantly, the model rests on parameters that
can be measured independently to reflect the physiology and
hemodynamics of individual subjects and brain regions.

B. Transfer function

In our model, the neurovascular quantities obey dynamical
equations that can be used to predict nonlinear hemodynamic
responses to arbitrary neural activity. Experiments have shown
that the hemodynamic response is approximately linear for
a wide array of stimuli that induce low-amplitude responses
[8,22,30,44]; hence, we can linearize the equations of the
model, which allows their analysis in Fourier space [30,31].

Once the model equations are linearized and Fourier trans-
formed, we can understand their properties at each spatial
frequency k and temporal angular frequency ω. This leads to a

neuroglial
drive

blood flow

blood volume

dHb
concentration

BOLD signalneural activity

FIG. 3. Block diagram showing the major neurovascular quantities and their causal links considered in the hemodynamic model.
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TABLE I. Physiological values of the model parameters [29–32,34,45–50]. In each row, the columns from left to right detail the parameter,
its symbol or formula, its value or range, and its units, respectively.

Parameter Symbol Value/range Units

Blood mass density ρ f 1062 kg m−3

Mean elasticity exponent of β 1.7–3.6
cortical vessels
Hemodynamic transit time τ 1–4 s
Fractional oxygen consumption rate η 0.4 s−1

Resting blood volume fraction V0 0.03
Magnetic field parameters at k1, k2, k3 4.2, 1.7, 0.41
3 T, TE = 30 ms
Blood flow signal decay rate κ 0.1–1 s−1

Natural frequency of flow response ω f 0.1–1 s−1

Mean cortical thickness L (1–4.5)×10−3 m
Astrocytic delay τd 0.2–2.4 s
Wave propagation speed νβ (1–12)×10−3 m s−1

Wave damping rate 	 0.1–1 s−1

Perpendicular spatial frequency k0 = cos−1(0.8)/L 143–644 m−1

Outflow normalization constant Cz = (1×10−3 m) · k0/[3 sin (k0L)] 0.08–0.36
Effective blood viscosity D = ρ f (2	 − βCz/τ ) (0.05–2.1)×103 kg m−3 s−1

Effective spatial frequency kz =
√

k2
0 + 1

ν2
β

Cz
β

τ

D
ρ f

(0.14–1.7)×103 m−1

set of transfer functions TAB(k, ω) that describes the change in
an arbitrary quantity A per unit change in an arbitrary quantity
B at the same k and ω.

The most relevant transfer function for this study is TY φ that
relates the BOLD signal Y to neural activity φ such that

Y (k, ω) = TY φ (k, ω)φ(k, ω), (1)

where Y (k, ω) and φ(k, ω) are the Fourier transforms of the
BOLD signal and the neural activity, respectively. Previous
works showed that [27,30,31,33]

TY φ (k, ω) = A(ω)∏3
j=1Bj (k, ω)

, (2)

where |k|2 = k2 is the spatial wave number in the plane of the
cortex,

A(ω) = (
iω2P + ωQ + iR

)
e−iωτd , (3)

B1(k, ω) = k2ν2
β + k2

z ν
2
β − ω2 − 2i	ω, (4)

B2(k, ω) = B2(ω) = −(
ω + 1

2 iκ
)2 + ω2

f , (5)

B3(k, ω) = B3(ω) = ω + iη + iτ−1, (6)

and the real-valued constants P, Q, and R are

P = − Cz[k2 − k3 − V0(k1 + k2)], (7)

Q =Cz

{
(k2 − k3)(η+τ−1) − (k1 + k2)Cz[η−τ−1(β − 2)]

+ D

ρ f
[k2 − k3 − V0(k1 + k2)]

}
, (8)

R = Cz
D

ρ f
{(k2 − k3)(η + τ−1) − (k1+k2)Cz[η−τ−1(β−2)]}.

(9)

Each Bj (k, ω) defines a dispersion relation whose solutions
are independent BOLD response modes, which govern the
fundamental patterns of oscillations of the BOLD signal [27].
In particular, B1(k, ω), B2(k, ω), and B3(k, ω) are related to
damped-wave, local-oscillating, and local-decaying BOLD
response modes, respectively [27,33]. All the parameters in
Eqs. (3)–(9) have a physiological significance that describes
the properties of blood, vasculature, or the fMRI scanner.
Table I details these parameters together with their physiolog-
ical values or ranges that are either obtained from known es-
timates or derived from steady-state behavior [29–32,34,45–
50]. Note that the dependent parameters k0, Cz, D, and kz

need to remain positive and real valued, hence constraining
the possible combinations of independent parameters.

III. THEORETICAL BOLD POWER SPECTRUM

In this section, we analytically derive the power spectrum
of spontaneous BOLD via the transfer function in Eq. (2)
using white noise as the input stimulus. Then, the power spec-
trum is approximated at low frequencies (ω � ωT ) and at high
frequencies (ω � ωT ), where ωT is a transition frequency that
is determined below.

A. Power spectrum derivation

The temporal BOLD power spectrum PBOLD(ω) can be
derived by integrating the squared magnitude of Y (k, ω) with
respect to the spatial frequency vector k, i.e.,

PBOLD(ω) = 1

(2π )2

∫ ∞

−∞
|Y (k, ω)|2 d2k

= 1

2π

∫ ∞

0
|Y (k, ω)|2k dk. (10)
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Upon substituting Eq. (1) into Eq. (10), we get

PBOLD(ω) = 1

2π

∫ ∞

0
|TY φ (k, ω)|2|φ(k, ω)|2k dk. (11)

Equation (11) allows us to calculate the power spectrum
of BOLD for any input neural activity φ. Several stud-
ies have shown that fluctuations in the resting-state BOLD
signal are positively correlated with those in the power
of low-frequency electroencephalography (EEG) oscillations
( f < 4 Hz) [51,52], demonstrating that the low-frequency
EEG power directly affects both the amplitude and power
of the BOLD signal. Experimental and theoretical works
have also shown that the shape of the resting-state EEG
spectrum is approximately flat at f < 1 Hz [53–55]. Since
BOLD is only significant below the cutoff frequency ≈0.2 Hz,
as mentioned in the Introduction, the spectral profile of the
neural activity φ in Eq. (11) can be approximated to be
flat such that |φ(k, ω)|2 = const (≈1 for simplicity). This
effectively assumes that the neural activity is an uncorrelated

white noise driven by internal fluctuations from the cortical
or subcortical regions (e.g., brain stem). This assumption has
been successfully used in different neural models to predict
cortical dynamics that match empirical data [56,57]. However,
the effects of other potential forms of the noise spectrum,
specifically of the power-law form f γ [58], are further ex-
plored in Sec. VI.

Substituting Eq. (2) into Eq. (11) for the |φ(k, ω)|2 = 1
unit, without loss of generality, we obtain

PBOLD(ω) = 1

2π

∫ ∞

0

|A(ω)|2k dk∏3
j=1 |Bj (k, ω)|2 . (12)

Note that A(ω), B2(k, ω) = B2(ω), and B3(k, ω) = B3(ω) are
independent of k. Hence, we can simplify the integral to

PBOLD(ω) = 1

2π

|A(ω)|2
|B2(ω)|2|B3(ω)|2

∫ ∞

0

k dk

|B1(k, ω)|2 . (13)

Substitution of Eqs. (3)–(6) into Eq. (13) yields

PBOLD(ω) = 1

2π

P2ω4 + (Q2 + 2PR)ω2 + R2[(−ω2 + 1
4κ2 + ω2

f

)2 + κ2ω2
]
[ω2 + (η + τ−1)2]

∫ ∞

0

k dk(
k2ν2

β + k2
z ν

2
β − ω2

)2 + 4	2ω2
. (14)

Letting u = k2ν2
β + k2

z ν
2
β − ω2, the integral can be evaluated as

I = 1

2ν2
β

∫ ∞

k2
z ν2

β−ω2

du

u2 + 4	2ω2
(15)

= 1

4ν2
β	ω

[
π

2
− tan−1

(
k2

z ν
2
β − ω2

2	ω

)]
. (16)

Thus, the final form of PBOLD(ω) is

PBOLD(ω) = 1

8πν2
β	

P2ω4 + (Q2 + 2PR)ω2 + R2[(−ω2 + 1
4κ2 + ω2

f

)2 + κ2ω2
]
[ω2 + (η + τ−1)2]

1

ω

[
π

2
− tan−1

(
k2

z ν
2
β − ω2

2	ω

)]
. (17)

We can rewrite Eq. (17) in a compact form,

PBOLD(ω) =
3∏

j=0

Pj (ω), (18)

where

P0(ω) = P2ω4 + (Q2 + 2PR)ω2 + R2, (19)

P1(ω) = 1

8πν2
β	ω

[
π

2
− tan−1

(
k2

z ν
2
β − ω2

2	ω

)]
, (20)

P2(ω) = 1(−ω2 + 1
4κ2 + ω2

f

)2 + κ2ω2
, (21)

P3(ω) = 1

ω2 + (η + τ−1)2
. (22)

Note that P0(ω) is a monotonically increasing function, since
(Q2 + 2PR) � 0 for any combination of parameter values
from Table I, that modulates the amplitude of PBOLD(ω).
Moreover, the index j in Eq. (18) matches that in Eq. (2), so
P1(ω), P2(ω), and P3(ω) represent the power spectrum factors
due to the damped-wave, local-oscillating, and local-decaying

BOLD response modes, respectively. These modes dictate
the fundamental patterns of oscillations of the BOLD signal,
with structures that are independent of the stimulus [27].
They describe the physical propagating and nonpropagating
components of BOLD more directly than common signal
analysis methods such as independent component analysis.
This is because such methods do not account for the nature
of the system that produces the signals and are not based on
brain physiology, so their results may mix the dynamics of
fundamental brain modes. Hence, being able to separate the
contributions of the modes to the BOLD power spectrum is a
powerful feature of our formulation that is currently lacking
in point models of hemodynamic responses.

B. Limiting behavior

To predict how the BOLD power spectrum and its factors
behave, here we investigate their limiting behavior at low
frequencies (ω � ωT ) and at high frequencies (ω � ωT ),
where ωT is a transition frequency. The transition frequency
ωT lies between the lowest and highest values of the natural
frequencies of PBOLD(ω). From Eqs. (19)–(22), the natural
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frequencies correspond to the model parameters that are in
the set S = {ω f , κ, η, τ, kzνβ, 	} such that min(S) � ωT �
max(S).

For ω � ωT , the low-frequency limits of the BOLD power
spectrum factors, denoted as PL

j , are

PL
0 ≈ R2, (23)

PL
1 ≈ 1

8πν2
β	ω

[
π

2
−

(
π

2
− 2	ω

k2
z ν

2
β

)]
= 1

4πk2
z ν

4
β

, (24)

PL
2 ≈ 1(

1
4κ2 + ω2

f

)2 , (25)

PL
3 ≈ 1

(η + τ−1)2
. (26)

Hence, the low-frequency limit of the BOLD power spectrum
PL

BOLD is

PL
BOLD ≈ R2

4πk2
z ν

4
β

(
1
4κ2 + ω2

f

)2
(η + τ−1)2

, (27)

which corresponds to a flat spectrum. For ω � ωT , the high-
frequency limits of the BOLD power spectrum factors, de-
noted as PH

j , are

PH
0 ≈ P2ω4, (28)

PH
1 ≈ 1

8πν2
β	ω

[
π

2
−

(
−π

2
+ 2	

ω

)]
= πω − 2	

8πν2
β	ω2

≈ 1

8ν2
β	ω

, (29)

PH
2 ≈ 1

ω4
, (30)

PH
3 ≈ 1

ω2
. (31)

Hence, the high-frequency limit of the BOLD power spectrum
PH

BOLD is

PH
BOLD ≈ P2

8ν2
β	ω3

, (32)

which is a power law that scales as ω−3. The shapes of
PL

j , PL
BOLD, PH

j , and PH
BOLD and the value of ωT for different

parameter combinations are investigated in Sec. IV.

IV. EFFECTS OF DIFFERENT PARAMETERS
ON THE POWER SPECTRUM

In Sec. III, the BOLD power spectrum, its power spec-
trum factors, and their respective limiting behaviors were
analytically derived. To better understand how they behave as
functions of frequency, here we explore the effects of varying
the model’s independent parameters.

From Table I, the set of independent parameters that can
vary and can directly affect the BOLD power spectrum and its
factors is  = {β, τ, κ, ω f , L, νβ, 	}. All the other parame-
ters are either fixed to their assumed values from the literature
or can be derived from the independent parameters via the
formulas shown in Table I.

In this section, three types of parameter sets are analyzed:
(i) nominal parameters (nom ), wherein we use experimen-
tal parameters for one subject [33]; (ii) varying parameters,
wherein one parameter from  is varied to within its phys-
iological range and the remaining parameters are taken from
nom; and (iii) fitted parameters (fit ), wherein the parameters
are tuned to fit the empirical power spectrum data sets in Fig. 1
[16,22–24].

A. Nominal parameters

The power spectrum in Eq. (18) rests on biophysical
parameters that can be fitted independently to reflect the
physiology and hemodynamics of multiple regions of the
brain. Previously, we fitted these parameters to the primary
visual cortex of an individual subject performing fixation
tasks that involve certain types of visual stimulus, i.e., three
stationary isoeccentric rings, one ring that expanded in
eccentricity through time, and one isopolar arc that expanded
in eccentricity through time [27,30,37]. The values of these
experimental parameters, herein termed the nominal
parameters, are nom = {β = 3.2, τ = 1 s, κ = 0.57 s−1,

ω f = 0.49 s−1, L = 3 × 10−3 m, νβ = 2 × 10−3 m s−1,

	 = 0.8 s−1}.
To demonstrate that nom produces realistic BOLD re-

sponses, Fig. 4 shows the predicted BOLD response to an im-
pulsive, point neural stimulus φ(r, t ) = δ(r)δ(t ), where δ(·)
is the Dirac-delta function. For simplicity, only the variation
of the BOLD response versus distance perpendicular to the
centerline of the evoked neural response is shown in Fig. 4(a).
The BOLD response has waves traveling in both directions
from the center (x = 0) that extend to x ≈ ±5 mm, resem-
bling the experimental evoked activity in Ref. [30]. These
propagating waves have also been observed in a number of
other recent studies [41,42]. The dashed line in Fig. 4(a) marks
the local response at x = 0, with its corresponding temporal
profile shown in Fig. 4(b). The profile in Fig. 4(b) matches the
temporal form of the local hemodynamic response function
conventionally used in neuroimaging studies [35]. This shows
that the model with nominal parameters nom reproduces ex-
perimentally found features of the BOLD response, including
waves.

Using nom, we can obtain the nominal BOLD power spec-
trum and its factors as functions of f = ω/2π via Eqs. (18)–
(22). In order to easily compare their spectral profiles, each
power spectrum is normalized with respect to its total power,
i.e., P(ω) = P(ω)/

∫
P(ω)dω, as seen in Fig. 5.

We find that the nominal PBOLD is flat at f � 0.02 Hz,
has a weak resonance at f ≈ 0.075 Hz (the approximate
closed-form expression of this resonance frequency is further
discussed in Sec. IV B) similarly to that found in Ref. [8],
and then scales as f −3 at f � 0.1 Hz. The limiting behav-
ior at f < 0.02 Hz and f > 0.1 Hz are consistent with our
calculations in Sec. III B. Note, however, that these results
contradict findings in other studies claiming that PBOLD has
a pure power-law behavior in the entire low-frequency range
f < 0.2 Hz [7,15–19]. The reason for this contradiction is
discussed in Sec. IV C.

All the Pj are flat at f � 0.02 Hz, which is why PBOLD

is flat in this frequency range. This is consistent with our
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FIG. 4. Predicted BOLD response to an impulsive, point stimulus. (a) Spatiotemporal profile. The dashed line marks the response at x = 0.
(b) Time profile at x = 0.

low-frequency limit calculations in Sec. III B. Then, the Pj’s
scale differently at high frequencies, with P0 ∝ f 4, P1 ∝ f −1,
P2 ∝ f −4, and P3 ∝ f −2, matching our high-frequency limit
calculations in Sec. III B; this is why PBOLD ∝ f −3 at high
frequencies. Finally, it is important to note that the weak
resonance of PBOLD depends strongly on P0 and P2. Hence,
this suggests that we can better understand PBOLD, including
the existence of the resonance, by analyzing the properties
of these BOLD power spectrum factors; this will be further
explored in Sec. IV B.

The derived BOLD power spectrum can be further used
to calculate the correlation function C(t ) of BOLD signal
dynamics. We can easily calculate C(t ) by using the Wiener-
Khintchine theorem, which states that the correlation function
is equal to the inverse Fourier transform of the power spec-
trum. We then fit the results with an exponential function with
a decay time of τs, which characterizes the intrinsic timescale
of BOLD fluctuations. The resulting normalized correlation

0.01 0.05 0.1 0.2 1

10-4

10-3

10-2

10-1

100

HGIHWOL

FIG. 5. Normalized theoretical BOLD power spectrum PBOLD

from Eq. (18) and its factors P0–P3 from Eqs. (19)–(22) using the
nominal parameter set nom for 0.01 Hz � f � 1 Hz. The curves are
labeled according to the legend shown. The frequency ranges where
the low- and high-frequency limit calculations in Sec. III B apply are
highlighted by the black solid lines at the bottom of the frame.

function C(t )/C(t = 0) and the corresponding exponential fit
is shown in Fig. 6.

The resulting decay time is τs = 30.6 ± 0.4 s, which is
close to the reported 34-s time lag that showed the strongest
relationship between the topology of the structural connec-
tome and spontaneous BOLD activity [59]. Moreover, this
also agrees with the observed fluctuation scales of resting-
state dynamic functional connectivity reported by recent stud-
ies [60–62]. This provides further evidence of the ability of the
hemodynamic model to accurately describe the resting-state
BOLD dynamics and implies that some changes in func-
tional connectivity, defined via BOLD covariance, may reflect
the BOLD correlation time, rather than alterations in the
underlying structure.

B. Parameter sensitivities

Here, we explore the effects of varying the parameters of
the analytic BOLD power spectrum and its factors. First, the
independent parameters are initialized to their nominal values

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1
model
fit

FIG. 6. Normalized BOLD correlation function C(t )/C(t = 0).
The blue solid line represents the calculated correlation function,
whereas the black dashed line represents the exponential fit with a
decay time of τs = 30.6 ± 0.4 s (r2 = 0.99).
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FIG. 7. Normalized theoretical power spectrum of BOLD PBOLD and its factors P0–P3 using different parameter sets for 0.01 Hz � f �
0.2 Hz. Columns from left to right show PBOLD( f ) (enclosed by a solid box), P0( f ), P1( f ), P2( f ), and P3( f ), respectively. Each row shows
the profiles of the power spectra when one parameter (labeled on the left) is varied. The varied parameter uses its minimum (black solid line),
middle (blue dashed line), or maximum (red dashed-dotted line) value from its physiological range in Table I. Note that a panel with only one
visible curve indicates that the corresponding Pj does not depend on the parameter in question and follows its nominal profile from Fig. 5.

nom. Then, one parameter is varied across its physiological
range defined in Table I; for brevity, we only show the nor-
malized power spectrum profiles when the parameter is set to
its minimum, middle, or maximum possible value. Moreover,
our analysis reveals that only the temporal parameters τ , κ ,
and ω f significantly affect the power spectrum profiles; hence
Fig. 7 only shows their effects.

The following summarizes the results in Fig. 7, which are
discussed by row of the figure:

(i) Changing τ does not affect P2 and keeps its nominal
profile, which is expected from its expression in Eq. (21).
As τ increases toward its maximum value, P0, P1, P3, and
PBOLD shift more of their energy to lower frequencies because
higher τ means that blood takes longer to flow from large
arteries to capillaries. In addition, the shape of PBOLD is now
strongly influenced by P3, contrary to our previous observa-
tion for nominal parameters in Sec. IV A, and the resonance
in PBOLD disappears and is replaced by a knee. The knee
frequency ωknee for this case can be approximated by find-
ing the frequency where the low- and high-frequency limits
of P3 intersect, i.e., where PL

3 (ωknee) = PH
3 (ωknee), yielding

ωknee = η + τ−1; hence, higher τ values lead to lower knee
frequencies.

(ii) Changing the blood flow response parameters κ or
ω f does not affect P0, P1, and P3, which is expected from
Eqs. (19), (20), and (22), respectively. Moreover, the shape of
PBOLD is strongly influenced by P2 with both having the same
profile.

(iii) As κ decreases toward its minimum value, the reso-
nance of PBOLD gets stronger and the resonance frequency de-
creases minutely. The resonance frequency can be calculated
by differentiating Eq. (21) to find the maximum of P2, yielding

ωres =
√

ω2
f − 1

4κ2. (33)

Hence, lower κ values lead to higher resonance frequencies.
Equation (33) can be used to find the resonance frequency for
any parameter combination. Note, however, that the resonance
disappears when ω f � 1

2κ , as seen from the red dashed-dotted
curves of PBOLD and P2 in Fig. 7, row 2, where κ is maximal.

(iv) As ω f decreases toward its minimum value, the relative
powers of P2 and PBOLD at f � 0.05 Hz increase and the
resonance disappears, which happens because ω f < 1

2κ; the
resonance changes to a knee. However, the knee frequency
previously derived for varying τ needs to be changed to the
frequency where the low- and high-frequency limits of P2

intersect, i.e., where PL
2 (ωknee) = PH

2 (ωknee), yielding

ωknee =
√

ω2
f + 1

4κ2. (34)

C. Fitted parameters

Our parameter sensitivity exploration in Sec. IV B implies
that physiological parameters strongly influence the overall
shape of PBOLD. Hence, in this section, we investigate whether
a parameter set fit exists that can fit the theoretical PBOLD to
findings in the literature, specifically the empirical data sets in
Fig. 1 [16,22–24].

First, the independent parameters are initialized to their
nominal values fit. Then, τ , ω f , and κ are varied to fit
the resulting theoretical PBOLD with the empirical data sets
in Fig. 1. Nonlinear least-squares fitting is used to estimate
the best-fit parameters fit that minimize the residual sum
of squares between the model and the data on a log-log
scale; the results are shown in Table II. Note that the fits are
also constrained by limiting the fitted parameters within their
physiological bounds shown in Table I. The fitted theoretical
BOLD power spectra superimposed on the corresponding
empirical data are shown in Fig. 8.
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TABLE II. Best-fit parameters for the empirical data sets in Fig. 1
[16,22–24].

�fit

Data sets τ (s) κ (s−1) ω f (s−1)

He et al. [16] 1.1 0.8 0.2
Boynton et al. [22] 1.8 1.0 0.4
Bandettini [23] 1.4 0.8 0.4

Figure 8(a) shows that the model produces a flat spectrum
at f � 0.01 Hz and a power law at f � 0.06 Hz. This onset
frequency matches the data in Ref. [16] but the asymptotic
power-law exponent of the model is 3 [which is that found
in Eq. (32) for any parameter combination], whereas the
data have an asymptotic power-law exponent of 0.87 ± 0.03.
Figure 8(b) shows that the model produces a flat spectrum at
f � 0.02 Hz and a power law at f � 0.07 Hz. Similarly to
Fig. 8(a), the model accurately captures the onset frequency
that separates the flat spectrum from a power law exhibited
by the data in Refs. [22,24] but the asymptotic power-law ex-
ponents are different, i.e., 3 for the model versus 1.20 ± 0.03
for the data. Finally, Fig. 8(c) shows that the model produces
a power spectrum that matches the data in Refs. [23,24],
i.e., a flat spectrum at f � 0.04 Hz and a power law at f �
0.08 Hz having an asymptotic exponent of 3 for the model
and 2.88 ± 0.06 for the data.

These results yield the following key findings:
(i) Our theoretical work implies that low-frequency BOLD

for all realistic parameter combinations has a flat spectrum at
f � 0.01 Hz, which makes sense physically because a power
law would diverge as f → 0. This is consistent with the
results in Refs. [22–24] and with experimental and theoretical
findings showing that the underlying resting-state neural ac-
tivity in this frequency range, which BOLD is most sensitive
to, has a flat spectrum [53–55]. However, this result is contrary
to that claimed in Ref. [16] that BOLD exhibits a pure power-
law spectrum in this frequency range. This is an important

aspect of BOLD dynamics that is often not discussed in the
current literature, which may be attributed to limitations in
experimental paradigms that prevent the acquisition of highly
resolved data because the duration of current protocols is too
short to be able to investigate frequencies �0.01 Hz. In signal
processing, the frequency bandwidth (� f ) and time duration
(�t) of a signal are physically constrained by � f �t > 1;
hence, to be able to investigate BOLD at frequencies
<0.01 Hz, the duration of the protocol must be at least 100 s,
which is larger than typical experimental protocols.

(ii) Our work predicts a knee that separates the flat spec-
trum from a power law at higher frequencies. This knee was
argued in Ref. [8] but was not mentioned in Refs. [16,22]
even though their data clearly show it. For example, the
analysis in Ref. [16] disregarded that the first few data points
resemble a flat spectrum and reported that the spectrum fol-
lows a consistent power-law behavior. Features of the BOLD
spectrum, such as the knee, are often difficult to account
for in experimental studies because of insufficient frequency
resolution in the low-frequency regime, but are important to
accurately describe BOLD dynamics.

(iii) The model power spectrum demonstrates a power law
at f � 0.06 Hz that has a significantly different exponent
than those found in Refs. [16,22] but matches the data for
a single subject and brain region in Ref. [23]. A possible
explanation for this discrepancy is that many current fMRI
spectral studies present a BOLD power spectrum that has been
obtained by averaging data to increase the signal-to-noise
ratio. This involves either averaging the BOLD time series via
smoothing operations and filters or averaging the spectra in
frequency space. Furthermore, data could be averaged from
multiple voxels to represent the general characteristics of a
region of interest or from multiple subjects to represent group
statistics. Since different voxels and subjects naturally exhibit
unique cortical properties, the process of averaging removes
intrinsic variability and smears out important features of the
BOLD power spectrum, such as the transition frequency ωT ,
discussed in Sec. III. In addition, averaging spectra with
different knees and high-frequency power-law exponents can
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Chen and Tyler [24]

0.003 0.01 0.05 0.1 0.2
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FIG. 8. Comparison of BOLD power spectrum from the model and various empirical data sets. (a) Model (black solid line) vs Ref. [16]
(blue squares: mean; error bar: one standard deviation) data described in Fig. 1(a). (b) Model (black solid line) vs Ref. [22] (blue triangles)
and Ref. [24] (blue dashed line) data described in Fig. 1(b). (c) Model (black solid line) vs Ref. [23] (blue circles) and Ref. [24] (blue dashed
line) data described in Fig. 1(b). For each panel, the approximate power-law exponents (s) of the asymptotic curves are shown.
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FIG. 9. Effect of data averaging on the BOLD power spectrum.
The main panel shows the mean power spectrum and the approximate
asymptotic power-law exponent, whereas the inset shows the 40
individual power spectra that were averaged to produce the main
curve.

also strongly bias the resulting curve’s high-frequency power-
law exponent toward lower values, yielding exponents that
are completely different from those of the individual spectra.
This argument is supported by Fig. 8(c), wherein the model
matches the shape, the location of the knee, and the high-
frequency power-law exponent of the spectrum for one subject
and brain region without averaging; these points are explored
further in the next section.

V. IMPACT OF DATA AVERAGING

We demonstrate the impact of data averaging by simulating
individual spectra obtained by using different parameter sets.
For illustration purposes, we use the parameter set nom and
randomly vary the parameter ω f within its physiological range
shown in Table I to generate 40 different spectra. The results
are shown in Fig. 9 with the average shown in the main panel
and the individual power spectra shown in the inset.

The individual spectra have different transition frequencies
ωT , with some having a weak resonance and some having
increased power at f � 0.01 Hz, but all have asymptotic
power-law exponents of 3. Averaging them gives a mean
spectrum with features that are significantly different from
the individual power spectra; in particular, the asymptotic
power-law exponent decreases from 3 to 1.8. Hence, if more
individual spectra are considered in the data averaging pro-
cess, asymptotic power-law exponents closer to estimates
in Ref. [16] are possible. This issue of data averaging to
show evidence for a power-law spectrum is prevalent in the
general literature (e.g., Refs. [25,63]), and our study clearly
demonstrates that this must be carefully considered in the
context of BOLD spectral analysis.

VI. EFFECT OF ASSUMED NOISE SPECTRUM

One of the assumptions of the study is that resting-state
neural activity can be approximated as a white noise with a

constant power spectrum throughout the frequency bandwidth
of BOLD. This is based on studies showing that fluctuations
in the resting-state BOLD signal are positively correlated with
low-frequency EEG power [51,52], which is approximately
flat at f < 1 Hz [53–55] where BOLD is most sensitive. How-
ever, other works have shown that long-duration EEG time
series (which affects low-frequency dynamics) and underly-
ing neuronal fluctuations could exhibit power-law scaling at
f > 0.5 Hz [64–66]. Hence, a power-law form for the spectral
profile of the noise spectrum could be considered.

We test this by generating noise spectra with a power-law
form of P( f ) ∝ f γ , where γ is the scaling exponent, and
compare the resulting BOLD spectrum. For demonstration
purposes, we use four typical noise spectra found in the
literature with (i) γ = 0 for white noise, (ii) γ = −1 for pink
noise, (iii) γ = −2 for brown noise, and (iv) γ = 1 for blue
noise. The normalized noise spectra are shown in Fig. 10(a),
and the resulting normalized BOLD spectra obtained from
the product of Eq. (18) with the noise spectra are shown in
Fig. 10(b).

It is clear from Fig. 10 that when γ < 0, the asymptotic
power-law exponent of the BOLD spectrum only becomes
steeper and deviates further from the estimates in Ref. [16].
Moreover, these noise spectra cannot extend to f = 0 and
must always level off to avoid divergence of their total power.
On the other hand, γ > 0 brings the asymptotic power-law
exponent closer to estimates in Ref. [16]; however, there is
a significant decrease in the power at f � 0.01 Hz that is
not seen in the data. These results provide evidence that a
power-law noise spectrum is not a viable solution to recon-
cile the discrepancy between our theoretical predictions and
empirical data in Refs. [16,22]. Hence, we conclude from
these comparisons that the ansatz of a white noise spectrum
is appropriate and that the reduction of the discrepancy is
more likely due to effects such as that of data averaging, as
discussed in the previous section.

VII. SUMMARY AND DISCUSSION

Here, we have used an experimentally verified physio-
logical cortical hemodynamic model, which can accurately
represent the properties of the cortex and can predict the
BOLD signal via its hemodynamic mechanisms, to analyti-
cally derive the power spectrum of the resting-state BOLD
response. We examined how the model’s parameters affect
the BOLD power spectrum and its individual spectral factors,
giving important insights into its spectral characteristics in
comparison with empirical data.

Our calculations show that for nominal parameters, the
BOLD power spectrum is flat at f � 0.02 Hz, exhibits a
weak resonance, and then scales as f −3 at f � 0.1 Hz. In
addition, the correlation function derived from the power
spectrum showed an intrinsic timescale similar to that found
for spontaneous BOLD activity and dynamic functional con-
nectivity. We also investigated the effects of varying model
parameters on the profile of the BOLD power spectrum
and its factors and showed that parameters related to the
hemodynamic transit time and blood flow response properties
strongly influence the amplitude and frequency of BOLD’s
resonance.
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FIG. 10. Effect of using noise spectra with power-law forms. (a) Noise spectrum. The labels show the type of noise used and the
corresponding equation of P( f ). (b) Resulting BOLD spectrum. The curves are labeled according to the legend shown.

Finally, we tuned the model parameters to fit the analytic
BOLD power spectrum to empirical data sets. We found that
the spectrum remains flat at the ultralow-frequency range
( f < 0.01 Hz) for all parameter combinations, agreeing with
the results in Refs. [22–24] and with findings that the un-
derlying resting-state neural activity in this frequency range
has a flat spectrum. Our fits also reveal that the empirical
data exhibit a knee that separates the flat spectrum from a
power law at high frequencies, which are not mentioned in
experimental studies even though the data clearly show it
because of insufficient frequency resolution. We also found
that the model spectrum demonstrates a power law for high
frequencies that has a significantly different exponent than
those found in Refs. [16,22] but matches the data for a single
subject and brain region in Ref. [23].

We demonstrated via an illustrative example that the dis-
crepancy between our theory and data can be plausibly at-
tributed chiefly to data averaging performed by experimental
studies that aim to increase the signal-to-noise ratio. We
showed that averaging removes the intrinsic variability of
brain regions and subjects that biases the resulting curve’s
power-law exponent; indeed, averaging reduced the model’s
predicted asymptotic power-law exponent of 3 to 1.8, suggest-
ing that data averaging must be carefully considered to obtain
an accurate description of the BOLD spectral properties. In
fact, the data in Ref. [23] support this argument, wherein the
model matches the shape, the location of the knee, and the
high-frequency power-law exponent of the spectrum for data
from one subject and brain region in the absence of averaging.
We also demonstrated that changing the noise spectrum from
white to a power-law form of f γ with γ �= 0 only worsens
the agreement between our theory and data. Other structured
noise can be studied in the future using our approach.

Even with the strong arguments laid down in favor of our
formulations and analyses, another potential reason for the

inconsistency between our theory and data, aside from the
data averaging effect mentioned above, is that we considered
fMRI time series to be driven purely by neural activity without
incorporating instrumental or other noise and that the transfer
function in Eq. (2) is sufficient to model this. It is possible that
other nonphysiological components and/or noise, e.g., thermal
noise, could mix with neural activity to interfere with the
measurement of the underlying BOLD power spectrum. This
can be potentially addressed by combining our formulations
with dynamic causal modeling (DCM) [47]. DCM allows
inference of the possible models of the underlying causal
architecture of coupled dynamic systems. It has recently been
extended for use with resting-state fMRI [58,67,68], and can
accommodate neuronal fluctuations and the contribution of
other stochastic effects.

Overall, this study demonstrates the ability of our hemody-
namic model to produce voxel- or subject-specific noise-free
dynamics of BOLD and further analyze its low-frequency
behavior, going beyond the limitations and existing issues of
current fMRI spectral studies. It also uses the model to explain
the impact of ad hoc data processing, such as data averaging,
and other noise spectra on the reported features of the BOLD
power spectrum. This is the advantage of a theoretical study
such as ours because several hypotheses can be directly tested
and be confirmed or rejected.
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