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Ion channels regulate the flux of ions through cell membranes and play significant roles in many physiological
functions. Most of the existing literature focuses on computational approaches based on molecular dynamics
simulation or numerical solution of the modified Poisson-Nernst-Planck (PNP) system. In this paper, we present
an analytical and computational study of a mathematical model of the KcsA potassium channel, including the
effects of ion size (Bikerman model) and solvation energy (Born model). Under equilibrium conditions, we
obtain an analytical solution of our modified PNP system, which is used to explain selectivity of KcsA of various
ions (K+, Na+, Cl−, Ca2+, and Ba2+) due to negative permanent charges inside the filter region and the effect
of ion sizes. Our results show that K+ is always selected over Na+, as smaller Na+ ions have larger solvation
energy. As the amount of negative charges in the filter exceeds a critical value, divalent ions (Ca2+ and Ba2+) can
enter the filter region and block the KcsA channel. For the nonequilibrium cases, due to difficulties associated
with a pure analytical or numerical approach, we use a hybrid analytical-numerical method to solve the modified
PNP system. Our predictions of selectivity of KcsA channels and saturation phenomenon of the current-voltage
(I-V ) curve agree with experimental observations.
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I. INTRODUCTION

Rapid communication in many organisms relies on fast
propagation of electric signals, which in turn depends on a
specialized class of protein molecules called ion channels.
When ion channels embedded in the cell membrane are
opened by either chemical ligands or membrane depolariza-
tion, they allow ionic fluxes across the membrane and lead to
rapid changes of membrane potentials. The dysfunction of ion
channels causes a number of diseases. Specifically, potassium
(K+) channels regulate the flux of K+ ions through cell mem-
branes and participate in several physiological functions such
as maintaining resting membrane potential, firing of nerve and
muscle cells, secretion of hormones, and sensory transduction
[1,2]. Therefore, understanding the underlying mechanisms
that determine channel selectivity is of fundamental impor-
tance, for both biological and medical sciences [3–5].

K+ channels are the most extensively studied family of
ion channels, both experimentally and computationally, and
the KcsA structure [6,7] has been the most popular one
among K+ channels since it is the first K+ channel to be
crystalized. Many computational and experimental data of
KcsA are available for comparison. The x-ray crystallographic
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structures of distinct potassium channels reveal a common
architecture of the pore [8,9]. Four subunits are symmetrically
arranged around the channel axis, with each subunit having
at least two transmembrane helixes separated by a reentrant
P-loop and the selectivity filter (SF).

The SF of K+ channels is the essential element to their
permeation and selectivity mechanisms [10]. Tens to hundreds
of millions (107–108) of K+ ions per second can diffuse
in single file down their electrochemical gradient across the
membrane at physiological conditions [1,11–13]. Each sub-
unit contributes to the SF with a conserved signature peptide,
namely TVGYG in most of the channels [3]. The carbonyl
oxygens of the backbone of the SF point toward the lumen and
orchestrate the movements of ions in and out of the channel.
These carbonyl oxygens together with the side-chain hydroxyl
oxygen of a threonine residue define four ion-binding sites in
the SF, designated S1–S4 starting at the extracellular side [14].
In addition, K+ ion can bind in the central water-filled cavity
of the pore and two alternate positions at the extracellular side
of the pore [14].

The SF is generally too narrow to accommodate a K+ ion
with its hydration shell, and thus K+ ions must be dehydrated
to enter the SF, when attracted by the strong negative charges
of carbonyl oxygens in the SF. A K+ ion must replace its
solvation shell by the carbonyl oxygens in the backbone of
the SF. Each of these protein sites binds K+ ions with a
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tight-fitting cage of eight carbonyl oxygen atoms that resem-
bles the solvation shell of a hydrated K+ ion.

The classical Poisson-Nernst-Planck (PNP) system has
been widely applied to model ionic transport in biological
setting as well as other areas [15–17]. Various analytical and
computation studies of the PNP system can be found in the
literature [18–20]. The current-voltage (I-V ) relation is an
important functional characteristic of ion channels and can be
determined experimentally. PNP theory has been successfully
applied to model wide ion channels, and has successfully
reproduced experimentally observed I-V relation [21,22].
However, it is not suitable for narrow ion channels, such as
KcsA. This is because classical PNP neglects the effect of ion
sizes and therefore overestimates the K+ ion occupancy of
the SF. Also, classical PNP does not consider the solvation
energy barrier that is encountered by ions entering the SF
when dehydrated.

Various modified PNP system have been proposed to in-
clude steric or size effect of ions [23–29]. In this study,
we choose the Bikerman model [30], which is one of the
widely accepted models in the literature. The Bikerman model
considers water as an additional species in the entropy, and it
has been derived by using the mean-field theory in Ref. [31] to
study a calcium channel. It has also been extended to include
void as extra species in Refs. [29,32,33]. The Bikerman model
with same ion sizes (called Borukhov model in Ref. [34])
has also been generalized to allow different ionic sizes in a
modified PNP model in Ref. [34] by modifying the free en-
ergy. The Bikerman model is chosen because of its simplicity
that allows us to obtain analytical results, which we believe
can provide more physical insights into the mechanism of ion
channels. In addition, solvation energy based on Born model
[35–37] is included in the present formulation to capture the
significant contribution in the free energy due to dehydration
of ions.

It is well known that potassium channels have high se-
lectivity of potassium ion over sodium ion (K+ is 104 times
more permeant than Na+) [1]. Though K+ and Na+ have
the same valence and therefore have the same electrostatic
affinity to carbonyl oxygens in the SF, K+ encounters less
Born solvation energy barrier than Na+ due to its slightly
larger size compared with Na+. However, few studies have
been conducted on the selectivity between K+ and alkaline
earth ions like Ca2+ and Ba2+. Alkaline earth ions generally
have stronger electrostatic affinity to the SF than K+ due to
their double charge, but at the same time also bear larger
Born solvation energy barrier again due to their double charge.
The blockage of KcsA by Ba2+ has demonstrated this strong
competition of the SF occupancy between electrostatic affinity
and solvation energy [38].

In the literature, selectivity of ion channels is defined in
various ways by specific experiments or specific models, see
Ref. [39] for a review. On the basis of thermodynamic binding
equilibrium, selectivity is often defined as the free-energy
difference of different ions from the chamber to a binding
site in the filter [9,40], which is widely used in MD simula-
tions. Classically, in nonequilibrium setting or in experimental
measurements, selectivity is sometimes defined as the ratio
of currents (or permeability in GHK model) of different ions
through the channel [41,42], characterized by I-V relations or

conductance-concentration relations. In the equilibrium case,
Liu et al. [43] adopted a Poisson-Fermi model with nonlocal
electrostatics, and computed the free energy differences for
selectivity of Na+ and K+, which agrees with MD results.
In the nonequilibrium case, the selectivity of gramicidin A
channel and a calcium channel was investigated in Ref. [44]
based on the PNP-Fermi model, showing agreement with
experimental I-V data. With the present continuum (modified
PNP) model, selectivity in this paper is defined as the ratio
of concentrations of different ions in the filter region [45–50],
under normal physiological conditions in the chamber. This
is slightly different from those based on discrete models or
MD simulations, but it bears some similarities in causes and
consequences. In the equilibrium case, we can also compute
free-energy differences as in MD simulations [40]. In the
nonequilibrium case, one consequence of this definition of se-
lectivity is that only selected ions can go through the channel,
and the results of their currents can be directly compared with
experimental I-V data [13].

Here we employ a one-dimensional modified PNP model
to analytically and numerically study the mechanisms of
(i) channel selectivity among K+ and other ions; and
(ii) level off of current I when voltage V increases, known
as saturation in the literature [13,51–53]. More precisely,
we provide analytical formulas that can be used to explain
selectivity among K+, Na+, Cl−, Ca2+, and Ba2+. Selectivity
is mainly influenced by permanent negative charges in the
SF and solvation energies associated with the ion sizes and
valences. The smaller ion size of Na+ compared with K+
gives a larger solvation energy barrier to enter the filter, and
hence its concentration is exponentially smaller (not selected).
When negative charge in the SF exceeds a critical value
(given by the ion size of K+), divalent cations coexist with
K+ by squeezing some K+ out of the SF, since divalent
cations can do a better job in balancing the strong negative
charges in the narrow SF. Although Born solvation energy is
increased by this recruitment of divalent cations into the SF,
it is compensated by a greater reduction of the electrostatic
energy. As the result, the total energy is lower. We have
studied the I-V curves by analytical, numerical, and hybrid
methods, and our results are in agreement with experimental
observations. Our solutions have revealed that the main reason
for saturation of the I-V curve is that the concentrations of
selected ions approach 0 in the chamber at the edge of filter
when the voltage becomes large. Positivity of concentration
sets an upper limit for the flux or current, known as saturation.

The manuscript is arranged as follows. Section II for-
mulates the mathematical model, i.e., modified PNP system
consisting of the Bikerman and Born models. Section III
focuses on the equilibrium case with zero flux and addresses
the issues of selectivity. Section IV provides analytical results
for the nonequilibrium case and discusses the I-V curve.
Numerical simulations are conducted in Sec. V and a hybrid
analytical-numerical analysis is given in Sec. VI. Finally,
some concluding remarks are provided in Sec. VII.

II. MATHEMATICAL MODEL

We consider the Bikerman model with specific ion sizes
[30] and include permanent charge and solvation energy into
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FIG. 1. Sketch of the potassium KcsA channel.

the Poisson-Nernst-Planck (PNP) formulation. The original
one-dimensional (1D) system for −L < x < L is

− 1

A(x)
∂x(ε0εr (x)A(x)∂xφ) = e0

(
n∑

k=1

zkck − q(x)

)
,

∂t ci + 1

A(x)
∂xJi = 0, (1)

Ji = −A(x)
Di

kBT
ci∂xμi,

where ci (i = 1, .., n) denote the concentrations of ions, φ is
the electric potential, A(x) is the cross sectional area, q(x)
is the permanent charge (positive q means negative fixed
charge), εr (x) is the relative permittivity, and kB, T, ε0, e0

are some constants (see Appendix A). The electrochemical
potentials are given by

μi = kBT

[
log

(
cia

3
i

) − log

(
1 −

n∑
k=1

cka3
k

)]

+ zieφ + Wi, i = 1, .., n, (2)

where ai are the effective ion diameters, and Wi is the solvation
energy [36,37]

Wi(x) = z2
i e2

0

4πε0ai

(
1

εr (x)
− 1

)
. (3)

The form of μi without the solvation energy was derived
by the mean-field theory in Ref. [31] and later reviewed in
Ref. [30]. This modified PNP system can be derived from the
free energy in Appendix C with certain approximation [30].

Figure 1 schematically shows the setup, where the filter of
the channel lies between two chambers, linking extracellular
and intracellular spaces, respectively. The length of the filter
is L f and the length of each chamber is set as Lb (then refer-
ence length is L = Lb + 1

2 L f ), where some part of reservoir
is included if we consider a relatively large Lb. The cross
sectional area A(x) in the filter is much smaller than that
of the chamber region. The permanent negative charge q(x)
due to carbonyl oxygens and threonine residues is confined
in the small volume of the filter, so the effective q(x) in
the model is extremely large compared with the chamber
concentrations of ions [54,55]. This further implies that the
filter attracts counter-ions and thus the saturation of ions in
the filter means few water molecules in the filter or ions are
dehydrated. Therefore, the dielectric constant εr (x) would be
much smaller in the filter, and this justifies the introduction
of the above solvation energy Wi(x), which gives the energy
barrier from the chamber to the filter. In later analysis, the
solvation energy also causes jumps in concentrations from the

chamber to the filter while maintaining continuous electro-
chemical potentials μi.

In the chamber, the model is approximately the classic PNP
system, where the size effect is negligible and q(x) = 0. With
this in mind, we do a traditional nondimensionalization with
reference scales in the chamber. We set

x̃ = x

L
, c̃i = ci

c0
, φ̃ = φ

φ0
, D̃i = Di

D0
,

t̃ = t

L2/D0
, ε̃r = εr

εrb
, ãi = ai

a0
, Ã = A

Ab
, (4)

L̃ f = L f

L
, q̃ = q

c0
, W̃i = Wi

kBT
,

where a0 is a reference ion diameter, D0 is a reference
diffusion constant, Ab is a reference cross sectional area in
the chamber and εrb is the (maximum) relative permittivity at
the far end of the chamber (see Eq. (A2) in Appendix A for
their values).

By removing the tilde, the dimensionless system in −1 <

x < 1 is

−ε2 1

A(x)
∂x(εr (x)A(x)∂xφ) =

n∑
k=1

zkck − q(x),

∂t ci + 1

A(x)
∂xJi = 0, (5)

Ji = −A(x)Dici∂xμi,

where i = 1, ..., n and

μi(x) = log[ci(x)] − log

(
1 −

n∑
k=1

ck (x)a3
kδ

)

+ ziφ(x) + Wi(x), (6)

Wi(x) = z2
i

ai

(
1

εrbεr (x)
− 1

)
W0,

where the first term in μi is originally log(cia3
i δ) after nondi-

mensionalization, but we removed the constant log(a3
i δ) from

μi since this will not affect the system. The dimensionless
parameters are

ε =
√

ε0εrbkBT

e2
0c0L2

, δ = a3
0c0, W0 = e2

0

4πε0a0kBT
. (7)

Please refer to Appendix A for the estimates of parameters
in this system, and note that δ � 1. Since the classical PNP
formulation is a model for dilute solutions [26,56], it can
be recovered when εr (x) is constant and the concentrations
ci (i = 1, .., n) are O(1) (i.e., dilute solution ci � 1/δ) as
in the chamber region. When εr is constant, Wi is constant
for each ion, and hence can be removed from μi in Eq. (6)
(since differentiation gives 0). When ck is O(1) as in the
chamber region, since δ ∼ 10−3 is a small parameter and
ak ∼ O(1), cka3

kδ in the second term of μi in Eq. (6) can be
neglected. Therefore, it reduces to the classical PNP as first
approximation in terms of δ for the chamber region. However,
in the filter region, ck is large (of order 1/δ), and cka3

kδ cannot
be neglected. Moreover the variation in εr gives the solvation
energy barrier from the chamber to the filter.
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III. EQUILIBRIUM CASE WITH ZERO FLUX

In this section, we study the selectivity of the channel in
the equilibrium case, for simplicity. We will see the con-
clusions also hold for the nonequilibrium case with finite
fluxes. This is reflected in the analysis of this section that
the boundary conditions (inducing finite flux when different)
have a negligible or exponentially small impact on the results.
This is also verified by analytical and numerical results in the
nonequilibrium case, as the selected ions have almost constant
electrochemical potential μi in the filter (like the equilibrium
case), see figures of μi in Secs. IV and V and analysis before
Eq. (67). The equilibrium case in this section is related to the
equilibrium binding in experiments or MD simulations.

The same boundary conditions at the two ends of the
chamber are used

ci(x) = cib, φ(x) = φb, at x = ±1, (8)

where i = 1, .., n and the electro-neutrality condition∑n
i=1 zicib = 0 is satisfied. Therefore, there is no flux across

the filter. The aim is to study the relative concentrations of
ions in the filter under different situations, which would imply
the selectivity.

In the general case, we notice that by definition of μi in
Eq. (6) we can solve ci (i = 1, .., n) in terms of φ and μi (see
Appendix B and Ref. [57]):

ci = eμi−Wi−ziφ

(1 + Fδ)
, F =

n∑
k=1

a3
keμk−Wk−zkφ. (9)

For the equilibrium case, by Ji = 0, we conclude that μi is
constant throughout the filter and the chamber

μi(x) = Bi = log(cib) − log

(
1−

n∑
k=1

ciba3
kδ

)
+ ziφb + Wi(1),

(10)

where the constant Bi is determined by the boundary condi-
tions in Eq. (8). In this case, by substituting Eq. (10) into (9),
ci is expressed explicitly in terms of φ. When ci is O(1) as in
the chamber region, Eq. (9) reduces to the classical Boltzmann
distribution at leading order (i.e., δ tends to 0),

ci = eμb
i −ziφ[1 + O(δ)], μb

i = log(cib) + ziφb, (11)

where the Wi term has canceled with that in μi.
Since the filter region is quite small, it is natural to adopt

an effective charge [55,58]. We assume q(x) = q is a large
constant in the filter, and treat q as a crucial parameter.
Depending on the relative magnitude of q, we have either the
electroneutral (EN) case or the non-EN case in the filter. We
also assume εr (x) = εr0 in the filter, where εr0 is constant (i.e.,
1/40, corresponding to original εr = 2). Note by the choice of
scaling in Eq. (4), we have εr (±1) = 1.

A. K+/Na+ selectivity

In this subsection, we consider the case with three ions
K+, Na+, and Cl− (respectively, c1, c2, and c3), and study the
selectivity between Na+ and K+.

From the expressions of c1 and c2 in Eqs. (9) and (10), we
get in the filter

c1

c2
= eB1−W1(0)

eB2−W2(0)
. (12)

Thus, the ratio c1/c2 is a constant independent of φ and x in
the filter. More precisely, we have

Bi − Wi(0) ≈ −�Wi + log cib + ziφb, i = 1, ..., n,

(13)
where the O(δ) term in the chamber has been dropped and
�Wi is the barrier from the chamber to the filter due to the
solvation energy:

�Wi = Wi(0) − Wi(1)= z2
i

ai

(
1

εrbεr0
− 1

εrb

)
W0, i=1, ..., n.

(14)

Since the ion diameter of K+ is larger than that of Na+, the
barrier of K+ from the chamber to the filter is smaller, i.e.,

a1 > a2 ⇒ �W1 < �W2. (15)

From the data in Eq. (A3) of Appendix A, we get �Wi ∼
W0 ∼ O(102), thus the term �Wi dominates the ratio Eq. (12),
and hence c2 is always exponentially smaller than c1. As both
c1 and c2 are at most of the order O(q), the concentration c2

is exponentially small and negligible in the filter. This means
that K+ is favored or selected in the filter compared with Na+,
and this fact is independent of q. Based on data in Eqs. (A2)
and (A3) of Appendix A, we get

�W1 = 98.4, �W2 = 133.1. (16)

This implies that the term �Wi dominates in Eqs. (12)
and (13), unless the chamber contraction c2b is 1015 times
larger than c1b. Under normal physiological conditions [i.e.,
cib, φb ∼ O(1)] in the chamber, we obtain the selectivity of
K+ over Na+ through the ratio

c1

c2
∼ 1015. (17)

Since the boundary values φb, cib (i = 1, 2, 3) have negligible
effect (φb has no effect here), one can imagine this conclusion
holds for the nonequilibrium case. One can rigorously prove
it by noting μi is monotone in the nonequilibrium case with
finite flux.

1. EN case

From the data in Eqs. (A3) and (A4) of Appendix A, we
obtain q ∼ O(1/δ). We have EN case when q does not exceed
the critical value:

q <
1

a3
1δ

. (18)

Since there is limited space in the filter, physically the critical
value on the right-hand side is the maximum effective charge
that ions of K+ can provide to balance the negative permanent
charge q when the filter is fully filled with K+. In this case,
K+ and its size a1 are crucial because of the selectivity in
Eq. (17). In the case of Eq. (18), the same amount of K+ will
be recruited into the filter to balance the negative permanent
charge q, leading to EN and constant φ in most part of filter.
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FIG. 2. Dependence of φ∗ and c∗
i (i = 1, 2) in the filter on permanent charge q.

When q exceeds that critical value, even the maximum amount
1/a3

1δ of K+ can not balance q. It is no longer EN in filter (see
Sec. III A 2), and the extra charge q − 1/a3

1δ will be balanced
by the change of electric field (i.e., left-hand side of Eq. (5)),
and therefore the profile of φ behaves like a quadratic function
instead of a constant.

Here, the EN condition in the filter,

c1 + c2 − c3 = q, (19)

provides a nonlinear equation for φ, with the help of Eqs. (9)
and (10). In fact, this is a quadratic equation for eφ . The
analytic solution involves many exponentially large and ex-
ponentially small terms, and can easily lead to wrong or
complex solutions by direct computation with softwares (e.g.,
Mathematica). It is easy to prove that c3 is also exponentially
small. As a leading order approximation, we have

c∗
1 = q, c∗

k = 0, k = 2, 3,

φ∗ = −�W1 + log c1b + φb + log
(
1 − a3

1qδ
) − log q, (20)

which can also be obtained directly from the analytical solu-
tion by keeping the essential exponentially small terms and
dropping the high-order exponentially small terms.

Remark. In the above analysis, by EN condition we mean
that it is valid in the majority middle part of the filter region.
Actually, near the two edges of the filter (or interface of the
filter and the chamber), denoted as x = ±s, there is a tiny
boundary layer (BL) due to large q and small εr in Eq. (5)1,
where the variation of φ is quite large. In the approximation
Eq. (20), only some exponentially small terms are dropped, so
the expressions are accurate enough.

Figure 2 shows the dependence of the above solution on
q, with c1b = 1, φb = 0 and data in Eq. (A3) of Appendix A.
The value of c2b [assumed as O(1)], the profiles of A(x)
and εr (x), provided εr (0) = 1/40, will not affect the above
approximation in the filter. This will be verified in numerical
simulations. Based on selected values of the parameters, the
critical value is q = 1/a3

1δ ≈ 790 in Fig. 2. When q is near
0 or near this critical value, the above solution is not valid,
as indicated by two singularities in Fig. 2(a). When q exceeds

the critical value, one should solve the full Eq. (5)1 in the filter
instead of the EN condition, as we see in the next subsection.
For q > 1/a3

1δ, the subfigure in Fig. 2(a) (the minimum of φ)
and the curve in Fig. 2(b) are based on the next subsection.
Figure 2(b) shows the selectivity of K+ and Na+ in the filter.

2. Non-EN case

For this case, we can not use the EN condition and instead
we should solve the full Eq. (5). Since the length of the filter is
at the same scale as the BL in the classical PNP of the chamber
region, we introduce a new scale X = x/ε to study the system.
For the equilibrium case, the equation for φ is

− 1

A(X )
[εr (X )A(X )φ′(X )]′

=
n∑

k=1

zkck − q(X ), −∞ < X < ∞, (21)

where prime denotes the derivative with respect to X . In the
above, we consider a relatively long chamber region, so the
infinite domain is used as an approximation (this causes essen-
tially no difference). The position of the interface between the
filter and the chamber is X = S ≡ L f /2ε, where S ∼ O(1).

For simplicity, we consider a simple geometry (see Fig. 3)
where the cross-sectional area A(X ), the fixed charge q(X ),
and the relative permittivity εr (X ) are constants in either the

chamber filter

A=1

q

Af

chamber

FIG. 3. Sketch of the potassium channel with simplified geometry.
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chamber or the filter region. We denote

A(X ) = A f , εr (X ) = εr0, q(X ) = q, −S < X < S,

A(X ) = 1, εr (X ) = 1, q(X ) = 0, |X | > S. (22)

Note that some typical values are

A f = 1/30, q = 103, εr0 = 1/40. (23)

Due to symmetry, we consider only the interval X ∈
[0,∞). For the chamber region, Eq. (21) reduces to the
classical Poisson-Boltzmann equation by neglecting the O(δ)
term,

−φ′′(X ) = e−φ − eφ, S < X < ∞, (24)

where we have assumed the boundary conditions at ∞,

φ(∞) = 0, c1(∞) + c2(∞) = c3(∞) = 1. (25)

It is easy to get

φ′ =
√

2(e−φ/2 − eφ/2), S < X < ∞, (26)

and hence obtain the solution φ(X ) in the chamber region (see
Eq. (B4) in Appendix B).

In the filter, we have from Eq. (21) and the symmetry
condition that

−εr0φ
′′(X ) = c1 + c2 − c3 − q, 0 < X < S,

φ′(0) = 0, at X = 0, (27)

where ci (i = 1, 2, 3) are given by Eqs. (9) and (10). One
can easily prove that the function φ(X ) is monotonically
increasing throughout the interval [0,∞), since c2 + c1 < q
in the filter. For the filter region, since c2 is exponentially
small [see the analysis below Eq. (12)], it can be neglected.
In addition, by the expression of c3 in Eqs. (9) and (10) and
data in Eq. (A3) of Appendix A, we obtain

c3 < eB3−W3(0)+φ, B3 − W3(0) ≈ −�W3 ≈ −75. (28)

From the fact that φ is increasing, we get that φ < 0, thus c3 is
always exponentially small and can be neglected. Therefore,
the filter Eq. (27)1 is simplified to

−εr0φ
′′(X ) = c1 − q, c1 = eB1−W1(0)−φ

1 + δa3
1eB1−W1(0)−φ

. (29)

By integration, we get
√

εr0φ
′ =

√
2[G(φ) − G(φ0)],

X =
√

εr0

2

∫ φ

φ0

1√
G(φ) − G(φ0)

dφ, (30)

where φ0 ≡ φ(0) is to be determined, and the function G(φ)
is given by

G(φ) =
∫ φ

q − c1dφ = qφ + 1

a3
1δ

log
(
1 + a3

1δeB1−W1(0)−φ
)
.

(31)
At interface X = S, we have

φ(S−) = φ(S+), εr0A f φ
′(S−) = φ′(S+). (32)

Denote φ(S±) = φs, then the two quantities φ0 and φs are
determined by

A f

√
εr0(G(φs) − G(φ0)) = e−φs/2 − eφs/2,√

εr0

2

∫ φs

φ0

1√
G(φ) − G(φ0)

dφ = S. (33)

Once they are found, we get the explicit solutions for the filter
and the chamber regions.

Figure 4 shows the profiles of φ(X ) and c1(X ), with values
in Eqs. (23) and (A3) and c1(∞) = 1. In the filter region,
Figure 4(a) shows that the minimum value of φ is much
smaller than the EN case, and Fig. 4(b) shows that φ ∼ O(1)
in the chamber region. Figure 4(c) shows the profile of c1

in the right-half filter region, indicating that c1 = 1/a3
1δ in

the majority middle part of the filter and there is an inner
transition from exponentially small value to that critical value.
This means that in most part of the filter, it is fully packed

1 − δ

3∑
i=1

a3
i ci = 0, (34)

but it still needs the derivatives φ′′(X ) to balance the large
q. The solutions (e.g., minimum φ0 and interface value φs) are
mainly influenced by dimensionless quantities L f (position S),
A f and εr in the filter.

Remark. In Sec. III A 1, we considered only the constant
solution φ = φ∗ in the middle part of the filter. Actually, the
constant φ∗ is connected to the chamber by a standard BL in
the filter and near the two edges. The solution in the filter can
be easily constructed in a way similar to the above analysis,
and is given as

X = S +
√

εr0

2

∫ φ

φs

1√
G(φ) − G(φ∗)

dφ, 0 < X < S,

(35)

where φs determined by Eq. (33)1 with φ0 = φ∗ there. The
results for φ and c1 are shown in Fig. 5 for the case q = 600 <

1/a3
1δ with other parameters as before. One can clearly see the

typical BLs of φ near the two edges in the filter.
The high selectivity of the SF for larger K+ over smaller

Na+ has been also intensively studied by molecular dynamics
(MD) [13,59–61] and experiments [62,63], just to name a
few. Experiments show Na+ can block KcsA K+ current
from intracellular side but not from extracellular side [62].
This observation is explained by MD studies that Na+ would
encounter a much larger energy barrier than K+ when ap-
proaching S2 binding site in multi-cation knock-on entering
the SF from extracellular side [59], and all binding sites are
more selective to K+ than Na+ except the internal water cavity
site lying at the entrance of the SF from intracellular side
[60]. Based on analysis and solutions in this section, we can
calculate the difference in free energies for K+ and Na+, given
in Appendix C. With q = 950, the total free energy difference
is

��F (K+ → Na+) = 6.2 kcal/mol, (36)

which is consistent with the MD estimate 5–6 kcal/mol. The
electrostatic energy and solvation energy are the two main
parts of the energy difference. The solvation energy difference
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FIG. 4. The profiles for the case q = 1000 > 1/a3
1δ: (a) φ in both filter and chamber, (b) φ in the chamber, (c) c1 in the right-half interval

of the filter.

is ��Fw = 20.8 kcal/mol, which means K+ is favored due to
its larger size. The electrostatic energy difference is ��Fφ =
−14.2 kcal/mol, which means Na+ is favored in this part,
since it is EN in the filter due to the smaller size. These two
values are consistent with the values calculated from φS2 in
Eq. (12) in Ref. [43], which adopts a Poisson-Fermi model
with nonlocal electrostatics. Overall, K+ has a high selectivity
by the competition of the two parts.

B. K+/Ca2+ selectivity

In this subsection, we consider the case with three ions
K+, Ca2+ (or Ba2+) and Cl− (respectively c1, c2, and c3), and
study the selectivity between K+ and Ca2+ (or Ba2+).

In this case, one can not directly analyze the ratio c1/c2

anymore, since they have different valences. Due to the factor
z2

i in �Wi in Eq. (14), the barrier �W2 ≈ 549 for Ca2+ is much
larger. Now, we consider the EN case in the filter:

c1 + 2c2 − c3 = q. (37)

With the help of Eqs. (9) and (10), this is a cubic equation
for eφ and once φ is solved all ci can be recovered. The
analytic solution for φ is quite complicated, and involves
many exponentially large and small terms. One cannot get
the correct answer unless making proper approximations in
different situations by keeping only the leading exponential
terms and neglecting the high-order exponential terms. There
are two situations. When q satisfies Eq. (18), we get the same
approximation as in Eq. (20), and similarly the ratio c∗

1/c∗
2 for

the selectivity of K+ and Ca2+ is exponentially large.
When q is relatively large,

1

a3
1δ

< q <
2

a3
2δ

, (38)

we know in the previous K+/Na+ case that the maximum
amount 1/a3

1δ of K+ can not balance q in filter, however, with
the presence of divalent ions such as Ca2+, this is feasible.
The other critical value 2/a3

2δ is just the maximum effective
charge that Ca2+ can provide in the limited space of filter. In
this case, the EN condition Eq. (37) gives the leading-order
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−60

−80

−100

(a)

1 2 3−1−2−3 X
−0.2

−0.5

−0.8

(b)

0.1 0.2 0.3 0.4 X

0

100

300

400

500

600

c1

(c)

FIG. 5. The profiles for the case q = 600 < 1/a3
1δ: (a) φ in both filter and chamber, (b) φ in the chamber, (c) c1 in the right-half interval of

the filter.
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FIG. 6. Dependence of φ∗ and c∗
i (i = 1, 2) in the filter on effective charge q.

solution

c∗
1 = 2 − a3

2qδ(
2a3

1 − a3
2

)
δ
, c∗

2 = a3
1qδ − 1(

2a3
1 − a3

2

)
δ
, c∗

3 = 0,

φ∗ = B2 − W2(0) − [B1 − W1(0)] − log c∗
2 + log c∗

1

= �W1 − �W2 + log c2b − log c1b + φb

− log
(
a3

1qδ − 1
) + log

(
2 − a3

2qδ
)
. (39)

In the above, φ∗ depends on the calculated c∗
1 and c∗

2, and
therefore the size effect on φ∗ is through these two quantities.
The boundary conditions can affect φ∗, but have negligible
influence on the concentrations c∗

1 and c∗
2 in the filter. Under

normal physiological conditions [i.e., cib, φb ∼ O(1)] in the
chamber, the selectivity of K+ and Ca2+ for the case Eq. (38)
is implied by the ratio

c∗
1

c∗
2

= 2 − a3
2qδ(

a3
1qδ − 1

)
δ
. (40)

The selectivity in this case is determined by the effective
permanent charge q and ion sizes, and the ratio in Eq. (40)
becomes smaller with increase of q. In terms of free energy,
Ca2+ is more favored by increase of q, because Ca2+ can
make filter region electro-neutral and reduce the electrostatic
energy. This conclusion on selectivity also applies to the
nonequilibrium case.

Remark. In the above approximation Eq. (39), c∗
1 and c∗

2 are
determined by the constraints

c∗
1 + 2c∗

2 = q, δ
(
a3

1c∗
1 + a3

2c∗
2

) = 1. (41)

This implies that the EN condition is satisfied, and at the
same time the filter is saturated with K+ and Ca2+. These two
combined effects determine concentrations of K+ and Ca2+. It
further implies, in the case of Eq. (38), that the concentration
of K+ itself can not balance q in the filter. Since Ca2+ has a
larger valence, in spite of its larger Born solvation energy, the
filter needs to recruit Ca2+ (by squeezing out some K+ at the
same time) to help out the electrostatic balancing.

Figure 6 shows the dependence of the above solution
Eq. (39) on q, with c1b = c2b = 1, φb = 0 and data in Eq. (A3)
of Appendix A. The first part of the curves is the same
as in Figure 2, when q < 1/a3

1δ ≈ 790. When q exceeds
this critical value, the concentration of Ca2+ increases while
that of K+ decreases. When q crosses the critical value,
the minimum value φ∗ in the filter transitions from the pre-
vious state at about −55 to another state at about −225,
see the embedded figure in Fig. 6(a). Based on the data
Eq. (A3) in Appendix A, the next critical value for saturation
of c2 is q = 2/a3

2δ ≈ 4280. Figure 6 does not reach this
value.

Barium Ba2+ has often been used to block K+ channel
[38,64,65], via electrostatic stabilization in the permeation
pathway. At high concentrations of external K+, the block-
time distribution of Ba2+ is double exponential, implying at
least two Ba2+ binding sites in the SF [38]. This coexistence
of Ba2+ and K+ inside the SF was observed in MD computa-
tion [6] with Ba2+ at binding site S2 and K+ at binding site
S0 forming a lock-in state impeding the translocation of Ba2+

[66].
For this case, the size of Ba2+ is larger than Ca2+, given in

Appendix A. Since it also has +2 valence, the energy barrier
(≈402) is still much larger than that of K+. The above analysis
still holds, and Fig. 7 shows the results and dependence on q,
with same data as before. In this case, the next critical value is
q = 2/a3

Baδ ∼ 1688. Figure 7(b) indicates that Ba2+ is more
effective to block K+ due to its larger size.

Remark. The above analysis is also valid for the case with
four ions: K+, Na+, Ca2+ (or Ba2+), and Cl−. Based on the
analysis in Sec. III A, the concentration of Na+ is always
exponentially smaller than K+. Thus, K+ is favored compared
with Na+, and adding Na+ will make no difference. The
non-EN case will not be discussed here, since for relatively
large q the two ions K+ and Ca2+ can coexist to maintain EN.
For even larger q > 2/a3

2δ or near transition point q = 1/a3
1δ,

we need to consider the non-EN case. The analysis is similar
to Sec. III A 2, except that we have a more complicated G(φ)
in Eq. (31) for such a case.
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FIG. 7. Dependence of φ∗ and c∗
i (i = 1, 2) in the filter on effective charge q.

IV. NONEQUILIBRIUM CASE AND
FLUX-VOLTAGE RELATION

In this section, we assume the same concentrations at the
two ends of the chamber but with different electric potential.
This gives rise to variation in electrochemical potential μi

across the interval x ∈ [−1, 1], which induces fluxes. We
intend to study the flux-voltage relations at steady state for the
previous two cases. This section is restricted to a relatively
long chamber region (length Lb), where the analytical flux-
voltage relations are available. For general cases, numerical
or semianalytical solutions will be shown in the next sections.

A. Fluxes of K+/Na+ case

In this subsection, we consider the three-ion case with K+,
Na+, and Cl−. At the two ends x = ±1, we impose

c1(±1) = 1, c2(±1) = c2b, c3(±1) = 1 + c2b,

φ(−1) = V, φ(1) = 0. (42)

In this case, the results in Sec. III A about selectivity of
K+ and Na+ are still valid. Although Bi in Eq. (10) is not
an exact constant anymore, the variation is small since μi is
monotone. We have also pointed out in Sec. III A that c2 is
exponentially small unless c2 is 1015 times larger than that
of c1 near the filter. Based on results on selectivity, we now
estimate the relative variations �μi for each μi (i = 1, 2, 3)
in the chamber and the filter. Since in the chamber it is almost
the classical PNP system, we get ci ∼ O(1), implying

�μi = O(Ji ), in the chamber. (43)

In the filter, we have that either ci ∼ O(q) or ci is expo-
nentially small. Since the filter interval is small, as a first
approximation by Eq. (5)3, we have

�μi ≈ L f Ji

DiA f c∗
i

, in the filter. (44)

We know that the total variation [sum of Eqs. (43) and (44)]
from the left end to the right end is O(1) with V ∼ O(1). From
Sec. III A, we have c∗

1 ∼ O(q) in the filter, and by the data

Eqs. (A3) and (A4) in Appendix A we get the estimate

L f

D1A f c∗
1

∼ 10−3–10−2. (45)

This implies that J1 ∼ O(1), and the filter region can be
neglected for variation of μ1. However, c∗

2 and c∗
3 are exponen-

tially small in the filter, thus J2 and J3 can only be exponen-
tially small, but this still gives finite variations �μ2,�μ3 in
the filter by Eq. (44). In this context, we can treat J2 = J3 = 0
when studying the chamber region, and therefore we only
need to concentrate on the J1-V relation.

Remark. In this paper, for simplicity, we have adopted the
same diffusion coefficient Di (i = 1, ..., n) for each ion in the
filter and chamber regions. In a modified PNP model [57],
the diffusion coefficients are modified to depend on concen-
trations. In Refs. [42,44,67–69], it is suggested that Di in the
filter region might be smaller than that in the chamber region,
with the ratio in the range of 1/2–1/10. The ratio 1/4.7
is adopted for the gradmicidin A channel in a PNP-Fermi
model [44], and the ratio about 0.7–0.9 is adopted for the
KcsA channel in Brownian dynamics computation [70]. The
ratio of Di will only appear in the estimates in Eqs. (44) and
(45), but since it is O(1) this will have little impact on these
estimates and later results for the I-V relations. In addition,
for the equilibrium case, the values of diffusion constants will
not affect the analysis and the conclusions on selectivity in
Sec. III.

In the chamber, it is eligible to use the EN condition as
first approximation for the relatively long chamber. We take
constant cross sectional area A(x) = 1 for illustration. By
neglecting the O(δ) term, we get the classic system

c′
1(x) + c1φ

′(x) = −J1/D1 ≡ −J,

c′
2(x) + c2φ

′(x) = 0,

c′
3(x) − c3φ

′(x) = 0,

c1 + c2 = c3. (46)

This can be solved explicitly for the left half chamber
−1 < x < 0 and the right half chamber 0 < x < 1, given in
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Appendix B. Here, x = 0 is treated as the filter. By the
continuity of μ1 at the filter, we get (see Appendix B)

log

[
(1 + c2b − J/2)2

1 + c2b
− c2b

]
+ V

= log

[
(1 + c2b + J/2)2

1 + c2b
− c2b

]
, (47)

which provides the J-V relation. This can be obtained by
solving a quadratic equation, and we select the reasonable root
that satisfies J = 0 at V = 0,

J = 2(1 + c2b)(1 + eV ) − 2
√

1 + c2b

√
4eV + c2b(1 + eV )2

eV − 1
.

(48)

For the special case c2b = 0, we have

J = 2(eV/2 − 1)

(eV/2 + 1)
. (49)

The general case of A(x) causes no essential problem (see
Appendix B), and we finally get

J
∫ 1

L f /2

1

A(s)
ds

= 2(1 + c2b)(1 + eV ) − 2
√

1 + c2b

√
4eV + c2b(1 + eV )2

eV − 1
.

(50)

Since L f ∼ O(ε), for special case A(x) = 1, the integral factor
after J on the left-hand side degenerates to 1 − L f /2 ≈ 1, and
therefore Eq. (48) is recovered. Similarly with general D1(x),
the left-hand side of Eq. (50) is replaced by J1

∫ 1
L f /2

1
D1(s)A(s) ds.

Remark. We have used the EN condition in the above
system, which causes an O(εJ ) error in estimates of the
variation �μ1, due to the classical BL near the filter edge in
the chamber (see Ref. [71]). Also in Eq. (48), there is an O(ε)
error caused by treating the filter as a point x = 0 as the filter
length is O(ε). But in Eq. (50) the exact point x = L f /2 of
the filter edge is used. Later numerical calculations show that
the above approximation is good for small V , and it slightly
underestimates the flux for relatively large V .

Figure 8 shows the J-V relations (note J1 = D1J) in
Eq. (50) with A = 1 and different boundary concentrations
c2b. It indicates that the flux J tends to saturate for relatively
large V (the reason will be illustrated in Sec. VI), which agrees
well with experimental observations [13]. The presence of
Na+ reduces or blocks the flux of K+, but the tendency to
saturate at large V remains the same. These generally agree
well with experiment measurements in Ref. [13] except that
there is a dip in the experimental I-V curves at moderate V
corresponding to the block by Na+, which becomes relieved
at high V by a “punch-through” mechanism.

Figure 9 shows the profiles of φ(x) and ci(x) (i = 1, 2, 3)
with boundary values c2b = 0.1,V = 1 in Eq. (42) and pa-
rameter q < 1/a3

1δ. The choice of q < 1/a3
1δ is for illustration

purpose as φ in most part of the filter is approximated by
φ∗. The exact values of q and φ∗ are not used in Figure 9
because they are so large, and the red dashed vertical lines
indicate a large jump to the two values. For larger q > 1/a3

1δ

c2b=0

c2b=0.1

c2b=0.5

−10 −5 5 10 V

−2

−1

1

2

FIG. 8. Flux-voltage J-V relations with different boundary con-
centrations c2b.

the results will not change much except that φ in the filter has
a profile like Fig. 4(a). Figure 10 shows the profiles of μi(x)
(i = 1, 2, 3) for each ion species. There is finite variation for
μ1 in the chamber, which causes the finite flux of c1. The μ2

and μ3 are constant in the chamber, leading to 0 fluxes. Even
though there is finite variation for μ2 and μ3 in the filter, there
is no flux since the concentrations c2 and c3 are essentially 0
in the filter.

Now we summarize the strategy for determining the Ji-V
relations, which also applies to other cases such as the next
subsection.

(1) From the equilibrium case, determine which ions (here
K+, in the next subsection K+ and Ca2+) are prevalent in the
filter and which (here Na+ and Cl−) are 0 in the filter.

(2) Set finite flux for only those ions prevalent in the filter
and set 0 flux for others, and then solve the equations for the
left and right chamber regions.

(3) Determine the Ji-V relations by using the continuity of
μi at the filter for only those ions prevalent in the filter (other
μi are constants in the chamber and have jumps at the filter).

It appears that we have only used the chamber equations
to approximate the Ji-V relations, but actually it is totally
different to directly solve the chamber equations without the
filter. In that case, the chamber solutions of φ, ci (i = 1, 2, 3)
will be continuous and all the fluxes Ji and variation of all
μi would be finite and not 0. For the present case with the
filter, the chamber solutions of φ, ci (i = 1, 2, 3) in Fig. 9 have
jumps at the filter, and the μ2 and μ3 in Fig. 10 are constants
in each chamber. The saturation of J-V curve here can not be
captured without the filter.

B. Fluxes of K+/Ca2+ case

In this subsection, we consider the three-ion case with K+,
Ca2+, and Cl− (the case for Ba2+ is similar). At the two ends
x = ±1, we impose

c1(±1) = 1, c2(±1) = c2b, c3(±1) = 1 + 2c2b,

φ(−1) = V, φ(1) = 0. (51)

The analysis on the variation of �μi (i = 1, 2, 3) is similar
to the preceding subsection, and we can follow the same strat-
egy to determine the flux-voltage relations. Depending on the
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FIG. 9. Profiles of φ(x) and ci(x) (i = 1, 2, 3) with c2b = 0.1,V = 1.

parameter q and results in Sec. III B about selectivity of K+
and Ca2+, there are two cases. (1) When q < 1/a3

1δ, we get
J2 = 0, J3 = 0 and finite J1. The results of the J1-V relation
will then be similar to those in the preceding subsection, and
the profiles of ci and μi (i = 1, 2, 3) are similar; hence, we
do not repeat them here. (2) When 1/a3

1δ < q < 2/a3
2δ is

relatively large as in Eq. (38), we have J3 = 0 and finite J1

and J2, since K+ and Ca2+ can coexist in the filter.

Now we focus on the second case and take A(x) = 1 for
illustration. We solve the following system in the chamber:

∂xc1 + c1∂xφ = −J1/D1 ≡ J̃1,

∂xc2 + 2c2∂xφ = −J2/D2 ≡ J̃2,

∂xc3 − c3∂xφ = 0,

c1 + 2c2 − c3 = 0. (52)
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FIG. 10. Profiles of μi(x) (i = 1, 2, 3) with c2b = 0.1,V = 1.
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FIG. 11. Flux-voltage relations with (a) c2b = 1, (b) c2b = 10−3.

It is not straightforward to solve φ(x) and ci(x) (i = 1, 2, 3)
directly, instead if we treat φ as the independent variable, then
we can solve x(φ) and ci(φ) (i = 1, 2, 3) explicitly. We denote
solutions by xR(φ), ciR(φ) for the right half interval 0 < x < 1
and by xL(φ), ciL (φ) for −1 < x < 0, given in Appendix B.
By the continuity of μ1 and μ2 at x = 0, we get

φ0L + ln c1L(φ0L ) = φ0R + ln c1R(φ0R),

2φ0L + ln c2L(φ0L ) = 2φ0R + ln c2R(φ0R), (53)

where φ0L and φ0R are the left and right limit values of φ at
x = 0, which are defined by

xL(φ0L ) = 0, xR(φ0R) = 0. (54)

All these four equations involve the fluxes J̃1, J̃2 and voltage
V , thus they determine J̃1, J̃2, φ0L, φ0R in terms of V . The
general case of A(x) needs only slight modifications, see
Appendix B.

Figure 11(a) shows the flux-voltage relations with c2b = 1,
indicating that both fluxes J̃1 and J̃2 saturate for relatively
large V . Figure 11(b) shows the flux J̃2 when c2b = 10−3 is set
to be very small, indicating that the flux almost proportionally
gets smaller as the chamber concentration gets smaller. In
Fig. 11(b), the flux J̃1 is omitted since it is almost the same
as in Fig. 11(a) and of much larger scale. Figure 12 shows the
profiles of φ(x) and ci(x) (i = 1, 2, 3) with boundary values
c2b = 1,V = 1 and parameter 1/a3

1 < q < 2/a3
2δ. Figure 13

shows the profiles of μi(x) (i = 1, 2, 3) for each ion species.
The finite variations of μ1 and μ2 in the chamber induce the
finite fluxes of c1 and c2, while μ3 is constant in the chamber,
leading to 0 flux of c3.

V. COMPUTATIONAL ANALYSIS

In this section, we solve the modified PNP system numer-
ically. Our main objective is to verify the preceding analysis
under simplifying conditions.

We use the dynamic process to simulate the steady state so-
lutions for φ, ci and associated fluxes. Smooth dimensionless
functions εr (x) (connecting 1/40 and 1) and A(x) (connecting
1/30 and 1) will be used in the simulation, see Fig. 14. Now

we illustrate the process by considering the 3-ions case with ci

(i = 1, 2, 3) for K+, Na+, and Cl−. This is to verify the previ-
ous analytical results for both equilibrium and nonequilibrium
cases. We adopt the initial conditions at t = 0,

c1(x, 0) = 1, c2(x, 0) = 0.1, c3(x, 0) = 1.1. (55)

The boundary conditions are

c1(±1, t ) = 1, c2(±1, t ) = 0.1, c3(±1, t ) = 1.1,

φ(−1) = V, φ(1) = 0. (56)

First, we set V = 0 and compare the numerical results with
analytical results in Eq. (20) (or Fig. 2). A series of cases with
different q are simulated. In the simulation, a finite-volume
method is used with nonuniform mesh points. More mesh
points are used in the filter, near the filter edge, and in regions
with large gradient of εr . There are totally 273 points. A very
small time step (because of the large q, small ε and small
mesh size) is chosen to ensure stability and accuracy of the
algorithm. After about 20 h on a computer (processor: 4 GHz,
i76700K; memory: 32 GB), the solution tends to a steady
state (i.e., all fluxes are almost 0). The profiles of φ and ci

(i = 1, 2, 3) for q = 600 are shown as red curves in Fig. 15,
in comparison with the analytical results shown in blue curves
from Sec. III. The numerical and analytical solutions agree
very well except a smoothing region near the two edges of the
filter. For instance, the constant values of φ in the filter show
remarkable agreement, i.e., φ∗ = −106.2303,−106.2319 in
numerical and analytical results. One can see that K+ is fa-
vored in the filter region, and all the other ions are essentially
0 in the filter region. This agrees with results in Eq. (20). To
see clearly the dependence on q, the profiles of φ for different
q are shown in Fig. 16(a), showing that it is constant in the
filter region. In Figs. 16(b) and 16(c), the constant values of
φ, c1, c2 in the filter are compared with previous analytical
results, where curves are from the previous Fig. 2 and dots are
from numerical results.

We have also tested different smoothing profiles of εr (x)
and A(x) and boundary conditions for concentrations. As long
as εr is 1/40 (original value is 2 before scaling) in middle part
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FIG. 12. Profiles of φ(x) and ci(x) (i = 1, 2, 3) with c2b = 1,V = 1 and 1/a3
1 < q < 2/a3

2δ.

of the filter, the minimum value of φ will not change. This
also verifies the predictions in Eq. (20).

To test the analysis of the nonequilibrium case, we set V =
1, q = 600 and others the same as above. After computation
of about 20 h to t = 2, the system tends to a steady state.
The fluxes are shown in Fig. 17, indicating that only flux J1

is nonzero and goes to a constant 1.211 at steady state. This
feature agrees with the previous analysis. The previous pre-

dicted flux by Eq. (50) with A(x) = 1, c2b = 0.1 is J ≈ 0.51,
and hence J1 = D1J ≈ 1. They differ by O(ε) with present
ε ≈ 0.13, as it is natural for the previous approximation. In
addition, the difference is partly due to the the smoothing of
εr (x) and A(x). The profiles of ci, φ (i = 1, 2, 3) are shown in
Fig. 18. Some features are similar to the equilibrium case, but
the profiles are no longer symmetric. The numerical solutions
in the chamber are also compared with previous analytical
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FIG. 13. Profiles of μi(x) (i = 1, 2, 3) with c2b = 1,V = 1 and 1/a3
1 < q < 2/a3

2δ.
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FIG. 14. Smooth functions A(x) and εr (x) used in simulation.
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FIG. 15. Profiles of φ and ci (i = 1, 2, 3) near steady state for V = 0 and q = 600.
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FIG. 16. Profiles of φ at steady state for V = 0 and different q and comparison with analytical results in Fig. 2.

solutions (see Fig. 9 and Appendix B) in dashed lines of
embedded figures. The profiles of μi (i = 1, 2, 3) are shown
in Fig. 19. All profiles of ci, φ, μi (i = 1, 2, 3) except μ3

show agreement with previous analytical results. We have also
tested different V , and compared with analytical flux-voltage
curves in Fig. 21 in the next section.

Now we provide some insight and explanation for the
above incorrect μ3, based on previous analytical results. One
can easily prove that μ3 is monotone in steady state by the
positivity of c3. Thus, Fig. 10(c) is correct and the numerical
result in Fig. 19(c) is incorrect. By definition of μ3 and
matching with the boundary conditions (the two values of
μ3 at the boundaries do not differ much), in the filter we
approximately have [cf. Eq. (28)]

log c3 − log

(
1 −

3∑
k=1

ck (x)a3
kδ

)
∼ −75 + φ ∼ −181. (57)

Since the second term is O(1) for present q = 600 not exceed-
ing the critical value of 790, we need c3 to be as accurate as
e−181 ∼ 10−79. We know it is almost 0, but to compute the
correct μ3 in the filter, it has to go to as small as 10−79. This
is partially verified numerically, i.e., when we increase the
accuracy of c3 in the filter, the values of μ3 in the filter as
in Fig. 19(c) will decrease further (in both cases V = 0 and
V = 1). In addition, the accuracy of c3 would also affect other
results in the filter, to a certain degree. For example, if we only
maintain accuracy up to 10−10, then the minimum values of φ

are incorrect (differ a great deal from the analytical results),

but it works for φ when we maintain accuracy up to 10−15

[Fig. 16(b) is based on this]. The inaccuracy of μ3 is also one
reason that the profile of c3 in Fig. 15 has a relatively large
discrepancy with analytical results.

When Ca2+ is present and with the above q = 600, the
results and features are very similar to the above results
(omitted here). This agrees with the previous analysis. We
also tried with large q = 1000 in the above 3-ion case and
in a case with Ca2+, but the computation is very unstable,
failing to capture the features in analysis. Now we provide
some explanation based the previous analysis and provide
some insight on the numerical difficulty. In such cases, the
ions saturate in the filter and thus the second term in μi

of Eq. (6) is crucial, requiring very high accuracy for ci in
computation. For the 3-ion case with Ca2+ in Sec. III B, one
can see that even for the simple case of the algebraic equations
from Eq. (37) and Eqs. (9) and (10), it is not straightforward
to determine φ. Originally, the solution depends on identity
Eq. (10), and from the solution in Eq. (39) we find that in this
case

log

(
1 −

3∑
k=1

ck (x)a3
kδ

)
∼ −344. (58)

This is the cause of the main difficulty of direct numerical
computation, as this term is essential to capture the behavior in
the filter. One should be very cautious to calculate ci directly
in simulation, since both Ca2+ and K+ are in the order O(q)
but they need to be accurate to e−344 to capture this term. Other
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FIG. 17. The fluxes Ji (i = 1, 2, 3) near steady state for V = 1, q = 600.
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FIG. 18. The profiles of ci (i = 1, 2, 3) and φ near steady state, for V = 1, q = 600.

difficulty can also arise from the log ci terms, as some ion
like Cl− is exponentially small (this is already illustrated in
last paragraph for the previous case). These difficulties can
be avoided if the ci can be represented by φ, as φ is well
behaved in analysis and computation. This can be done for

the equilibrium case with the help of Eqs. (9) and (10), but is
not straightforward in the nonequilibrium case.

We also briefly mention the 3-ion case of K+, Na+, Cl−

with large large q, as in Sec. III A 2. Similar difficulties arise
from the two log terms in μi in Eq. (6). In addition, the
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FIG. 19. The μi (i = 1, 2, 3) near steady state for V = 1, q = 600.
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analytical solution or Fig. 4(c) shows that there is an internal
transition point for c1 in the filter, where c1 changes from
exponentially small to O(q). In some part of the filter, c1

is exponentially small, and, however, J1 ∼ c1∂xμ1 should be
finite. It is not easy to capture the transition or to compute the
form 0 ∗ ∞.

VI. HYBRID METHOD

When q is large, direct numerical computation becomes
challenging and inefficient. In addition, when ε is relatively
large (i.e., short chamber length Lb), the analysis for the Ji-V
relations in Sec. IV fails since the EN assumption is no longer
valid in the chamber.

In this subsection, we provide an alternative hybrid method
by combining the analysis in the filter with numerical com-
putation in the chamber. We obtain an analytical solution in
the filter for the nonequilibrium case by slightly modifying
that from Sec. III A 2. In the chamber we can simplify the
system, which is generally easy to solve numerically (no
such difficulties mentioned in last section) or relates to some
special functions. We could also call the solutions in this
section semianalytical solutions.

We take the three ion case K+, Na+, and Cl− as illustration,
and assume A = 1 and εr = 1 in the chamber (the general case
should not cause any essential difficulty). The dimensional
length can be either large or small (reflected in parameter ε),
e.g., L = 10.5 nm in previous sections or L = 3 nm in more
practical case. The system in the right chamber by neglecting
O(δ) term is

c′
1(x) + c1φ

′(x) = −J1/D1 ≡ −J,

c′
2(x) + c2φ

′(x) = 0,

c′
3(x) − c3φ

′(x) = 0,

−ε2φ′′(x) = c1 + c2 − c3, s < x < 1, (59)

with boundary conditions ci = cib, φ = 0 at x = 1. Here, the
position s denotes the edge of the filter. We immediately get
c2, c3 in terms of φ,

c2 = c2be−φ, c3 = c3beφ, (60)

so that

−ε2φ′′(x) = c1 + c2be−φ − c3beφ, s < x < 1. (61)

Multiplying φ′ on this equation and using Eq. (59)1, we obtain

c1(x) = ε2 1
2 {[φ′(x)]2 − [φ′(1)]2} − J (x − 1)

+ c1b − c2b(e−φ − 1) − c3b(eφ − 1). (62)

Substituting into Eq. (61) and with c1b + c2b = c3b, we obtain

ε2φ′′(x) = − 1
2ε2{[φ′(x)]2 − [φ′(1)]2}

+ J (x − 1) + 2c3b(eφ − 1), s < x < 1. (63)

Similarly for the left chamber with boundary conditions ci =
cib and φ = V , we would have

ε2φ′′(x) = − 1
2ε2{[φ′(x)]2 − [φ′(−1)]2} + J (x + 1)

+ 2c3b(eφ−V − 1), −1 < x < s. (64)

These two equations are to be solved with help of the solution
in the filter or with some matching connection conditions at
the edge of the filter.

Remark. The final differential equation for φ seems com-
plicated, but actually it relates to a special function, defined by
Painlevé II (PII) equation. Here we would like to bring atten-
tion to this connection, as Painlevé transcendents have been
studied intensively in past few decades [72]. The reduction
of steady state PNP system with ±1 ions to PII equation was
mentioned in Ref. [51]. For the present 3-ion case, it is similar
and we can adopt the transform

y = eφ/2

√
2(εJ )1/3

, z = Jx + C

2(εJ )2/3
,

C = −J + 1

2
ε2[φ′(1)]2 − 2c3b, (65)

so that Eq. (63) becomes a PII equation with parameter 0,

y′′(z) = 2y3 + zy. (66)

The typical solutions in the present setting are that φ(x) either
blows up to ∞ or to −∞ at x = x∗ as x decreases from 1.
This agrees with the features (like poles) of the solutions of
PII equations. The reasonable solution in the current case,
however, is connected to the filter solution at x = s before it
reaches x∗.

Next we would like to connect the above chamber solutions
with the filter solution. We take q > 1/a3

1δ for example. In
general, for the nonequilibrium case, one can not express ci

in terms of φ and then directly construct the solution like
Sec. III A 2. We, however, make use of the fact that Eq. (9) still
holds in the nonequilibrium case. In addition, for selected ions
(K+ or K+ and Ca2+), μi are constants for the filter region
based on evidence from both analysis and simulation. Thus,
the only modification of the filter solution in Eqs. (30) and
(31) is that the constant B1 is replaced by μ1(s), which relates
to the chamber solution. We can determine the solutions by
using a shooting method. For the right chamber, once we fix
J and φ′(1), we can compute the solution of φ by Eq. (63)
and hence ci (i = 1, 2, 3) up to x = s. We treat the solution as
a special function of arguments J, φ′(1). With the calculated
B1 = μ1(s) in Eqs. (30) and (31), the filter solution is known.
Then, the connection conditions at x = s are

A f

√
2εr0[G(φs) − G(φ0)] = εφ′(s), φs = φ(s),√

εr0

2

∫ φs

φ0

1√
G(φ) − G(φ0)

dφ = (s − s0)/ε, (67)

where s0 is the position of the minimum of φ (i.e., when φ′ =
0) in the filter. Similarly for the left chamber, with given V, J
and φ′(−1), we can compute the solution of φ in both the
chamber and filter regions. Then, the connection conditions at
x = −s are

A f

√
2εr0[G(φ−s) − G(φ0)] = −εφ′(−s), φ−s =φ(−s),√

εr0

2

∫ φ−s

φ0

1√
G(φ) − G(φ0)

dφ = (s + s0)/ε. (68)

Note that we have s0 = 0 for the equilibrium case V = 0, but
in general the solution is not exactly symmetric. The final
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FIG. 20. The profiles of ci (i = 1, 2, 3) and φ with V = 1 and q = 600.

condition is

μ1(s) = μ1(−s). (69)

In brief, with given boundary value V , we have seven nonlin-
ear equations for seven unknowns φ0, φ(±s), φ′(±1), J and
s0. The case q < 1/a3

1δ is simpler, and we do not need the two
integral conditions Eq. (68)3 and Eq. (69)3 anymore, which
are replaced by

φ0 = μ1(s) − W1(0) + log
(
1 − a3

1qδ
) − log q. (70)

Then, we have six nonlinear equations for six unknowns φ0,
φ(±s), φ′(±1) and J .

The above algorithm can be implemented in Mathematica
(or Matlab) with only a few lines of code, the solutions
for given V can be computed by finding the roots of the
six or seven nonlinear equations. The computation is very
efficient, and the solution is found within seconds on a laptop
(processor: 1.6 GHz, i5; memory: 4 GB). This is verified
with V = 0, q = 1000 and data in Eq. (A3), and it coincides
with previous results in Sec. III A 2. For the previous case
q = 600, V = 1 in Sec. IV A, the solutions are computed for
comparison. The profiles of φ and ci (i = 1, 2, 3) are shown

in Fig. 20 with dashed lines from the previous analytical so-
lution, showing good agreement away from the filter. One can
clearly see the BL near the filter edge in the profiles, which is
ignored in previous analytical results. The flux computed here
is J ≈ 0.56 (or J1 ≈ 1.10), also indicating that the previous
approximation J ≈ 0.51 in Sec. IV A slightly underestimates
the flux.

Remark. There is a fictitious singularity in the integrals in
Eqs. (67) and (68), i.e., the integrand is singular at φ = φ0, but
the integral is of the form

∫ a
0

1√
x
dx. We have used a little trick

in practical computation to ensure stability and accuracy, i.e.,
replace φ0 by φ0 + δ0, say δ0 = 10−10. For quite small ε (long
dimensional L) and large c2b, the solution of φ is sensitive
to the boundary conditions φ′(±1). It can easily blow up to
±∞, and only a narrow interval of φ′(±1) with given J leads
to solution of φ in whole interval [s, 1].

For different V , the flux-voltage (J-V or I-V ) relations by
three different methods are compared in Fig. 21(a), where
red curve is from the current section, and dots and dashed
lines are from the previous numerical and analytical solutions.
Although different approximations regarding the BL near the
filter or parameters A(x), εr (x) are made, the three methods
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FIG. 21. The J-V relations with small ε (dimensional length L = 10.5 nm): (a) comparison of different methods (b) with different q.

provide similar results and trends for the J-V curve. The
analytical solution underestimates the flux, due to neglect of
the BL near the edge, while the slight difference between the
numerical and hybrid methods are due to the smoothing of
εr (x) and A(x) used in the numerical solutions. For different
q, the flux-voltage J-V relations are computed by varying V ,
shown in Fig. 21(b), with reference curve from the analytical
result in Sec. IV A. The flux in each curve saturates for large
V , and as q increases the flux will increase.

The saturation of flux is certainly a consequence of selec-
tivity of the filter, which is originally due to parameters εr and
q. Without the filter, the flux-voltage relations will be totally
different, as indicated at the end of Sec. IV A. With the filter,
the most important condition is continuity of μi for selected
ions. To see the direct reason of saturation of flux for the
K+/Na+ case, we analyze the profiles of c1 in the chamber for
different V , obtained by both analytical and hybrid methods.
Figure 22 shows the profiles of c1 with parameters c2b =
0.1, q = 600 and three different V . The dashed lines from
the analytical results provide reasonable approximation in the
region away from the filter, but are not as accurate as the
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V=3, Hybrid

V=10, Hybrid

V=1, Analytical

V=3, Analytical

V=10, Analytical
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FIG. 22. The profiles of c1 in the chamber for different V .

solid lines near the filter, which also capture the BL. Both
indicate that c1 approaches 0 near the left edge of the filter
as V increases, and one can easily see this trend from the
analytical expressions in Appendix B. The left edge of the
filter is important here since the flux is from left to right with
positive V (otherwise, we should analyze the right edge). As
c1 can not be negative, this is the main restriction for the
saturation of scaled flux J . Also note that as the original flux
J1 is controlled by diffusion constant D1, one may think the
saturation is related to the diffusion limit [13,73]. When c1

is near 0 at left edge, there are not enough ions available to
go through the filter even with large V . When c2b increases
as in Figure 8, c1 will be more likely to reach this critical
value, resulting in smaller saturation flux J . The reason for
saturation of both fluxes for the case with Ca2+ in Sec. IV B
is similar, except that the two fluxes are restricted by values of
both c1 and c2 at the edge of the filter (both approach 0 as V
increases).

The hybrid method in this section has the advantages of
both efficiency and accuracy for the J-V or I-V relation. The
direct numerical computation is extremely time-consuming,
even for one point in the J-V curve of Fig. 21(a). Thus it
can hardly be used to compare I-V relations with experiments.
The hybrid method can produce J-V curves very efficiently—
about 20 min for one smooth curve in Fig. 21(b). It also
includes the BL effect near the edge of the filter, and does
not have the restriction for parameters (like ε or length L), in
contrast to the analytical approximations. Thus it can be read-
ily used to compare with experiments or estimate parameters
in the model.

The data in Eq. (A3) of Appendix A corresponds to
relatively long dimensional length L = 10.5 nm. In more
realistic cases, however, L is much shorter based on the
molecular structure of the KcsA channel. To compare with
experiments, we adopt the dimensional length L = 3 nm (i.e.,
Lb = 2.5 nm), which leads to ε ≈ 0.46. Figure 23(a) shows
the J-V relations for c1b = 1 and different c2b and q. As c2b

increases, the flux will decrease, while the flux will increase
as q increases. From the present formulation, the dimensional
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FIG. 23. The J-V relations with different q, c2b and relatively large ε (small dimensional length L = 3 nm): (a) dimensionless curves,
(b) comparison with experiments.

flux and current are scaled by

AbD0c0

L
= 6.02 × 106/s,

e0AbD0c0

L
= 0.96 pA, (71)

where L = 3 nm is used. Note also J1 = D1J where D1 =
1.96. Figure 23(b) shows the I-V relations with physical
units for q = 1100, which agrees with experimental data in
Ref. [13], where dots are extracted from Fig. 2B of Ref. [13].
The two curves show similar order and profiles to those
of experiments, except a dip in the experimental data for
c2b = 10 mM. One could also make the results more compa-
rable by adjusting other parameters, e.g., the cross sectional
area A(x).

The idea in this section can be applied to more general
cases, e.g., with general A(x) and Di(x), slowly varying εr (x)
in the chamber, and with divalent ions such as Ca2+. The
formulation and solution process are quite similar, except that
we might solve more than one equation in the chamber region.
We will not repeat this here.

VII. CONCLUDING REMARKS

We have studied the selectivity of KcsA potassium channel
and the I-V relation. With a 1D modified PNP system by keep-
ing the essential elements, many features of the channel have
been demonstrated by both analytical formulas and numerical
simulations. The selectivity among K+ and other ions are
clearly illustrated with analytical formulas. Saturation of the
I-V curve is captured by various methods, and explanations
are provided. We hope the methods in the current work can
be applied to more accurate structures and other types of
ion channels, and will provide insights into the selectivity
and I-V relations. More work is needed to make comparison
with experiments or calibrate some parameters in the model
for different channels. The analysis and computation under
high-dimensional framework is ongoing as an extension of the
current work.
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APPENDIX A: PARAMETER VALUES

The data in this Appendix are mainly from
Refs. [1,32,71,74]. For dimensional system, the vacuum
permittivity ε0, elementary charge e0, Boltzmann constant kB,
and absolute temperature T are

ε0 = 8.854 × 10−12 C/(V m), e0 = 1.602 × 10−19 C,

kB = 1.38 × 10−23 J/K, T = 300 K. (A1)

Some typical values are adopted as

φ0 = kBT

e0
≈ 24 mV, c0 = 100 mM = 6.022 × 1025 m−3,

D0 = 10−9 m2/s, a0 = 3 Å, Lb = 10 nm, L f = 1 nm,

L = 10.5 nm, εrb = 80, εr f = 2, Ab = 30 Å
2
,

aK = 2.76 Å, aNa = 2.04 Å, aCa = 1.98 Å,

aCl = 3.62 Å, aBa = 2.70 Å. (A2)

If we think of an exact sphere instead of a cube, then the factor
(π/6)1/3 ≈ 0.8 should be multiplied to the above effective ion
diameters ai. The length Lb could be smaller, if we consider a
shorter chamber.

For dimensionless system, we have the estimates of dimen-
sionless parameters

ε ≈ 0.13, δ = a3
0c0 ≈ 1.6 × 10−3,

W0 = e2

8πε0a0kBT
≈ 187,

1

40
� εr � 1, A f � A � 1,

L f = 0.095, DK = 1.96, DNa = 1.33, DCa = 0.79,
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DCl = 2.03, aK = 0.92, aNa = 0.68, aCa = 0.66,

aCl = 1.21, aBa = 0.9. (A3)

The permanent charge and cross sectional area are estimated
from a 3D Poisson-Boltzmann computation based on the
realistic molecular structure of KcsA. The corresponding di-
mensionless quantities for q and A f are

q ∼ 103, e.g., [1000, 2000],

A f ∼ 1 Å
2

30 Å
2 = 1

30
. (A4)

APPENDIX B: SOME SOLUTIONS AND EXPRESSIONS

From definition Eq. (6), we get

ci

1 − ∑n
k=1 δcka3

k

= eμi−Wi−ziφ, i = 1, .., n, (B1)

then by multiplication of ai and summation, we obtain

C

1 − Cδ
=

n∑
i=1

a3
i eμi−Wi−ziφ ≡ F, C =

n∑
i=1

cia
3
i , (B2)

which implies

C = F

1 + Fδ
, ci = eμi−Wi−ziφ

(1 + Fδ)
. (B3)

The solution of Eq. (26) in the chamber region is given by

φ(X ) = 2 log

(
e
√

2X + m

e
√

2X − m

)
,

m = e
√

2S (eφs/2 − 1)

eφs/2 + 1
, S < X < ∞. (B4)

For the system Eq. (46), we get for the left-half chamber
−1 < x < 0,

c3(x) = 1 + c2b − J

2
(x + 1), φ(x) = log

c3(x)

1 + c2b
+ V,

c2(x) = c2b(1 + c2b)

c3(x)
, c1(x) = c3(x) − c2(x), (B5)

and for the right-half chamber 0 < x < 1,

c3(x) = 1 + c2b − J

2
(x − 1), φ(x) = log

c3(x)

1 + c2b
,

c2(x) = c2b(1 + c2b)

c3(x)
, c1(x) = c3(x) − c2(x). (B6)

Based on the solutions, we get μ1(x) for the left chamber

μ1(x) = log c1 + φ + W1

= log

(
c3(x) − c2b(1 + c2b)

c3(x)

)
+ log

c3(x)

1 + c2b
+ V + W1

= log

(
c2

3(x)

1 + c2b
− c2b

)
+ V + W1

= log

([
1+c2b− J

2 (x+1)
]2

1 + c2b
−c2b

)
+ V + W1, (B7)

substituting x = 0 give the left-hand side of Eq. (47) except
the W1 term.

For general A(x), the linear terms x + 1, x − 1 in c3(x) in
Eqs. (B5) and (B6) should be replaced by∫ x

−1

1

A(s)
ds,

∫ x

1

1

A(s)
ds, (B8)

and all the other expressions are the same. The final result for
the J-V relation in Eq. (48) is almost the same except that J is
multiplied by a factor

∫ 1
L f /2

1
A(s) ds.

The system Eq. (52) is equivalent to a system for functions
of φ

ċ1 + c1 = −J̃1ẋ, ċ2 + 2c2 = −J̃2ẋ,

ċ3 − c3 = 0, c1 + 2c2 − c3 = 0, (B9)

where dot represents derivative with respect to φ. Then the
solutions xR(φ) and ciR(φ) (i = 1, 2, 3) for the right-half
interval 0 < x < 1 (i.e., φ0R < φ < 0 or 0 < φ < φ0R) are

c3R(φ) = (2c2b + 1)eφ,

c2R(φ) = (3c2bJ̃1 − 2J̃2)eλφ

3J̃1 + 4J̃2
+ 2(2c2b + 1)J̃2eφ

3J̃1 + 4J̃2
,

λ = −2(J̃1 + J̃2)

J̃1 + 2J̃2
, c1R(φ) = c3R(φ) − 2c2R(φ),

xR(φ) = 1 + 3c2b + 2

J̃1 + J̃2
− 6(2c2b + 1)eφ

3J̃1 + 4J̃2

+ (3c2bJ̃1 − 2J̃2)eλφ

(J̃1 + J̃2)(3J̃1 + 4J̃2)
. (B10)

The solutions ciL(φ) and xL(φ) for the left-half interval −1 <

x < 0 (i.e., V < φ < φ0L or φ0L < φ < V ) are

ciL(φ) = ciR(φ − V ), i = 1, 2, 3,

xL(φ) = xR(φ − V ) − 2. (B11)

For the general case of A(x), one only needs to make a
transformation y = ∫ x

±1
1

A(s) ds for the right and left chamber
equations. The only modifications of the above solutions are

yR(φ) = 3c2b + 2

J̃1 + J̃2
− 6(2c2b + 1)eφ

3J̃1 + 4J̃2
+ (3c2bJ̃1 − 2J̃2)eλφ

(J̃1 + J̃2)(3J̃1 + 4J̃2)
,

yL(φ) = yR(φ − V ). (B12)

For flux voltage relations, the equations in Eq. (53) will not
change and the equations in Eq. (54) change to

yR(φ0L ) =
∫ L f /2

1

1

A(s)
ds, yL(φ0L ) =

∫ L f /2

−1

1

A(s)
ds.

(B13)

APPENDIX C: THE FREE ENERGY

The free energy is given by

F (c1, .., cn, φ) = Fφ + Fc + Fw, (C1)
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and

Fφ =
∫

	

[
−1

2
ε0εr |∇φ|2 + e0φ

(
n∑

i=1

zici − q

)]
dv

=
∫

	

1

2
e0φ

(
n∑

i=1

zici − q

)
dv

Fc = kBT
∫

	

[
n∑

i=1

ci log
(
cia

3
i

) + 1 − ∑n
i=1 cia3

i

a3
0

× log

(
1 −

n∑
i=1

cia
3
i

)]
dv,

Fw =
∫

	

n∑
i=1

ciWidv, (C2)

where dv = A(x)dx is the volume element and a0 is the
diameter of water molecule. The three parts Fφ,Fc, and Fw

represent the electrostatic energy, the energy due to entropy
of ions, and the solvation energy. The modified PNP system
in Sec. II can be derived from this free energy, with a simpli-
fication of a factor a3

i /a3
0 in μi of Eq. (2). The energy is scale

by kBT in dimensionless form.
In the literature, ion selectivity is often defined by the free-

energy difference between ions in a binding site relative to the
corresponding quantity in the chamber. The above free energy
will be used to compute the energy differences for Na+ or K+
from the chamber to the filter. Let c1 denote Na+ or K+, and c2

denote Cl−. The data in Appendix A are adopted. The initial
state is without the filter (or the filter is closed), and c1 and c2

are in electroneutral state in the chamber. The dimensionless
values are

c1 = c2 = 2.55, φ = 0, in the chamber. (C3)

At the far end of the chamber, φ = 0 and the EN condition
are maintained, and the nonflux condition is used for c1. Thus
with the filter open, c1 will redistribute and some can enter
the filter. The equilibrium sate can be obtained by analytical
solutions in Sec. III A 2. The energy difference for one ion
from the chamber to the filter is defined by

�F = F equilibrium − F initial∫
filter c1dv

, (C4)

and by Eq. (C1) the three parts �Fφ,�Fc,�Fw in �F can
be similarly defined. The selectivity of K+ and Na+ in MD
simulations is defined as the difference of �F between the
two cases, we thus follow their notation to define

��F (K+ → Na+) = �F (Na+) − �F (K+). (C5)

Similarly, the constituting parts ��Fφ,��Fc,��Fw are
defined, in particular, ��Fw is consistent with difference in
solvation energy in Eqs. (14) and (16),

��Fw = �W (Na+) − �W (K+) = 133.1 − 98.4 = 34.7,

(C6)
in dimensionless value.

With q = 950, it is non-EN in the filter for the case of KCl,
and the profiles of solutions are like Fig. 4. While Na+ has
a smaller size, with q = 950 it is EN in the majority of the
filter region for the case of NaCl, and the profiles of solutions
are like Fig. 5. With these analytical solutions, the energy
differences in dimensionless values are obtained

��Fφ = −23.6, ��Fc = −0.7. (C7)

To compare with the values in MD simulations, we multiply
the scale kBT NA (NA is for a mole of ions) and convert the unit
of energy from J to kcal, and finally obtain

��Fw = 20.8 kcal/mol,

��Fφ = −14.2 kcal/mol,

��Fc = −0.4 kcal/mol,

��F = 6.2 kcal/mol. (C8)
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