
PHYSICAL REVIEW E 100, 022411 (2019)

Evolutionary game dynamics of combining the imitation and aspiration-driven update rules

Xianjia Wang,1,2 Cuiling Gu ,2,* Jinhua Zhao,1 and Ji Quan3

1Economics and Management School, Wuhan University, Wuhan 430072, China
2Institute of Systems Engineering, Wuhan University, Wuhan 430072, China

3School of Management, Wuhan University of Technology, Wuhan 430070, China

(Received 14 March 2019; published 20 August 2019)

So far, most studies on evolutionary game dynamics in finite populations have concentrated on a single update
rule. However, given the impacts of the environment and individual cognition, individuals may use different
update rules to change their current strategies. In light of this, the current paper reports on a study that constructed
a mixed stochastic evolutionary game dynamic by combining the imitation and aspiration-driven update
processes. The target was to clarify the influences of the aspiration-driven process on the evolution of the level
of cooperation by considering the behavior of a population in which individuals have two strategies available:
cooperation and defection. Through a numerical analysis of unstructured populations and simulation analyses
of structured populations and of the random-matching model, the following results were found. First, the mean
fraction of cooperators varied alongside the probability with which the individual adopted the aspiration-driven
update rule. In the Prisoner’s Dilemma and coexistence games, the aspiration-driven update process promoted
cooperation in the well-mixed population but inhibited it in structured ones and the random-matching model;
however, in the coordination game, the aspiration-driven update process was seen to exert the opposite effect on
cooperation by inhibiting the latter in a homogeneously mixed population but promoting it in structured ones
and in the random-matching model. Second, the mean fraction of cooperators changed with the aspiration level
in the differently structured populations and random-matching model, and there appeared a phase transition
point. Third, the evolutionary characteristics of the mean fraction of cooperators maintained robustness in the
differently structured populations and random-matching model. These results extend evolutionary game theory.
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I. INTRODUCTION

In a biological sense, cooperative altruistic behavior,
whereby individuals sacrifice their fitness to improve the
fitness of other individuals, is common in nature. Coopera-
tion among biological individuals increases the chances of
the survival of the entire population. However, according to
Darwin’s theory of evolution, natural selection is based on
competition and individuals selfishly maximizing their own
interests. This theory, obviously, cannot explain ubiquitous
cooperative behavior. Therefore, how unrelated and selfish
individuals promote and maintain cooperative behavior has
become a central issue in evolutionary biology. Evolutionary
game theory [1–4], which is one of the key paradigms behind
many scientific disciplines, from biology to behavioral sci-
ences and the social economy, has been successfully applied
to the study and explanation of the emergence of cooperation
in competitive settings [5]. To date, many mechanisms have
been proposed in the context of promoting competition in
evolutionary game dynamics, such as kin selection [6], indi-
rect reciprocity [7], direct reciprocity [8], multilevel selection
[9], and network reciprocity [10–12]. Traditional evolutionary
game theory was formulated for infinitely large populations,
in which stochastic effects can be neglected and replica-
tion dynamics equations were generally used to describe the
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evolution of populations [2,13–15]. However, only in a few
cases would a population [16] be large enough to justify the
assumption of an infinite population. On the other hand, owing
to nonlinearity, replication dynamic equations reveal very
intricate dynamic processes. Therefore, compared to infinite
populations, finite ones may have very significant differences,
meaning that a stochastic approach is required to depict such
differences [17–20].

Compared to the continuous representations of evolution-
ary dynamics in replicator equations, the stochastic evolution-
ary approach considers the state space of a system as dis-
crete, and determines with certain probabilities the direction
in which the system will evolve. Microscopic mechanisms
(strategy update rules), in which individuals adopt to change
their strategies in terms of various selection dynamics, are
generally believed to play an important role in the evolution
of cooperation in finite populations. Therefore, for a finite
population, one of the most interesting open questions is
how individuals would update their strategies according to
the knowledge and conception of others and themselves.
There have been several stochastic update processes, such
as the Moran procedure [21–24], pairwise comparison [25],
imitation [26–30], and aspiration-driven processes [31–36].
In the Moran process [24], at each time step an individual
in a population is selected to produce a descendant propor-
tional to its fitness, and the offspring replaces a randomly
selected individual. In the imitation process, introduced by
Szabó and Töke [4], an individual is randomly chosen and
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compares their payoff with that of a second randomly chosen
individual, who is more likely to be imitated when the payoff
for the second individual is higher. The aspiration-driven
update rule is defined as follows: an individual will switch
strategy if the current payoff is lower than the aspiration
level; otherwise, the present strategy is maintained. Here, the
aspiration level can be interpreted as the degree of satisfaction
(preference) of the learning individual.

Many studies [16,37] have examined the Moran procedure,
imitation, and aspiration-driven processes to explain cooper-
ative behavior, but have mainly focused on a single update
rule. Assuming that all individuals in a population would
adopt the same updating rules is not realistic. Therefore, in
order to study the evolution of cooperation, some studies have
applied combinations of different update rules by grouping
populations. For instance, to study the evolution of coop-
eration in different topologies via the mean-field equation,
some studies have assumed [38] that certain individuals in
a finite population would adopt the imitation rule, whereas
the remaining individuals would adopt the innovation rule.
Liu [39,40] divided a finite population into two groups with
different strategy update rules and studied the evolution of
cooperation through the fixation probability, fixation time, or
mean abundance of the cooperators. Zhang [41] distributed
populations into fast and slow groups, and then studied the
population dynamics when interacting individuals differed in
terms of the time scale of their updating processes. Despite
meaningful progress, there are still some situations of great
practical relevance that remain less explored. One of the
problems here concerns the tendency—due to the influence of
the environment and other factors—of individuals to change
their strategies often according to two or more update rules,
i.e., as a result of the influence of environmental factors and
the complexity of their knowledge, individuals are likely to
adopt several different updating rules, with different proba-
bilities, to update their strategies. Wang [42] established a
hybrid model based on the Moran and imitation processes to
study how both updating rules influence evolutionary game
dynamics. Moreover, in addition to the imitation update rule,
an individual could change their current strategies according
to the aspiration-driven process. For example, in general, an
ant hunts for food by imitation, but sometimes uses its own
experience instead [33,43]. This phenomenon also occurs in
human society. In light of this, the current study established
a new mixed model to study the influence of the two update
processes, namely, the aspiration-driven and imitation rules,
on cooperative evolution in different topologies.

Only cognitively capable individuals were studied, not
irrational species, on the basis of the following aspect. In the
real world, while there exists a population of individuals who
alter their strategies by mimicking their better-off neighbors
(those with higher incomes), sometimes, individuals change
their present strategies in accordance with their own expecta-
tions (aspiration level) to decide whether to change strategies,
regardless of the payoffs of a randomly chosen neighbor. Thus
the current paper proposes a new mixed dynamic model in
which an individual alters its previous strategy according to
the imitation process with probability 1 − γ , (γ ∈ [0, 1]), and
the aspiration-driven process with probability γ . The hybrid
model was analyzed in both a homogeneous and structured

FIG. 1. In this neoteric mixed model, individuals play a symmet-
ric 2 × 2 game in a finite well-mixed population. Each individual
adopts the imitation rule to change strategy with the probability
1 − γ , and the aspiration rule with probability γ , where γ ∈ [0, 1].

population. For sketches of the proposed mixed model in
well-mixed finite population and square lattice network, see
Fig. 1 and Fig. 2, respectively. In addition, based on the mixed
model, the random matching model studied in Ref. [44–46]
was also explored (see Fig. 3).

For irrational species, the change rate of the state of a pop-
ulation over time is analyzed based on replicator dynamics.
However, for a finite population with cognitive capabilities,
what matters is not the rate of change of the population but
the limit state of the latter under the microscopic update
mechanism. Therefore, the index of the mixed evolutionary
game model is that of the mean fraction of cooperators
(MFC) when the population reaches the equilibrium state.
Clarifying the nature of the proposed mixed evolutionary
dynamics, upon combining two updating processes, is the
scope of this paper. The established model was analyzed by
observing its performance in three general games (Prisoner’s
Dilemma, coexistence, and coordination) and using numerical
and simulation analysis in the well-mixed and spatial structure
populations, respectively.

FIG. 2. Individuals located on a two-dimensional four-neighbor
square lattice (in the red box on the right), in which randomly
selected individual x, defined as the focal individual, interacts with its
four neighbors. Individual x can mimic the strategy of one of its four
neighbors (defined as the model individual, y) with probability 1 − γ

by comparing its current average payoffs, πx , with its neighbor’s
average payoff, πy, and adopt the aspiration update with probability
γ , where γ ∈ [0, 1], by comparing its current average payoffs with
its own aspiration level.
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FIG. 3. The schematic diagram of the random matching model
is here provided by taking k = 4 as an example. The modified
sampling scheme in a well-mixed population of size N is shown
in the red box on the right. The two competitors (green and red,
respectively) both interact with each other, plus k − 1 = 3 random
members (light green and light red, respectively) of the population.
The red agent, x, and blue agent, y, are considered as the focal
individual and the imitative individual, respectively. The update rules
for focal individuals, x, are shown in the dashed red box on the
left. The focal individual adopts the imitation rule to change its
current strategy with the probability 1 − γ by comparing its current
average payoffs, πx , with the model individual’s average payoff, πy,
and the aspiration-driven rule with probability γ , where γ ∈ [0, 1],
by comparing its current average payoffs with its own aspiration
level, α.

The remainder of this paper is arranged as follows. Section
II introduces three models: mixed models in the well-mixed
and structured populations, and a random-matching model.
Section III reports the theoretical and numeral analyses in the
unstructured population, followed by the simulated analyses
of the structural populations and the simulated analyses of the
random matching model. Section IV presents the conclusion.

II. MODELS

Three models are detailed in this section: models in
the well-mixed and structured populations, and the random
matching model based on the imitation update process and
aspiration-driven update process. In all of these models, in-
dividuals have two alternative strategies: C (cooperation) and
D (defection). At each interaction, individuals gain a payoff
according to a payoff matrix [47], which can be defined as

C D
C
D

[
R S
T P

]
. (1)

Two cooperative individuals receive a reward, R, whereas
two defectors receive a punishment, P. If a cooperator inter-
acts with a defector, then the former receives S while the latter
obtains a temptation, T .

This study considered the Prisoner’s Dilemma game, in
which strategy D always has a higher payoff (T > R > P >

S) and is always dominant; the coexistence game, in which
both strategies C and D receive the highest payoffs when
interacting with the other respective strategy (R < T, S > P);
and the coordination game, in which both strategies C and D
receive the highest payoffs when interacting with their own
types (R > T, S < P).

A. Well-mixed populations

In a well-mixed population of size N , at every discrete
moment of time, t , the state of the population is described
by the number of individuals, i, denoting the current number
of cooperators. The average payoffs of individuals using
strategies C and D are given by [48,49]

πC = R(i − 1) + S(N − i)

N − 1
, (2a)

πD = Ti + P(N − i − 1)

N − 1
. (2b)

We denote the fitness of the cooperators and defectors as fA

and fB, respectively. Now, we use an exponential mapping
[46]:

fA = eωπA , (3a)

fB = eωπB . (3b)

The parameter ω � 0 represents the selection intensity, which
plays a critical role in social learning and cultural evolution. If
ω = 0, the selection is neutral and we have an undirected ran-
dom walk. If 0 < ω � 1, the selection is weak. The concept
of weak selection was introduced by Nowak [21] and refers
to the effects of small differences in the payoffs. When the
selection intensity ω is large, the selection is strong. Selection
intensity describes how selective bias and fluctuations influ-
ence each other.

In the imitation process [50], a random individual is se-
lected and its payoff compared with that of another randomly
selected individual. Generally, individuals imitate the strategy
of a more successful peer. The state of the system can change
by one (at most) at each time step; thus, the transition proba-
bilities are defined as follows:

pi,i+1|imitation = N − i

N

i

N

1

1 + e−ω(πC−πD )
, (4a)

pi,i−1|imitation = N − i

N

i

N

1

1 + eω(πC−πD )
, (4b)

pi,i|imitation = 1 − pi,i+1|imitation − pi,i−1|imitation. (4c)

All other entries of the transition matrix are 0. In the absence
of mutation, the imitation update process corresponds to a
discrete Markov chain with a state space {0, 1, · · · , N}, of
which 0 and N represent absorbing states.

Unlike the imitation process, an aspiration-driven update
does not require additional information about the strategic
environment, and can be interpreted as being more sponta-
neous. In the latter process, individuals adjust their strategies
by comparing the payoff of the game to that of the aspiration
level α, which can be interpreted as the degree of individu-
als’ satisfaction with the learning individual [51]. Thus, the
transition probabilities [48] can be expressed as

pi,i+1|aspiration = N − i

N

1

1 + e−ω(α−πD )
, (5a)

pi,i−1|aspiration = i

N

1

1 + e−ω(α−πC )
, (5b)

pi,i|aspiration = 1 − pi,i+1|aspiration − pi,i−1|aspiration. (5c)
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All other entries of the transition matrix are 0. The aspiration-
driven process is represented by a Markov chain, defined in a
state space {0, 1, · · · , N} without absorbing states.

The aspiration level α influences the stochastic updating
strategy [34,37] insofar as the individuals are more likely to
switch strategy if their aspiration levels are not met. The prob-
ability of switching is random when an individual’s payoffs
are close to their level of aspiration, thereby reflecting the
basic degree of uncertainty in the population. If the payoffs
exceed an individual’s aspiration, then strategy switching
is impossible. When the aspiration level is higher than the
payoff, the gap between aspiration and payoff grows wider
and the probability of switching is higher. As the intensity,
ω, increases, the importance of the impact of the difference
between the payoff and aspiration level increases.

In the current proposed process, individuals change strate-
gies by imitating others or by means of aspiration renewal.
Let it be supposed that the probability of an individual’s
adoption of the imitation update rule is 1 − γ . Conversely,
the probability of adopting the aspiration update rule is γ .
The weighting coefficient, γ ∈ [0, 1], represents the trade-off
between the two update rules. In particular, to update their
strategy, a player only adopts the imitation rule if γ = 0, and
the aspiration-driven update rule if γ = 1. Figure 1 vividly
illustrates this model. The spread of successful strategies is
modeled by a birth–death process in discrete time. At each
time step, the number of cooperators can increase/decrease by
one, or stay the same. Therefore, the matrix of the transition
probabilities of the Markov process in this proposed model is
tri-diagonal, and can be expressed as follows:

pi,i+1 = (1 − γ )
i

N

N − i

N

1

1 + eω(πD−πC )

+ γ
N − i

N

1

1 + eω(πD−α)
, (6a)

pi,i−1 = (1 − γ )
i

N

N − i

N

1

1 + eω(πD−πC )

+ γ
i

N

1

1 + eω(πC−α)
, (6b)

pi,i = 1 − pi,i+1 − pi,i−1. (6c)

All other entries of the transition matrix are 0, where i
refers to the current number of cooperators and is used to
express the state of then population. Even in a homogeneous
population, there exists a probability that an individual could
switch to another strategy as a result of dissatisfaction with
a payoff–aspiration difference. In addition, the current paper
considers the aspiration level to reflect the internal pursuit
of an individual’s ego, assuming that each individual hopes
for higher returns. Without the introduction of mutation or
random strategy exploration, the mixed dynamic process of a
strategy can be described as a Markov process, with the state
space � = {i, i = 0, 1, 2, · · · , N}.

B. Structured populations

In the structured populations (square lattice, small world,
and scale-free networks), the nodes represent individuals
and the links characterize the interactions among them. The
players in structured populations can change strategies based

on the imitation rule with the probability 1 − γ , and the
aspiration-driven rule with the probability γ .

First, a player termed the focal individual, x, was randomly
selected. This focal individual, x, collects the payoff from all
of its direct k (k is the degree of the structured populations)
neighbors around her. The average payoff of x can be defined
as

πx = 1

k

∑
y′∈Hx

axy′ , (7)

where Hx is a set composed by the nearest k neighbors of
focal individual x, and axy′ is x’s payoff from the interaction
between focal individual x and its one neighbor, y′. Subse-
quently, focal individual x randomly chose one neighbor, y,
from Hx (y ∈ Hx) as the model individual. The same steps
were applied to obtain the mean payoff, πy, of y.

Then, with the probability 1 − γ , the focus individual x
compares its average payoff with that of its neighbor, y, to
decide whether to change its current strategy. However, with
the probability γ , the focus individual x compares its average
payoff with its aspiration level, α, to decide whether to change
its current strategy. Therefore, the probability of individual
x changing its current strategy to the opposite one can be
defined as

PS = (1 − γ )
1

1 + eω(πy−πx )
+ γ

1

1 + eω(πx−α)
, (8)

where the parameter ω � 0 represents the selection intensity.
Taking the square lattice as an example, Fig. 2 shows the
mixed update model.

C. Random matching model

According to Refs. [45,46], a random-matching model rep-
resents a well-mixed analog to interactions on regular graphs
with a degree of k, which scheme naturally implements the
modified sampling scheme shown in the right-hand red box of
Fig. 2. A random-matching model is now defined based on the
mixed updating rules of combining the imitation process and
the aspiration-driven updating rule.

In the current time step, two individuals are randomly
selected, named focal individual x and model individual y,
from a population of size N , where agents x and y are
competitors. Then, from the rest N − 2 individuals, k − 1
individuals are randomly selected for each of x and y as the
interacting neighbors. The focal individual, x, interacts with
its k − 1 interacting neighbors, and the respective payoffs of
x are denoted by ax,1, ax,2, · · · , ax,k−1. In addition, x interacts
with the model individual, y, and the payoff of x is denoted by
axy. Thus, the average payoff of the focus individual x is

πx = 1

k

(
k−1∑
s=1

ax,s + axy

)
. (9)

Similar to the calculation of πx, the average payoff, πy of
model individual y can be obtained.

Focal individual x changes its strategy based on the fol-
lowing rule (Fig. 3). The focal individual x adopted imita-
tion update rule with a probability of 1 − γ by comparing
its average payoff πx to that of individual y. If the payoff
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FIG. 4. Transition probabilities vary with state i in the Prisoner’s
Dilemma, where R = 3, S = 1, T = 5, P = 2, ω = 0.5, and α = 4.
The red circles and blue triangles represent the respective transition
probabilities, pi,i+1, of the imitation and aspiration-driven update
processes. The magenta crosses and black squares represent the
respective transition probabilities, pi,i+1, of the mixed evolutionary
process with γ = 0.5 and γ = 0.8.

of the focal individual is greater than that of individual y,
then the focal individual x does not change its current strat-
egy; otherwise, the strategy changes. The focal individual x
adopted aspiration-driven update rule with a probability of γ

by comparing its average payoff πx to its aspiration-level α. If
the average payoff πx is greater than its aspiration level α, then
the individual x does not change its strategy to the opposite
scenario. Therefore, the probability of the focal individual,
x, changing its current strategy to the opposite one can be
defined as

PR = (1 − γ )
1

1 + eω(πy−πx )
+ γ

1

1 + eω(πx−α)
, (10)

where the parameter ω � 0 represents the selection intensity.
The above process was repeated for the following time step.
The Monte Carlo simulation procedure was also applied to
obtain the dynamics of the MFC in the random-matching
model.

III. RESULTS

A. Well-mixed population

This section discusses the evolutionary dynamics of the
proposed model in a homogeneous mixed finite population.
Taking the Prisoner’s Dilemma as an example, Fig. 4. shows
diagrams of the transition probabilities of different mixed
models where the horizontal axis represents states of the
proposed process. Except for the imitation process, all other
transition probabilities in the mixed model decreased with
state i of the system. It was also found that the transition
probability of the mixed model increased with an increase in
the γ value, that is, the transition probability of the imitation
process (γ = 0) was always lower than that of other mixed
processes, while that of the aspiration-driven process (γ = 1)
was always higher than that of other processes.

In the context of a finite population with cognitive capabili-
ties, the key concern related to the limit state of the population
under the microscopic update mechanism. Consequently, the
proposed model is not related to evolutionary time scales, but
only to the state of the population at a certain moment. It
should here be noted that, if γ = 0, the proposed process is the
so-called imitation process, and the Markov chain expressed
by Eqs. (6a)–(6c) is a birth–death process with absorbing
states 0 and N . As a matter of convenience, only the case
γ ∈ (0, 1] was considered, where, as a result of the aspiration-
driven dynamics, the evolutionary process expressed by
Eqs. (6a)–(6c) denotes an ergodic Markov chain with reflect-
ing boundaries. Therefore, the abundance of cooperators for
the proposed mixed process was next calculated, instead of the
fixation probability, which is the probability of being absorbed
into one of the two states [33,52]. The mean abundance of co-
operators reflects the limiting expected value of the proportion
of the total number of cooperators.

If qt ( j) describes the probability that the system is found
in state j at time t , then the master equation of qt ( j) is

qt+1( j) = qt ( j − 1)p j−1, j + qt ( j + 1)p j+1, j

+ qt ( j)(1 − p j, j+1 − p j, j−1). (11)

According to the properties of the ergodic Markov chain,
there is a unique stationary probability distribution, ψ =
(ψ0, ψ1, · · · , ψ j, · · · , ψN ), over the abundance of C, where

lim
t→∞ qt ( j) = ψ j . (12)

Whereby ψ j satisfies the balance equation [30]

ψ j = pi+1,iψ j+1 + pi−1,iψ j−1 + (1 − pi,i+1 − pi,i−1)ψ j .

(13)

Then, Eq. (13) satisfies the detailed balance condition [53]

N∑
j=0

ψ j = 1,

ψ j−1Pj−1, j = ψ jPj, j−1. (14)

Equation (14) was then rearranged to

ψ j=Pj−1, j

Pj, j−1
ψ j−1. (15)

Therefore,

ψ1=P0,1

P1,0
ψ0, (16)

ψ2=P1,2

P2,1
ψ1 = P0,1

P1,0

P1,2

P2,1
ψ0, (17)

ψ3=P2,3

P3,2
ψ2 = P0,1

P1,0

P1,2

P2,1

P2,3

P3,2
ψ0. (18)

Then,

ψ j = P0,1

Pj, j−1

j−1∏
i=1

Pi,i+1

Pi,i−1
ψ0, 1 � j � N. (19)
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FIG. 5. The MFC results vary in accordance with the selection intensity, ω, for three games, where α = 4 and N = 100. Panel (a) depicts
the MFC in the Prisoner’s Dilemma game, where R = 3, S = 1, T = 5, and P = 2. Panel (b) depicts the MFC in the coexistence game,
where R = 3, S = 2, T = 5, and P = 1. Panel (c) depicts the MFC in the coordination game, where R = 5, S = 1, T = 3, and P = 2. The
blue crosses, red diamonds, magenta circles, and black pentagrams show the proposed processes, these being γ = 0.2, γ = 0.5, γ = 0.8, and
γ = 1, respectively.

However,
∑N

j=0 ψ j = 1, thus yielding the following:

N∑
j=0

ψ j = ψ0

⎛
⎝1 +

N∑
j=1

P0,1

Pj, j−1

j−1∏
i=1

Pi,i+1

Pi,i−1

⎞
⎠ = 1. (20)

Hence,

ψ0 = 1

1 + ∑N
j=1

P0,1

Pj, j−1

∏ j−1
i=1

Pi,i+1

Pi,i−1

. (21)

Therefore, according to the above equations,

ψ j =
P0,1

Pj, j−1

∏ j−1
i=1

Pi,i+1

Pi,i−1

1 + ∑N
k=1

P0,1

Pk,k−1

∏k−1
i=1

Pi,i+1

Pi,i−1

. (22)

Then, the exact solution can be found by recursion:

ψ j =

⎧⎪⎪⎨
⎪⎪⎩

1

1+∑N
j=1

P0,1
Pj, j−1

∏ j−1
i=1

Pi,i+1
Pi,i−1

, j = 0

P0,1
Pj, j−1

∏ j−1
i=1

Pi,i+1
Pi,i−1

1+∑N
k=1

P0,1
Pk,k−1

∏k−1
i=1

Pi,i+1
Pi,i−1

, 1 � j � N
. (23)

XC is defined as the abundance of cooperators of the
proposed mixed process. Then, the exact value of XC can be
defined as

XC =
N∑

j=0

j

N
ψ j . (24)

Equation (24) also represents the average abundance of
cooperators over all possible states, i.e., MFC. For the pro-
posed model, this calculation was deemed too complicated
for deriving the specific analytical results. As such, numerical
calculation was taken as a powerful tool, because this can
obtain the relationships between the mean fraction of the
cooperators and the selection intensity ω, probability γ , and
aspiration level α.

Figure 5 shows the change of MFC with respect to selec-
tion intensity, ω, under the various mixed updating processes
(γ = 0.2, 0.5, 0.8). Figures 5(a)–5(c) represent the Prisoner’s
Dilemma, coexistence, and coordination games, respectively.
In the first two games, the MFC can be seen to decrease as
the selection intensity, ω, increases. The smaller the value of
γ , the higher the rate at which MFC decreases with ω. How-
ever, in the coordination game, the MFC increases with the
selection intensity, ω. The smaller the value of γ , the higher
the rate at which MFC increases with ω. From Fig. 5, the
conclusion can also be drawn that the aspiration-driven update
rule greatly promotes cooperation in the Prisoner’s Dilemma
and coexistence games, but inhibits it in the coordination
game.

Changes of the MFC were simulated with γ . The results
are shown in Fig. 6(a). The MFC in the Prisoner’s Dilemma
and coexistence games increases as γ increases, whereas it
decreases in the coordination game. The rate of change in
the MFC is larger with γ for the coordination game than for
the Prisoner’s Dilemma and coexistence games. In Fig. 6(b),
the Prisoner’s Dilemma can be seen to have the highest
MFC, whereas the coordination game has the lowest. As the
aspiration level α increases, the MFC decreases in these two
games, but increases in the coexistence game. When the level
of aspiration exceeds the maximum of the payoff matrix,
i.e., α > 5, the MFC changes very slowly and then tends to
stabilize.

B. Structured population

To further support the current claims, it was consid-
ered how the mixed update rule would affect the evolution
of cooperation in spatially extended populations, such as
square lattice, scale-free, and small-world networks. Given
the computational difficulties of theoretical analysis, a sim-
ulation analysis was used to analyze the dynamic evolution of
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FIG. 6. MFC results in an unstructured population with N = 100 and ω = 0.5. Panel (a) depicts the relationships between the MFC and γ ,
where α = 4; panel (b) depicts the relationships between the MFC and α, where γ = 0.5. The blue stars, red diamonds, and magenta circles
correspond to the Prisoner’s Dilemma (R = 3, S = 1, T = 5, P = 2), coexistence game (R = 3, S = 2, T = 5, P = 1), and coordination game
(R = 5, S = 1, T = 3, P = 2), respectively.

structured populations. The Monte Carlo simulation proce-
dure was used to obtain the dynamics of cooperation in
structured populations. The Monte Carlo dynamics were run
until the network achieved a stable state, where the MFC
fluctuated around a mean value. It should be noted that other
sizes of structured populations can be also implemented in
such a simulation, which does not affect the simulation results.

The asynchronous Monte Carlo procedure was applied to
simulate the evolutionary dynamics. First, it was assumed
that the players were confined to sites on a regular 100 ×
100 square lattice with periodic boundary conditions. Each
site contained one individual with two strategies, C and D.
Then, the mean payoffs obtained from the games between
an individual and their four nearest neighbors were taken
as the payoffs of the individual. Each individual changed
their strategy according to the imitation update rule with the
probability 1 − γ , or the aspiration-driven update rule with
the probability γ , according to the transition probabilities
[Eq. (8)]. Starting with a random initial state, where individu-
als randomly selected C or D, each simulation lasted until the
population reached a stable state (105–2 × 105 rounds), and
30 simulations were run. The mean and standard deviations
were taken over the last 104 rounds, and the simulation results
averaged over 30 runs.

Figure 7 describes the relationship between the MFC and
the selection intensity, ω, for the proposed model, with γ =
0.2, 0.5, 0.8 in the square lattice network. For the Prisoner’s
Dilemma and coexistence games, the MFC can be seen to
increase with the selection intensity, ω, when γ = 0.2, 0.5.
When γ = 0.2, the change rate of the MFC is greater than
that when γ = 0.5. However, as γ = 0.8, 1, the MFC first
decreases and then remains slightly altered with the selection
intensity, ω. In the coordination game, the MFC increases
with selection intensity, ω, as γ = 0.5, 0.8, 1. If γ = 0.2, then
the MFC first increases and then decreases with the selection
intensity ω, but this change is not obvious. Additionally, when
γ = 0.2, the MFC is highest in the Prisoner’s Dilemma and
coexistence games, and smallest in the coordination game.

By comparing Fig. 7 to Fig. 5, it can be seen that in the
Prisoner’s Dilemma and coexistence games, the aspiration-
driven update mechanism of the mixed process promotes
cooperation in a well-mixed population, but inhibits cooper-
ation in a square lattice network. In the coordination game,
the effect of the aspiration-driven update mechanism is also
different in both populations. For the three games, in a well-
mixed population and with an increase in the value of γ

value, the change rate of the MFC with selection intensity
ω decreases. In addition, the MFC monotonously rises or
declines with selection intensity ω in a well-mixed population,
while this is not always the case in lattice networks. The
behavior of the MFC in a square lattice is more complex than
that in a well-mixed population.

Figure 8(a) states the relationship between the MFC and in
the square lattice. In the Prisoner’s Dilemma and coexistence
games, the MFC decreases with γ . A smaller value of γ re-
sults in a higher rate of decrease. However, in the coordination
game, the MFC increases with γ . The MFC change trends
in the three games run contrary to those in homogeneous
populations [Fig. 6(a)]. The aspiration-driven process plays a
different role in the well-mixed populations and square lattice,
i.e., it promotes cooperation in homogeneous populations,
but inhibits the cooperation of square lattice networks in
the Prisoner’s Dilemma and coexistence games. However,
interestingly, the process inhibits cooperation in homoge-
neous populations, but promotes cooperation in square lattice
networks in the coordination game.

The individual’s aspiration level, α, represents the individ-
ual’s degree of satisfaction with the current game payoff and
directly determines if the individual is willing to change their
current strategy. Figure 8(b) depicts the effect of α on MFC,
where a phase transition point, α ≈ 3, can be seen. When
the level of aspiration is lower than 3, the MFC decreases
with the aspiration level α in the Prisoner’s Dilemma and
coexistence games and increases in the coordination game.
However, if the aspiration level is greater than 3 but less than
5, then the MFC in the Prisoner’s Dilemma and coexistence
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FIG. 7. The MFC varies with the selection intensity ω, in the three games with N = 100 × 100 and α = 4: (a) in the Prisoner’s Dilemma
with R = 3, S = 1, T = 5, and P = 2; (b) in the coexistence game with R = 3, S = 2, T = 5, and P = 1; (c) in the coordination game with
R = 5, S = 1, T = 3, and P = 2. The red solid lines, blue dash lines, black dotted lines, and magenta dash-dotted lines show the proposed
processes, with γ = 0.2, γ = 0.5, γ = 0.8, and γ = 1, respectively.

games increases, while decreasing in the coordination game.
Furthermore, when the level of aspiration is greater than 5, the
MFC remains basically unchanged across the three games.

To further support the current claims and better un-
derstand this phenomenon on a microscopic level, the
snapshots of the square lattice in three games were an-
alyzed (Fig. 9). According to Figs. 9(a) and 9(b), in
the Prisoner’s Dilemma, if γ = 0.2, the cooperators are
found to be in a group; as γ goes up to 0.8, the
cooperators’ islands are destroyed by defectors. Conse-
quently, from Figs. 8(a) and 9(a), 9(b), it can be concluded that
the aspiration-driven rule inhibits cooperation in the square
lattice. As can be seen from Figs. 9(c), 9(d), if γ = 0.2 in
the coexistence game, then the cooperators are found to be
in a group, but when γ goes up to 0.8, the cooperators’

islands are also destroyed by defectors. In Figs. 8(a) and
9(c), 9(d), the aspiration-driven rule in the coexistence game
is seen to inhibit cooperation in the square lattice network.
Figures 9(e) and 9(f) demonstrate that, in the coordination
game, the aspiration-driven rule promotes cooperation in the
square lattice as γ increases. In short, in the square lattice,
Figs. 8(a) and 9 demonstrate that the aspiration-driven rule
promotes cooperation in the first two games, and inhibits
cooperation in the last one.

Well-mixed populations and square lattice networks can be
regarded as regular networks. However, most networks in the
real world are not regular. Two more realistic network struc-
tures are the small-world networks proposed by Watts and
Strogatz [54] in 1998, and scale-free networks proposed by
Barabási and Albert [55] in 1999. The small-world network,

FIG. 8. In the 100 × 100 square lattice, MFC versus the probability γ in panel (a), where ω = 0.5 and α = 4, and MFC versus the
individuals’ aspiration level α in panel (b), where ω = 0.5 and γ = 0.5. The blue solid lines, red dash lines, and magenta dash-dotted lines
represent the Prisoner’s Dilemma (R = 3, S = 1, T = 5, and P = 2), coexistence game (R = 3, S = 2, T = 5, and P = 1), and coordination
game (R = 5, S = 1, T = 3, and P = 2), respectively.

022411-8



EVOLUTIONARY GAME DYNAMICS OF COMBINING THE … PHYSICAL REVIEW E 100, 022411 (2019)

FIG. 9. Snapshots of the 100 × 100 square lattice in the three games with ω = 0.1. The figure shows the results of: (a), (b) Prisoner’s
Dilemma with R = 3, S = 1, T = 5, and P = 2; (c), (d) coexistence game with R = 3, S = 2, T = 5, and P = 1; (e), (f) coordination game
with R = 5, S = 1, T = 3, and P = 2. γ = 0.2 for (a), (c), (e) and γ = 0.8 for (b), (d), (f). Cooperators are depicted in red and defectors in
green.

in which most nodes are not adjacent to each other but can be
connected via a small number of hops, exists in mathematics,
physics, and sociology, and is a mathematical graph model.
A complex network whose degree distribution conforms to
the power law distribution is a scale-free network, i.e., only
a few nodes tend to have a large number of connections. In
both structural networks, the MFC was analyzed according
to the proposed hybrid update process by using a simulation
analysis. The results are shown in Figs. 10 and 11.

For the scale-free network, it was assumed that the size
N = 10000. At the initial time, a complete network with

m0 = 20 nodes was established. Then, at each time step, a
new node was added and connected to m = 5 of the initial
m0 = 20 nodes. The above process was repeated until the
number of nodes increased to 10 000. For the small-world
network, a regular circular network was assumed, with N =
10000 nodes, each of which was connected by K = 6 edges to
the six nearest neighboring nodes. Then, an edge was added
between a randomly selected pair of nodes with a probability
of 0.5. Any two different nodes could have only one edge at
most, and each node could not be connected to itself. The
simulation lasted until the population reached a stable state

FIG. 10. In a scale-free network of size N = 10000, panel (a) shows the MFC versus the probability γ , where ω = 0.5 and α = 4; panel
(b) shows the MFC versus the individuals’ aspiration level α, where ω = 0.5 and γ = 0.5. The blue solid lines, red dash lines, and magenta
dash-dotted lines represent the Prisoner’s Dilemma (R = 3, S = 1, T = 5, and P = 2), coexistence game (R = 3, S = 2, T = 5, and P = 1),
and coordination game (R = 5, S = 1, T = 3, and P = 2), respectively.
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FIG. 11. In a small-world network of size N = 10000, panel (a) shows the MFC versus the probability γ , where ω = 0.5 and α = 4; panel
(b) shows the MFC versus the individuals’ aspiration level α, where ω = 0.5 and γ = 0.5. The blue solid lines, red dash lines, and magenta
dash-dotted lines represent the Prisoner’s Dilemma (R = 3, S = 1, T = 5, and P = 2), coexistence game (R = 3, S = 2, T = 5, and P = 1),
and coordination game (R = 5, S = 1, T = 3, and P = 2), respectively.

(about 105–2 × 105 rounds). Thus, it was determined that
each simulation ran for 2 × 105 rounds for each network, tak-
ing the mean and standard deviations over the last 104 rounds
as the results. Starting with a random initial state, where
individuals randomly selected C or D, 30 simulations were
run. The simulation results are averaged over 30 simulations.

According to Figs. 10(a) and 11(a), in the scale-free and
small-world networks of the Prisoner’s Dilemma and coexis-
tence games, the MFC decreases with γ , i.e., the aspiration-
driven update rule inhibits cooperation. Conversely, for the
coordination game, the MFC increases as γ decreases, i.e.,
the aspiration-driven update rule promotes cooperation. These
results are consistent with those of the square lattice network,
but inconsistent with those in homogeneous mixed popula-

tions. According to Figs. 10(b) and 11(b), in the Prisoner’s
Dilemma and coexistence games, the MFC first decreases and
then increases with γ . However, in the coordination game,
the MFC first increases and then decreases. The turning point
appears at α ≈ 3 in the three games. When the level of
aspiration is almost greater than α = 5, the MFC tends to be
stable. Compared to Figs. 6(b) and 8(b), it was found that the
changes of MFC with the aspiration level in the square lattice,
scale-free and small-world networks were more complex than
those in the well-mixed populations.

C. Random-matching model

As an extension, this section discusses the evolutionary
game dynamics of the random matching model based on

FIG. 12. In a random-matching model with size N = 10000, panel (a) shows the MFC versus the probability γ , where ω = 0.5 and α = 4;
panel (b) shows the MFC versus the individuals’ aspiration level α, where ω = 0.5 and γ = 0.5. The blue solid lines, red dash lines, and
magenta dash-dotted lines represent the Prisoner’s Dilemma (R = 3, S = 1, T = 5, and P = 2), coexistence game (R = 3, S = 2, T = 5, and
P = 1), and coordination game (R = 5, S = 1, T = 3, and P = 2), respectively. The standard deviation was applied as the error bar.
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the neoteric update rule presented in this paper. In each
time step, individuals were arranged on a random regular
graph and interacted with their neighbors, whereby a focal
individual updated its strategy through that of a randomly
selected neighbor, or by comparing their payoffs to their
aspiration level. Thus, an individual’s fitness was stochas-
tic, just as in structured populations [46]. The Monte Carlo
simulation procedure was also applied to obtain the dynam-
ics of cooperation in a random-matching model, thereafter
comparing the results of the random-matching model with
those of the homogeneous mixed population and square lattice
networks.

Figure 12 presents the results of the random-matching
model with degree k = 4 and size N = 10000. It also should
be noted that the population size in the random matching
model did not affect the simulation results. Here, it can be
seen that for the random matching model, in the Prisoner’s
Dilemma and coexistence games, the MFC decreases with the
increase of γ , while it increases with the increase of γ in
the coordination game [Fig. 12(a)]. That is to say, with the
increase of probability γ upon adopting the aspiration-driven
update rule, the MFC keeps decreasing in the first two games,
meaning that the aspiration-driven updating rule inhibits co-
operation. This conclusion is consistent with that obtained
from the analysis of the square lattice network [Fig. 8(a)].
Howerer, this differs from the results in the well-mixed pop-
ulation, as presented in Fig. 6(a). According to Fig. 12(b), in
the Prisoner’s Dilemma and coexistence games, the MFC first
decreases and then increases with the level of aspiration, while
in the coordination game, the MFC first increases and then
decreases. Across the three games, the phase transition point
is approximately α = 3. When the level of aspiration is almost
greater than α = 5, the MFC also tends to be stable. The
change rule is the same as that of the square lattice [Fig. 8(b)],
except for the rate of change.

IV. CONCLUSION

Cooperation is a universal phenomenon that exists in many
fields, such as human society and biological groups. The
promotion of cooperation has always been an important issue
in the evolutionary game. In finite populations, two funda-
mentally different mechanisms [32] can be used to classify
strategy updating and population dynamics according to the
knowledge that individuals possess about their strategic envi-
ronment or themselves: to imitate others and self-learning in
line with the individual’s own aspiration. The most important
difference with the aspiration-driven process is that it does not
require any knowledge about the payoffs of other individuals;
i.e., the aspiration-driven update dynamic, which is a form of
self-learning, requires less information about an individual’s
strategic environment than do imitation dynamics. To date, the
imitation and aspiration-driven processes have been broadly
studied in various topologies for different games. However,
the studies on evolutionary dynamics have concentrated on
single update rules. The assumption that each individual in a
population adopts a single update rule to shift their strategy
is idealized and unrealistic. Therefore, the current study com-
bined the imitation process with the aspiration-driven update

process to establish a new mixed model. This model removes
the assumption that an individual uses a single rule for
updating their strategy and, therefore, differs from previous
models.

The motivation for studying this hybrid model was to
explore whether or not the new mixed update rule favored
the formation of cooperation. Specifically, the variance of
MFC alongside certain factors was investigated, such as se-
lection intensity ω, the probability γ with which an individual
adopts the aspiration-driven rule, and aspiration level α. We
studied not only a homogeneous mixed population, but also
a structural population and random matching model. The
results of the random latter were consistent with those in the
square lattice, but different from those in the homogeneous
mixed population. In the Prisoner’s Dilemma, coexistence
and coordination games, the aspiration-driven update rule
played different roles. In the Prisoner’s Dilemma and coex-
istence games, the aspiration update mechanism promoted
cooperation in well-mixed populations but inhibited it in
structured ones and in the random-matching model. However,
the opposite effects emerged in the coordination game. In
the structural populations and random matching model, the
MFC was seen to have the same change trend with the
selection intensity ω, but with a different rate of change. In
the structural populations and random matching model, the
MFC changed with the aspiration level and there occurred a
phase transition point. In the Prisoner’s Dilemma and coex-
istence games, the MFC had a minimum value at the phase
transition point, and a maximum value at the phase transition
point in the coordination game. In the structural populations
and random matching model, the population size did not
affect changes in the MFC, including those of the phase
transition.

The present investigation sheds some light on the com-
plex dynamics in a well-mixed population, structured popu-
lations and random-matching model, and also highlights the
role of aspiration-driven processes in evolutionary games.
Therefore, the current work may be helpful in understanding
the cooperative behavior induced by combining imitation
and aspiration-driven update rules in the different popula-
tion structures. Owing to the complexity and variability of
the external environment and the internal sophistication of
the individual, the tendency of individuals to change their
strategies through mixed update rules is understandable, and
in line with human psychology. Consequently, future studies
should consider evolutionary dynamics combining more than
two updating processes. Thus, it can also be expected that
much more complicated dynamics would occur in the dif-
ferent contexts of network structure populations. In addition,
individuals in a population are generally heterogeneous. The
level of desire is not necessarily the same for each individ-
ual. Therefore, future studies could also consider the pop-
ulation dynamics caused by the heterogeneity of individual
aspiration.
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[46] J. Miȩkisz, J. Theor. Biol 232, 47 (2005).
[47] M. A. Amaral, M. Perc, L. Wardil, A. Szolnoki, E. J. da

Silva Júnior, and J. K. L. da Silva, Phys. Rev. E 95, 032307
(2017).

[48] L. A. Imhof and M. A. Nowak, J. Math. Biol. 52, 667
(2006).

[49] P. Ashcroft, P. M. Altrock, and T. Galla, J. R. Soc. Interface 11,
20140663 (2014).

[50] B. Wu, P. M. Altrock, L. Wang, and A. Traulsen, Phys. Rev. E
82, 046106 (2010).

[51] Y. K. Liu, X. J. Chen, L. Wang, B. Li, W. G. Zhang, and H. F.
Wang, Europhys. Lett. 94, 60002 (2011).

[52] B. Wu, C. S. Gokhale, L. Wang, and A. Traulsen, J. Math. Biol.
64, 803 (2012).

[53] N. G. V. Kampen, Phys. Today 36, 78 (1983).
[54] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[55] A. L. Barabasi and R. Albert, Science 286, 509 (1999).

022411-12

https://doi.org/10.1103/PhysRevE.93.042304
https://doi.org/10.1103/PhysRevE.93.042304
https://doi.org/10.1103/PhysRevE.93.042304
https://doi.org/10.1103/PhysRevE.93.042304
https://doi.org/10.1103/PhysRevE.58.69
https://doi.org/10.1103/PhysRevE.58.69
https://doi.org/10.1103/PhysRevE.58.69
https://doi.org/10.1103/PhysRevE.58.69
https://doi.org/10.1016/j.tree.2006.08.010
https://doi.org/10.1016/j.tree.2006.08.010
https://doi.org/10.1016/j.tree.2006.08.010
https://doi.org/10.1016/j.tree.2006.08.010
https://doi.org/10.1038/nature02978
https://doi.org/10.1038/nature02978
https://doi.org/10.1038/nature02978
https://doi.org/10.1038/nature02978
https://doi.org/10.1073/pnas.0602530103
https://doi.org/10.1073/pnas.0602530103
https://doi.org/10.1073/pnas.0602530103
https://doi.org/10.1073/pnas.0602530103
https://doi.org/10.1016/j.jtbi.2006.06.004
https://doi.org/10.1016/j.jtbi.2006.06.004
https://doi.org/10.1016/j.jtbi.2006.06.004
https://doi.org/10.1016/j.jtbi.2006.06.004
https://doi.org/10.1016/j.jtbi.2008.01.005
https://doi.org/10.1016/j.jtbi.2008.01.005
https://doi.org/10.1016/j.jtbi.2008.01.005
https://doi.org/10.1016/j.jtbi.2008.01.005
https://doi.org/10.1209/0295-5075/87/60004
https://doi.org/10.1209/0295-5075/87/60004
https://doi.org/10.1209/0295-5075/87/60004
https://doi.org/10.1209/0295-5075/87/60004
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1103/PhysRevE.71.025101
https://doi.org/10.1103/PhysRevE.71.025101
https://doi.org/10.1103/PhysRevE.71.025101
https://doi.org/10.1103/PhysRevE.71.025101
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1073/pnas.0502589102
https://doi.org/10.1126/science.1093411
https://doi.org/10.1126/science.1093411
https://doi.org/10.1126/science.1093411
https://doi.org/10.1126/science.1093411
https://doi.org/10.1016/j.tpb.2006.07.006
https://doi.org/10.1016/j.tpb.2006.07.006
https://doi.org/10.1016/j.tpb.2006.07.006
https://doi.org/10.1016/j.tpb.2006.07.006
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1038/nature02414
https://doi.org/10.1038/nature02414
https://doi.org/10.1038/nature02414
https://doi.org/10.1038/nature02414
https://doi.org/10.1103/PhysRevE.80.011909
https://doi.org/10.1103/PhysRevE.80.011909
https://doi.org/10.1103/PhysRevE.80.011909
https://doi.org/10.1103/PhysRevE.80.011909
https://doi.org/10.1016/j.jtbi.2007.01.002
https://doi.org/10.1016/j.jtbi.2007.01.002
https://doi.org/10.1016/j.jtbi.2007.01.002
https://doi.org/10.1016/j.jtbi.2007.01.002
https://doi.org/10.1103/PhysRevLett.95.238701
https://doi.org/10.1103/PhysRevLett.95.238701
https://doi.org/10.1103/PhysRevLett.95.238701
https://doi.org/10.1103/PhysRevLett.95.238701
https://doi.org/10.1016/j.jtbi.2006.08.008
https://doi.org/10.1016/j.jtbi.2006.08.008
https://doi.org/10.1016/j.jtbi.2006.08.008
https://doi.org/10.1016/j.jtbi.2006.08.008
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1088/1367-2630/11/1/013012
https://doi.org/10.1016/j.physa.2017.04.154
https://doi.org/10.1016/j.physa.2017.04.154
https://doi.org/10.1016/j.physa.2017.04.154
https://doi.org/10.1016/j.physa.2017.04.154
https://doi.org/10.1038/srep08014
https://doi.org/10.1038/srep08014
https://doi.org/10.1038/srep08014
https://doi.org/10.1038/srep08014
https://doi.org/10.1098/rsif.2014.0077
https://doi.org/10.1098/rsif.2014.0077
https://doi.org/10.1098/rsif.2014.0077
https://doi.org/10.1098/rsif.2014.0077
https://doi.org/10.1103/PhysRevE.94.012124
https://doi.org/10.1103/PhysRevE.94.012124
https://doi.org/10.1103/PhysRevE.94.012124
https://doi.org/10.1103/PhysRevE.94.012124
https://doi.org/10.1016/j.aml.2008.09.005
https://doi.org/10.1016/j.aml.2008.09.005
https://doi.org/10.1016/j.aml.2008.09.005
https://doi.org/10.1016/j.aml.2008.09.005
https://doi.org/10.1088/1367-2630/aac687
https://doi.org/10.1088/1367-2630/aac687
https://doi.org/10.1088/1367-2630/aac687
https://doi.org/10.1088/1367-2630/aac687
https://doi.org/10.1103/PhysRevE.77.017103
https://doi.org/10.1103/PhysRevE.77.017103
https://doi.org/10.1103/PhysRevE.77.017103
https://doi.org/10.1103/PhysRevE.77.017103
https://doi.org/10.1103/PhysRevE.97.042305
https://doi.org/10.1103/PhysRevE.97.042305
https://doi.org/10.1103/PhysRevE.97.042305
https://doi.org/10.1103/PhysRevE.97.042305
https://doi.org/10.1016/j.jtbi.2014.08.047
https://doi.org/10.1016/j.jtbi.2014.08.047
https://doi.org/10.1016/j.jtbi.2014.08.047
https://doi.org/10.1016/j.jtbi.2014.08.047
https://doi.org/10.1016/j.jtbi.2015.09.016
https://doi.org/10.1016/j.jtbi.2015.09.016
https://doi.org/10.1016/j.jtbi.2015.09.016
https://doi.org/10.1016/j.jtbi.2015.09.016
https://doi.org/10.1103/PhysRevE.94.032407
https://doi.org/10.1103/PhysRevE.94.032407
https://doi.org/10.1103/PhysRevE.94.032407
https://doi.org/10.1103/PhysRevE.94.032407
https://doi.org/10.1088/1674-1056/28/2/020203
https://doi.org/10.1088/1674-1056/28/2/020203
https://doi.org/10.1088/1674-1056/28/2/020203
https://doi.org/10.1088/1674-1056/28/2/020203
https://doi.org/10.1007/s00265-010-1020-2
https://doi.org/10.1007/s00265-010-1020-2
https://doi.org/10.1007/s00265-010-1020-2
https://doi.org/10.1007/s00265-010-1020-2
https://doi.org/10.1006/jeth.1996.0076
https://doi.org/10.1006/jeth.1996.0076
https://doi.org/10.1006/jeth.1996.0076
https://doi.org/10.1006/jeth.1996.0076
https://doi.org/10.1103/PhysRevE.98.052301
https://doi.org/10.1103/PhysRevE.98.052301
https://doi.org/10.1103/PhysRevE.98.052301
https://doi.org/10.1103/PhysRevE.98.052301
https://doi.org/10.1016/j.jtbi.2004.07.019
https://doi.org/10.1016/j.jtbi.2004.07.019
https://doi.org/10.1016/j.jtbi.2004.07.019
https://doi.org/10.1016/j.jtbi.2004.07.019
https://doi.org/10.1103/PhysRevE.95.032307
https://doi.org/10.1103/PhysRevE.95.032307
https://doi.org/10.1103/PhysRevE.95.032307
https://doi.org/10.1103/PhysRevE.95.032307
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1007/s00285-005-0369-8
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1103/PhysRevE.82.046106
https://doi.org/10.1103/PhysRevE.82.046106
https://doi.org/10.1103/PhysRevE.82.046106
https://doi.org/10.1103/PhysRevE.82.046106
https://doi.org/10.1209/0295-5075/94/60002
https://doi.org/10.1209/0295-5075/94/60002
https://doi.org/10.1209/0295-5075/94/60002
https://doi.org/10.1209/0295-5075/94/60002
https://doi.org/10.1007/s00285-011-0430-8
https://doi.org/10.1007/s00285-011-0430-8
https://doi.org/10.1007/s00285-011-0430-8
https://doi.org/10.1007/s00285-011-0430-8
https://doi.org/10.1063/1.2915501
https://doi.org/10.1063/1.2915501
https://doi.org/10.1063/1.2915501
https://doi.org/10.1063/1.2915501
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509

