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How cells regulate the number of organelles is a fundamental question in cell biology. While decades of
experimental work have uncovered four fundamental processes that regulate organelle biogenesis, namely, de
novo synthesis, fission, fusion, and decay, a comprehensive understanding of how these processes together
control organelle abundance remains elusive. Recent fluorescence microscopy experiments allow for the counting
of organelles at the single-cell level. These measurements provide information about the cell-to-cell variability
in organelle abundance in addition to the mean level. Motivated by such measurements, we build upon a
recent study and analyze a general stochastic model of organelle biogenesis. We compute the exact analytical
expressions for the probability distribution of organelle numbers, their mean, and variance across a population
of single cells. It is shown that different mechanisms of organelle biogenesis lead to distinct signatures in
the distribution of organelle numbers which allow us to discriminate between these various mechanisms. By
comparing our theory against published data for peroxisome abundance measurements in yeast, we show that a
widely believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is inadequate
in explaining the data. Also, our theory predicts bimodality in certain limits of the model. Overall, the framework
developed here can be harnessed to gain mechanistic insights into the process of organelle biogenesis.
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I. INTRODUCTION

An organelle is a spatial compartment in eukaryotic cells
[1,2] that performs a specialized function. Examples of or-
ganelles include vacuoles, Golgi bodies, endoplasmic reticu-
lum, etc. Cells tightly regulate organelle number in response
to environmental and intracellular cues [1–3]. For instance,
the number of mitochondria in mammals is tightly regu-
lated in response to their metabolic needs [4]. Yeast cells
significantly downregulate vacuole abundance during starva-
tion, or upon hypotonic shock [5]. These instances raise the
natural question: how is organelle abundance regulated in
cells?

Fluorescence microscopy studies of live and fixed cells
over the years have led to the discovery of four basic pro-
cesses that control organelle numbers in cells, namely, de
novo synthesis from a preexisting membrane source [6,7],
fission [8–11], fusion [5,12–18], and decay through autophagy
or random partitioning during cell division [2,19–21]. For
example, mitochondria regulation involves fission and fusion
[22]. An important property of organelle biogenesis is that
all of the aforementioned processes are inherently stochastic
[23,24]. This has led to an alternative approach to unrav-
eling the mechanisms of biogenesis in cells by counting
organelle numbers [2,23,25]. Then, the measured steady-state
distribution of organelles across a cell population can be
used to infer the dynamics of their biogenesis. In a recent
study, Mukherji et al. [23] put forward a general and elegant
model of organelle biogenesis consisting of these processes.
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Using a combination of theory and experiments the authors
exploited the cell-to-cell variability in organelle abundance
to uncover the kinetic rules of organelle biogenesis. This
approach led to newer insights, such as that Golgi body
abundance is controlled through the balance of de novo syn-
thesis and decay [23]. While this study along with another
follow up work [25] represent the first attempts to uncover the
mechanisms of organelle biogenesis using cell-to-cell vari-
ability or noise in organelle abundance, these aforementioned
studies only looked into the specific limits of the general
model. A comprehensive understanding of the impact of
different mechanisms underlying organelle biogenesis on the
cell-to-cell variability in organelle abundance remains in its
infancy.

The goal of this manuscript is to carry out such a sys-
tematic exploration. First, we compute the exact analytical
expressions for the probability distribution, mean, and vari-
ance of the organelle distribution for the general model,
and all the different limits of this model. We demonstrate
the utility of our theoretical results by applying them to
published datasets for peroxisome counts at the single cell
level. We show that a proposed mechanism of biogenesis
[23,25], where peroxisome number is controlled through de
novo synthesis, fission, and decay is inadequate in explaining
the data. Moreover, we discover that in a region of parameter
space the model predicts bimodality in organelle abundance.
Overall, our study provides a general and comprehensive
analysis of how different mechanisms of organelle biogenesis
control organelle number in vivo, and illustrates a recipe
to extract mechanistic insights from single cell organelle
measurements.
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FIG. 1. Model of organelle biogenesis. (a) Organelle biogenesis involves four mechanisms, namely, de novo synthesis, fission, fusion,
and decay. The probability per unit time of de novo synthesis is given by zeroth-order rate constant kd . kfis is the first-order rate constant
characterizing fission, kfus is the second-order rate constant defining fusion, and γ is the first-order rate constant defining decay, as proposed by
Mukherji and O’Shea [23]. From this model, we compute the probability distribution of organelle abundance as well as its mean and variance.
(b) List of possible reactions leading to either an increase or decrease in the organelle number and their respective weights. The weights
constitute the probability that each reaction will occur during a time interval, �t .

II. MODEL

To shed light on how the mechanisms of organelle biogen-
esis impact the cell-to-cell variability in organelle abundance
across a cell line, we build upon a recent study by Mukherji
and O’Shea [23,25]. In this study, the authors proposed a
general model of organelle biogenesis involving four different
processes: de novo synthesis, fission, fusion, and decay, as
shown in Fig. 1(a). This phenomenological model essentially
combines the hitherto observed mechanisms of biogenesis
of various organelles such as mitochondria, vacuole, per-
oxisome, Golgi body, etc. [6,16]. As shown in Fig. 1(a),
in this model, de novo synthesis of an organelle happens
with a zeroth-order rate constant kd . Through fission one
organelle copy divides and produces two copies at first-order
rate constant kfis per organelle. Two organelle copies fuse
at second-order rate constant kfus per organelle squared, and
form one organelle copy. Finally, an organelle copy can decay
with a first-order rate constant γ per organelle. It is evident
from the model that de novo synthesis and fission increase
the number of organelles, while fusion and decay decrease
their number [see Fig. 1(b)]. Through an interplay between
these opposing processes, the organelle abundance reaches a
steady state, whereby the distribution of number of organelles
does not change in time. While attaining the steady state in
the different limits of the model is not always guaranteed (for
details, see Materials and Methods), such an assumption has
been useful and reasonable in explaining the experimental
data [23,25]. In this regime, one can analyze the different
limits of the general model and make specific predictions
about the steady-state organelle abundance.

For the investigation of the steady-state properties of the
model, it is instructive to delineate the above processes [23,25]
in the space of organelle number, as shown in Fig. 1(b). These
processes and their corresponding weights allow us to employ
a stochastic framework and monitor the time evolution of
the organelle number. The probability distribution P(n, t) of

having n organelles in a cell at a time t is given by the master
equation [23]

dP(n, t )

dt
= [kd + kfis(n − 1)]P(n − 1, t )

+ [γ + kfusn](n + 1)P(n + 1, t )

− [kd + kfisn + γ n + kfusn(n − 1)]P(n, t ). (1)

The above equation is an agglomeration of all possible
steps that lead to either an increase or decrease in organelle
copy number [see the processes in Fig. 1(b)]. In principle,
the master equation contains all the information about the
organelle number distribution and its moments such as the
mean and variance, etc. However, obtaining exact solutions
for the moments and the distribution from this master equation
is challenging [23,25]. Alternatively, we make use of the
detailed balance condition [25,26] to obtain the steady-state
organelle number distribution (see Materials and Methods).
From these steady-state distributions, we compute the mean
and variance of organelle numbers using standard functions in
MATHEMATICA.

III. DIFFERENT MECHANISMS OF ORGANELLE
BIOGENESIS PROVIDE DISTINCT “FINGERPRINTS” IN

CELL-TO-CELL VARIABILITY IN ORGANELLE
ABUNDANCE

To expound the effect of different mechanisms of organelle
biogenesis on the cell-to-cell variability in organelle abun-
dance, we consider different possible limits of the general
model. For instance, consider a model of biogenesis that
involves nonzero rates of de novo synthesis and decay, while
contributions from fission and fusion processes are vanishing;
we call this model de novo synthesis decay. We identify
six such limits of the general model that reach the steady
state: (i) de novo synthesis-decay, (ii) fission-fusion, (iii) de
novo synthesis-fusion, (iv) de novo synthesis-fission-decay,
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TABLE I. Formulas for the steady-state probability distributions, as well as for their means and Fano factors for different models of
organelle biogenesis, are shown. We discuss each of the seven models in the first results section. The different special functions that arise
in these different formulas are defined as follows: nFm(a1, a2, ..., an; b1, b2, ...bm; z) is the generalized hypergeometric function that has n
parameters of type 1 and m parameters of type 2. nF R

m (a1, a2, ..., an; b1, b2, ...bm; z) ≡ nFm (a1,a2,...,an ;b1,b2,...bm ;z)
�(b1 )�(b )..�(bm ) is known as the regularized

hypergeometric function, where �(x) is the gamma function. Moreover, In(x) is the modified Bessel function of the first kind of order n, where
n is an integer. For a detailed discussion of special functions please see the Refs. [33,34].

De novo-decay

Mechanism Steady-state probability
          distribution Mean Fano factor

Fission-fusion

De novo-fusion

De novo-fission
      - fusion

De novo-fission
      - decay

De novo-fusion
      - decay

De novo-fission
 - fusion-decay

where

where

where

where

where

where

where

(v) de novo synthesis-fusion-decay, and (vi) de novo synthesis-
fission-fusion. For a detailed discussion on the conditions of
reaching the steady state for the different possible mecha-
nisms, see Materials and Methods. Although the (iii) de novo
synthesis-fusion and (vi) de novo synthesis-fission-fusion
models do have steady states in terms of organelle number,
because of the presence of the de novo synthesis process
the organelle size will keep increasing. Hence, these models
can be biologically relevant only if there are other cellular
mechanisms [21] to maintain mass balance without altering
the organelle number (see Materials and Methods for a dis-
cussion). It must be noted that we consider only those models
which show stationarity in the strict mathematical sense.
Clearly, one cannot rule out the possibility of fission-decay or
fission-fusion-decay model being biologically relevant, if the
fission rate is much greater than the decay rate (for a detailed
discussion, see Materials and Methods). We compute the exact
steady-state distribution of organelle numbers, its mean, and
variance for each of these six cases as well as the general
model (see Table I). With these results at hand, we perform
a comparative analysis of how these different mechanisms

affect the cell-to-cell variability in organelle abundance. To
carry out such an analysis, throughout the rest of the paper we
quantify the cell-to-cell variability using a statistical quantity,
known as the Fano factor [23,27], which is defined as the ratio
of the variance and the mean. We describe the behavior of
the Fano factor as a function of the mean as we change the
various experimentally tunable rates associated with the four
processes.

A. De novo synthesis-decay

The de novo synthesis-decay model is a good starting
point owing to its simplicity [23,25]. Abundance of many or-
ganelles such as Golgi body [23,28–31] is controlled through
this mechanism [6,19,28,32]. The number distribution of
organelles for this model is characterized by the Poisson
distribution (shown in Table I) [23], which is defined by one
effective parameter, given by the ratio of de novo synthesis and
decay rate constants. One of the key properties of a Poisson
distribution is that its mean and variance are equal, i.e., the
Fano factor for this model is 1, independent of the values of de
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FIG. 2. Noise profiles for different models of organelle biogen-
esis. Using the detailed balance condition [25,26], we computed
the Fano factor of the organelle number distribution for the differ-
ent models of organelle biogenesis. (a) Three different models of
biogenesis involving two processes: de novo synthesis-fusion (red),
fission-fusion (green), and de novo synthesis-decay (blue). These
models lead to qualitatively distinct predictions for the Fano factor
as a function of the mean. (b) De novo synthesis-fission-decay: We
tune the fission rate constant while keeping the other rates fixed to
generate the plots. The family of curves corresponds to the different
values of kd , where we keep the other rates fixed, γ = 1 t−1. (c) De
novo synthesis-fission-fusion: Rate of fission is tuned to generate the
plots, while we keep the other rate constants fixed. The family of
curves corresponds to the different values of kd ; fusion rate is given
by kfus = 1 t−1. (d) De novo synthesis-fusion-decay: The de novo
synthesis rate is tuned to make the Fano factor versus mean plots.
The family of curves corresponds to the different values of kfus. The
decay rate is given by γ = 1 t−1. (e) In this plot, we vary kfis, while
keeping kd and γ constant (value of both the rate constants have been
kept as 1) and explore how the noise profile evolves over different
values of kfus. When kfus = 0, the curve becomes a straight line which
is characteristic for the de novo synthesis-fission-decay.

novo synthesis and decay rate constants, as shown in Fig. 2(a).
This model thus serves as a good reference point for the com-
parison of different models, wherein a deviation of the Fano
factor from 1 indicates the presence of other processes. This
feature holds the key to our analysis in the rest of the paper.

B. De novo synthesis-fusion

The de novo synthesis-fusion model is fully characterized
by one effective parameter, defined by the ratio of the rate
constants characterizing de novo synthesis and fusion. For
this model the steady-state number of organelles never goes
to zero. The Fano factor increases as a function of the mean
and asymptotically goes to 0.5 when we alter one of the rate
constants of this model while keeping the other one fixed,
as shown in Fig. 2(a). While de novo synthesis happens at
a constant rate, fusion depends on the square of the number
of organelles. Such a reduction in the overall noise level can
be comprehended by comparing the de novo synthesis-decay
and de novo synthesis-fusion models. These two models differ
from each other owing to the manner in which the number
of organelles decreases; the reduction in organelle number
happens through two different processes, namely decay and
fusion. While decay goes linearly with organelle number,
fusion depends on the square of the organelle number, as
shown in Fig. 1(b). The relatively rapid change in the “weight”
(or, equivalently, in the rate) of fusion as the organelle num-
ber fluctuates around its mean value has a strong restoring
tendency, thus making the distribution narrower compared to
decay. Consequently, the Fano factor becomes less than 1.
The impact of fusion on noise in organelle numbers has been
reported before by Mukherji and O’Shea [23].

C. Fission-fusion

Next, we consider the fission-fusion model. In yeast and
mammalian cells, the biogenesis of organelles such as vacuole
and mitochondria involves both fission and fusion [15,22,
35–37]. For the fission-fusion model, we find that the or-
ganelle abundance is given by a truncated Poisson distribu-
tion, fully characterized by the ratio of the rate constants
characterizing fission and fusion. This result is in agreement
with a previous theoretical study [25]. It is evident that for
this model the number of organelles can never go below 1.
As shown in Fig. 2(a), when we tune either one of the two
rates of the model while keeping the other rate fixed, the Fano
factor increases as a function of the mean and asymptotically
approaches 1. In other words, with an increasing mean, the
organelle number distribution approaches the Poisson distri-
bution, characteristic of the de novo synthesis-decay model
[23,25].

Clearly, the three models corresponding to combinations of
two processes lead to distinct predictions for the Fano factor
as a function of the mean, as shown in Fig. 2(a). Since each
of these three models depends on one effective parameter,
the Fano factor as a function of the mean for each of them
is uniquely defined. The results obtained for these models
serve as reference points for exploring the models consisting
of combinations of three processes.

D. De novo synthesis-fission-decay

De novo synthesis-fission-decay model is defined by two
effective parameters (ratio of the de novo synthesis and fission
rate constants, and fission and decay rate constants, respec-
tively; see Table I). We seek to explore the behavior of the
Fano factor as a function of the mean for this model. This
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can be achieved in three different ways: (i) change the de
novo synthesis rate constant keeping the fission and decay rate
constants fixed; (ii) change the fission rate constant keeping
the de novo synthesis and decay rates constants fixed; and
(iii) alter the decay rate constant keeping the fission and
de novo synthesis rate constants fixed. Here we choose the
second scenario, motivated by the fact that the fission rate
constant of, for instance, peroxisome can be tuned by knock-
ing down genes such as DNM1, VPS1, etc. The Fano factor
versus mean plots for the other two scenarios are shown in
the Supplemental Material, Fig. S1 [38]. Using the de novo
synthesis-decay model as our reference, it is evident that the
Fano factor increases monotonically as a function of the mean,
as shown in Fig. 2(b). Clearly, the inclusion of the fission
process enhances the overall noise, which is in agreement with
previous studies [23,25].

E. De novo synthesis-fission-fusion

The de novo synthesis-fission-fusion model is defined fully
by two effective parameters (ratio of the de novo synthesis and
fission rate constant and fission and fusion rate constants), as
shown in Table I. Like the previous model, we can expound
the behavior of the cell-to-cell variability for this model by
tuning one of the parameters while keeping the other two
parameters constant. As an example, we alter the de novo
synthesis rate constant keeping the fission and fusion rate
constants fixed [see Fig. 2(c)]; the rest of the two scenarios are
shown in the Supplemental Material, Fig. S2 [38]. Using the
fission-fusion model as a reference, we find that as the de novo
synthesis rate constant is increased, the de novo synthesis-
fission-fusion model predicts an overall lowering of the noise
level [see Fig. 2(b)]. Moreover, the Fano factor as a function
of the mean approaches the de novo synthesis-fusion model.
On the other hand, when the fission rate constant is increased
keeping the de novo synthesis rate constant fixed, the Fano
factor increases as a function of the mean and approaches the
curve defining the fission-fusion model. Indeed, the cell-to-
cell variability in organelle abundance for this model is bound
by the Fano factor-mean curves defining the fission-fusion and
de novo synthesis-fusion model.

F. De novo synthesis-fusion-decay

The de novo synthesis-fusion-decay model is characterized
by two effective parameters (ratio of the de novo synthesis
and fusion rate constants, and fusion and decay rate constants,
respectively; see Table I). Fano factor as a function of the
mean is plotted by altering the de novo synthesis rate constant
while keeping the fusion and decay rate constants fixed; see
Fig. 2(d). For the other possible scenarios, see the Supplemen-
tal Material, Fig. S3 [38]. Using the de novo synthesis-fusion
model as our reference, we find that the introduction of the
decay rate enhances the noise level, as shown in Fig. 2(d).
Moreover, the Fano factor shows a nonmonotonic behavior
as a function of the mean as we alter the decay rate constant
for when the fusion rate constant is much greater than the
decay rate constant [see the red curve in Fig. 2(d)]. Initially,
when the mean is less than 1, the Fano factor decreases
and shows a minimum around a value of mean equal to 1.

Subsequently, the Fano factor increases with the mean and
asymptotically goes to 1. The reason for this nonmonotonic
behavior is that the fusion process cannot occur when the
organelle number is less than 2, and hence decay is dominant.
On the other hand, at large organelle numbers, the fusion
process dominates over the decay process since the fusion rate
constant is much greater than the decay rate constant. As a
result, the Fano factor of the organelle number switches from
a Poissonian behavior (set by the de novo synthesis-decay
process) to a behavior set by the de novo synthesis-fusion
process [Fig. 2(d)]. This crossover produces the observed
nonmonotonic behavior in the Fano factor. For the de novo
synthesis-fusion-decay model, the upper bound of the noise
level is set by the noise in a Poisson process, characteristic of
the de novo synthesis-decay model, while the lower bound is
set by the noise in the de novo synthesis-fusion process. It is
evident that the presence of the fusion process decreases noise
in organelle abundance which is consistent with previous
studies [23,25].

G. De novo synthesis-fission-fusion-decay

Finally, we analyze the general model consisting of all
the four processes and explore how these four processes in
conjunction impact organelle abundance across a cell popula-
tion. This model is characterized by three effective parameters
(ratio of the de novo synthesis and fission rate constant, fission
and fusion rate constant, and fusion and decay rate constant),
as shown in Table I. Using the analytical expressions from
Table I, we can study the behavior of the Fano factor as a
function of the mean by altering one of the parameters of the
model while keeping the others fixed. For instance, when we
alter the fission rate constant (keeping the other rate constants
fixed), the Fano factor shows a nonmonotonic behavior as
a function of the mean, as shown in Fig. 2(e). For a small
mean level, the Fano factor increases with the mean as we
increase the fission rate, which is characteristic of the de novo
synthesis-fission-decay model. For higher organelle copy
numbers the fission and fusion processes dominate [due to
the weights of these processes, see Fig. 1(b)] and the Fano
factor asymptotically approaches 1, after showing a peak in
between. However, as the fusion rate tends to zero, the Fano
factor manifests a linear behavior as a function of the mean
abundance, characteristic of the de novo synthesis-fission-
decay model. For a thorough analysis of the de novo synthesis-
fission-fusion-decay model, see the Supplemental Material
(Fig. S4) [38].

Overall, these results imply that we can discern between
different mechanisms of organelle biogenesis based on the
specific predictions they make for the Fano factor as a function
of the mean.

IV. THE DE NOVO SYNTHESIS-FISSION-DECAY MODEL
FAILS TO EXPLAIN THE NOISE IN PEROXISOME

ABUNDANCE IN YEAST

To illustrate the usefulness of our theoretical results, we
reanalyze previously published data for single-cell peroxi-
some counts in Saccharomyces cerevisiae [39]. In Saccha-
romyces cerevisiae, peroxisomes are primarily involved in
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FIG. 3. (a) Peroxisome biogenesis. The black data points represent the experimentally measured Fano factor of peroxisome number
distribution as a function of the mean for various Saccharomyces cerevisiae mutant strains, grown in glucose medium, with combinations
of deleted VPS1 and DNM1, taken from Ref. [39]. The data points represent the following mutants: (i) ο vps1�dnm1�, (ii) � vps1�, (iii) �
fis�, (iv) ♦ WT, (v) � dnm1�. The red data points represent the same yeast strains, grown in the oleic acid medium. Corresponding data points
are given by (i) ο vps1�dnm1�, (ii) � vps1�, (iii) � fis�, (iv) ♦ dnm1�. The blue curve shows the de novo synthesis-fission-fusion-decay
model prediction for how the Fano factor changes as a function of the mean when we alter the fission rate constant while keeping the other rate
constants fixed. The other rate constants are given by kfus = 34.3 t−1, kd = 3.45 t−1, and γ = 1 t−1. (B) Bimodality in organelle abundance:
The steady-state number distributions of organelles are shown for different values of the de novo synthesis rate constant for the de novo
synthesis-fission-fusion-decay model. When the rate of de novo synthesis is much greater than the fission rate, the organelle distribution
manifests bimodality. The rate constants corresponding to the blue curve are kd = 0.1 t−1,kfis = 0.1 t−1, kfus = 1 t−1, and γ = 1 t−1. The rate
constants corresponding to the red curve are kd = 0.1 t−1,kfis = 5 t−1, kfus = 1 t−1, and γ = 1 t−1.

the metabolism of various carbon and nitrogen sources, such
as oleic acid, and purines, etc. The underlying mechanisms
of peroxisome biogenesis remain elusive [40,41]. Various
experimental studies have reported the role of de novo syn-
thesis [6,42,43], fission [44,45] and decay [46] in controlling
peroxisome number. Most recent studies [23,25] have system-
atically constructed a model (de novo synthesis-fission-decay)
based on these experimental observations and showed that
this model captures the essential features of the peroxisome
distribution data in glucose and oleic acid-grown yeast cells.

Using our theoretical results, we put this model to the test
by applying it to single-cell peroxisome abundance measure-
ments [39]. This study by Kuravi et al. [39] seeks to unravel
the role of the dynamin-related proteins such as Vps1, Dnm1,
etc., in regulating the number of peroxisomes in Saccha-
romyces cerevisiae. The authors deleted various combinations
of the genes, VPS1, and DNM1 and noted the change in per-
oxisome count in glucose and oleic acid media. Interestingly,
most of the mutants from this study [39] manifest a Fano
factor of less than 1 [see Fig. 3(a)]. As shown before [see
Fig. 2(c) and the Supplemental Material [38]), if the de novo
synthesis-fission-decay model governs the biogenesis of an
organelle, its Fano factor always remains equal to or greater
than 1 [see Fig. 3(a)]. Hence, the de novo synthesis-fission-
decay model of peroxisome biogenesis is inadequate. Our
theoretical exploration showed [see Fig. 2(a)] that the Fano
factor of organelle number distribution can go below 1 only if
its biogenesis involves fusion. Motivated by this observation,
we consider the de novo synthesis-fission-fusion-decay model

consisting of all the four processes. To test this model, first
we fit the peroxisome data for the dnm1-vps1 double-deletion
yeast strain with the model to find the values of the individual
rate constants (see Materials and Methods and Supplemental
Material, Fig. S5 [38]). For simplification, we assume that
the fission rate for this strain is vanishing since two of the
key fission factors are not present in the cells. Hence, the de
novo synthesis-fission-fusion-decay model reduces to the de
novo synthesis-fusion-decay model, which is defined by two
effective parameters. Having obtained the corresponding pa-
rameter values, we are in a position to test the de novo
synthesis-fission-fusion-decay model by comparing the pre-
dictions this model makes against the data (for details see
Materials and Methods). To achieve this goal, we plot the
Fano factor as a function of the mean [Fig. 3(a)] as the
fission rate is increased; it is assumed here that the fission
rate would be higher for the wild type (WT) strain as well as
the single-deletion strains that consist one of the three genes
DNM1, VPS1, and FIS1. Next, we compare these predictions
with the peroxisome abundance measurements in yeast cells
grown in the glucose and oleic acid medium. The theory
predictions match well with the data for yeast cells grown in
the glucose medium. Interestingly, even for cells grown in the
oleic acid medium, which is characterized by higher fission
rate of peroxisome [46], the data points follow the trend of the
theory curve, barring the data point representing the WT yeast
(not shown).

In conclusion, the key finding of this section is that the
de novo synthesis-fission-decay model, proposed by Mukherji
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and O’Shea [23] and later built upon by Craven [25], cannot
explain the single-cell peroxisome data, obtained from various
different experimental studies.

V. MECHANISM OF ORGANELLE BIOGENESIS
PREDICTS A BIMODAL DISTRIBUTION OF

ORGANELLE ABUNDANCE

An idea that has gained much traction in recent years is
the possibility of achieving phenotypic heterogeneity through
nongenetic mechanisms [47]. A large number of studies have
focused on how noise and bimodality in gene expression
can lead to phenotypic diversification [27,47]. Interestingly,
a recent commentary by Chang and Marshall [24] hints at
the possible role of the cell-to-cell variability of organelles
in leading to distinct phenotypes. In this light, we theoret-
ically explore the following question: Can mechanisms of
biogenesis drive bimodality in organelle abundance? In order
to answer this query, we look into the full model consisting
of all the four processes. We find that when the rate of de
novo synthesis is much smaller than the fission rate, the
model predicts a bimodal distribution of organelle abundance
across a cell population, as shown in Fig. 3(b). As discussed
earlier, cells increase the number of organelles through de
novo synthesis and fission. Fission happens when there is at
least a single organelle copy in the cell. When the number of
an organelle in a cell goes to zero, the cell remains in this
state until the organelle number becomes 1 through a de novo
synthesis event. Once the number of the organelle goes to
1, the cell can start producing them through fission and the
number can quickly increase. Hence, for when the rate of de
novo synthesis is much smaller compared to the fission rate,
the cells either remain in the zero-organelle state or produce
a finite number of organelles, depending on the fusion and
decay rate. It must be noted that the fusion and decay rates
should be of comparable magnitude for bimodality to arise.
While the fission rate should be higher than the rate of fusion
and decay for the second mode of the distribution to exist,
for when the fission rate is much greater than the fusion and
decay rate, the first mode of the distribution corresponding
to the zero-organelle state ceases to exist. It must be noted
that none of the six limiting models manifest bimodality. It
would be interesting to explore the case where abundance of
any organelle exhibits bimodality.

VI. DISCUSSION

Cell-to-cell variability in organelle abundance in a pop-
ulation of cells can be exploited to unravel the governing
principles of organelle biogenesis. While the strategy of using
cell-to-cell variability to gain mechanistic insights has led to a
number of crucial discoveries in different areas of molecular
and cellular biology, such as gene expression [48,49] and
flagellar rotation [50], it remains less utilized in understanding
the regulation of organelle abundance, except for a few studies
[2,23,51]. In this paper, we explore a general model [23] of
organelle biogenesis and explore the relative contributions
of different processes associated with this model in control-
ling the noise in organelle abundance. In order to achieve
this goal, we compute the closed-form steady-state organelle

number distributions for each of the limiting models of the
general model and the corresponding means and variances.
Using these analytical results, we show that the change in
the Fano factor of an organelle number distribution as a
function of the various parameters leads to distinct predictions
for the different mechanisms of organelle biogenesis. These
specific predictions of the organelle number distribution not
only complement the traditional microscopy experiments but
also provide a powerful quantitative lens to extract deeper
mechanistic insights from them.

We elucidate the utility of our theory by applying it to
published data for peroxisome abundance in Saccharomyces
cerevisiae [38,52]. We show that the de novo synthesis-fission-
decay model, proposed in recent studies [23,25], cannot
explain single-cell peroxisome counts obtained from other
experimental studies [39]. Rather, a general model consisting
of all the four processes, namely, de novo synthesis, fission,
decay, and fusion can capture the trend of the data. While
experimental findings suggest that mature peroxisomes do not
fuse in yeast, it remains debated [45,53]. It was suggested
[45,53] that the possibility of peroxisome fusion under certain
metabolic or environmental conditions cannot be excluded. In
spite of the close match between the predictions of the de
novo synthesis-fission-fusion-decay model, and peroxisome
measurements, we cannot explicitly rule out other possible
mechanisms of regulation of peroxisome abundance. For
instance, an alternative possibility is that cells control the
number of peroxisomes through some feedback mechanism
[1]. It was shown in an experimental study [54] that HEX
oligomers through a positive feedback mechanism provide
a way of controlling composition and abundance of peroxi-
somes. Also, it has been shown that the rate of peroxisome
decay via autophagy depends on the existence of a functional
fission pathway [55]. It is possible to extend our model to
incorporate some of these findings. For example, in the case
of fission-dependent autophagy rates, the decay rate constant
can be expressed as a function of the fission rate constants.
More importantly, deviations from this simple model could
actually pave the way for discovering the abovementioned
mechanisms of organelle abundance control, such as the cou-
pling between the different processes affecting organelle copy
number, organelle-size-dependent rates or feedback [2], etc.
Nonetheless, we make use of the de novo synthesis-fission-
fusion-decay model as a simple scenario that explains the
data and provides mechanistic insights into the process of
peroxisome biogenesis that leads to experimentally testable
predictions.

We apply our theory to peroxisome data to demonstrate the
utility of our theory; nevertheless, our modeling framework
is rather general in spite of its simplicity and is not limited
to peroxisome. The processes this model incorporates have
been experimentally observed in the context of biogenesis of
various organelles such as vacuole, Golgi body, mitochondria,
etc. [23,25].

One key question our paper deals with is whether cell-
to-cell variability in organelle abundance plays any func-
tional role [24]. While many studies to date have identified
molecular-level variability such as gene expression noise as an
important source of phenotypic heterogeneity [27,47], it is not
clear if organelle-level heterogeneity can play a role, if any, in
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creating phenotypic variability [24]. In a recent commentary,
Chang and Marshall [24] hypothesized a possible role of
cell-to-cell organelle variability in the context of disease, in
particular, if some diseases exhibit more or less variability
compared to nondiseased states [56]. Our analytical results
concretize this hypothesis by making specific and experi-
mentally testable predictions for generating bimodality in
organelle abundance, where the two modes of the distribution
can signify two different phenotypes. It must be noted that
other scenarios where the various rate constants depend on
organelle composition and size can also potentially lead to
bimodality.

In conclusion, we have provided a theoretical framework
and related analytical tools to analyze single-cell experiments
that produce organelle number distribution, to extract infor-
mation about the dynamics of organelle biogenesis in cells.
The combination of single-cell experiments and theory holds
the promise of uncovering comprehensive kinetic information
about the process of organelle biogenesis.

VII. MATERIALS AND METHODS

A. On the conditions of reaching the stationary state

The general model as shown in Fig. 1(a) consists of four
processes, namely, de novo synthesis, fission, fusion, and
decay. While de novo synthesis and fission increase the num-
ber of organelles, fusion, and decay decrease their number,
as shown in Fig. 1(b). Through an interplay between these
opposing processes, the distribution of organelle abundance
becomes stationary. Evidently, any possible combination of
these processes should at the least consist of one process
that increases organelle number and one process that de-
creases organelle number. We can in principle construct four
limiting models that are combinations of two processes:
de novo synthesis-decay, fission-fusion, de novo synthesis-
fusion, fission-decay. However, out of these four combina-
tions, the fission-decay model does not have any steady state.
When the fission rate constant is much greater than the decay
rate constant, the number of organelles tends to keep growing.
On the other hand, when the rate constant of decay is greater
than the fission rate constant, the organelle number eventually
goes to zero. The cell remains in this state since for fission
to increase the number of organelles the cell needs to have at
least one organelle copy. Hence the fission-decay model does
not lead to a steady state where the organelle number is finite.

For combinations of three processes, there are four pos-
sible limiting models: de novo synthesis-fission-fusion, de
novo synthesis-fusion-decay, de novo synthesis-fission-decay,
fission-fusion-decay. Amongst these limiting models, we note
that the de novo synthesis-fission-decay process reaches a
steady state only when the fission rate constant is lesser
than the decay rate constant. Otherwise, the organelle number
keeps growing. When the decay rate constant is greater than
the fission rate constant, the organelle number does not get
frozen at the zero-organelle state due to the presence of de
novo synthesis. Thus, the inclusion of de novo synthesis to
the fission-decay model leads to a nontrivial steady state. This
same line of argument shows that a combination of fission,
fusion, and decay cannot also reach a steady state in the

absence of de novo synthesis. All other combinations of the
processes, as mentioned above, naturally lead to steady-state
conditions for any choice of the rates. Along the same lines,
it can be argued that the fission-fusion-decay model does not
have a nontrivial steady state.

In this paper, we consider those models which show sta-
tionarity in the strict mathematical sense. Let us consider the
fission-decay model. For this model, once the system reaches
the zero-organelle state it remains there forever. Hence in the
limit of the decay rate constant being higher than the fission
rate constant, there exists a trivial steady state. However, if
the fission rate constant is much higher than the decay rate
constant, the system may never go to the zero-organelle state.
The same goes for the fission-fusion-decay model. Hence one
cannot rule out the possibility of fission-decay or fission-
fusion-decay model being biologically relevant if the rate
constant of the fission process is much greater than the decay
rate constant.

B. Detailed balance

Here we employ the detailed balance condition follow-
ing Refs. [25,26] to obtain the steady-state organelle num-
ber distribution. To justify the applicability of the detailed
balance condition, we follow the same line of argument as
Ref. [57]. Let us consider two organelle number states, i and
j. Moreover, let Ji j denote the steady-state probability current
between two states i and j, given by Ji→ j = P(i)Wi→ j −
P( j)Wj→i, where P(i) is the probability of having i number
of organelles. Here Wi→ j is the transition rate from the ith to
the jth state. The state space for the organelle numbers does
not have any loops because the numbers go linearly from 0, to
1, from 1 to 2, and so on. Correspondingly, the steady state
is characterized by a single constant probability current J.
Furthermore, because P(N) tends to zero for large N, we must
have J = 0. Thus, all probability currents vanish in the steady
state. Hence, at the steady state, the detailed balance condition
would imply that the frequency of transition from a state of n
organelle copies to the state of n − 1 organelle copies must
equal the frequency of transition from n − 1 organelle copy
state to n organelle copy state, where n = {0, 1, 2, . . .}. For
instance, if we consider the de novo synthesis-decay model,
the detailed balance condition would imply the following
mathematical condition:

kd P(n − 1) = γ nP(n).

Here the probability of having n − 1 and n organelles in
the cell is given by P(n − 1) and P(n), respectively. The rate
of de novo synthesis is given by kd , and γ is rate of decay. This
recursion relation allows us to find a relationship between the
probability of having n organelles P(n), and zero organelles
P(0) in the cell, respectively, which is given by

P(n) = 1

n!

(
kd

γ

)n

P(0).

It is evident that P(0) has to be evaluated for obtaining the
exact expression for P(n). To achieve this goal, we use the
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normalization condition that
∞∑

n=0

Pn = 1,

∞∑
n=0

1

n!

(
kd

γ

)n

P(0) = 1.

We can evaluate this sum using MATHEMATICA and get a
final expression for P(n), which is given by

P(n) = 1

n!

(
kd

γ

)n

exp

(
−kd

γ

)
.

Similarly, the distribution of organelle abundance for all
the different limits of the general model as well the full model
can be obtained. Using standard functions in MATHEMATICA,
we can also obtain the mean and variance of the organelle
distribution for all the models. We have also attached a
MATHEMATICA file as a Supplemental Material [38,58].

C. Limitations of the model

The model of organelle biogenesis we explore here is an
“effective” model, where we assume the different rates to be
constant. It is potentially a simplistic assumption as some
of these rates can depend on the size of the organelles i as
the fusion rate of peroxisomes [59]. While it is possible to
incorporate such size dependence, we believe that the model
considered here provides the simplest scenario and hence pro-
vides the null predictions. Any deviation from these models
would hint at the presence of other more complicated mecha-
nisms such as organelle-size-dependent rates or feedback [2].
Two of the limiting models we consider in our analysis, (iii)
de novo synthesis-fusion and (vi) de novo synthesis-fission-
fusion models, do have steady states in terms of organelle
number, but the mass of organelles would keep increasing
indefinitely. Clearly, these models can be biologically relevant
only if there are other cellular mechanisms such as possible
membrane removal, etc. [21] to maintain mass balance with-
out altering the organelle number. While we analyze these
models for the sake of completeness, the obvious next step
would be to consider size-dependent rates to explore how the
model predictions change. This would allow us to also garner
a clear understanding of how cells regulate the number and
composition of organelles [1].

Some of the models we consider do not include decay,
and the reduction in number of organelles happens through
fusion. One would imagine that in cells, organelles would
encounter some form of decay on account of the various
cellular processes. However, if the decay rate constant is
much smaller than the rate constant of fusion, then organelle
abundance will still be primarily dictated by fusion.

D. Parameter extraction

We evaluate the utility of our analytical results by applying
them to published data to gain mechanistic insights into the
biogenesis of peroxisome. To this end, we have reanalyzed
peroxisome single-cell count data. We extract the peroxisome
data from the published peroxisome number distribution plots
in Figs. 1(A)–1(J) of Ref. [39] by using DIGITIZEIT, a free
online tool for digitizing data plots. From this distribution
we compute the mean and Fano factor for the various mutant
strains, as shown in Fig. 3(a).

Next, in order to make the Fano factor-mean prediction
plot for de novo synthesis-fission-fusion-decay model [see
blue curve in Fig. 3(a)], we fit the data for the dnm1-vps1
double-deletion yeast strain with the de novo synthesis-fusion-
decay model to find the values of the individual rates. Here
we assume that the fission rate for this strain is vanishing
since two of the known fission factors are not present in the
cells. It must be noted that we cannot uniquely determine the
kinetic rate constants associated with the different processes
defining the de novo synthesis-fusion-decay model since the
distribution of organelle abundance corresponding to different
mechanisms depends on the ratios of the parameters. Hence,
we need to set the value of one of the rate constants to 1
and measure the other rate constants with respect to that
parameter. The value of the decay rate constant is set to 1.
We extract the following parameters: kfus = 36.39 t−1, kd =
3.46 t−1, and γ = 1 t−1, kfis = 0 t−1.

Error bars in Fano factor [Fig. 3(a)] represent the standard
deviation of 1000 independent, resampled data sets obtained
using the method of Bootstrapping in MATLAB.
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