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Solution of the Crow-Kimura model with a periodically changing (two-season) fitness function
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Since the origin of life, both evolutionary dynamics and rhythms have played a key role in the functioning of
living systems. The Crow-Kimura model of periodically changing fitness function has been solved exactly, using
integral equation with time-ordered exponent. We also found a simple approximate solution for the two-season
case. The evolutionary dynamics accompanied by the rhythms provide important insights into the properties of
certain biological systems and processes.
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I. INTRODUCTION

Evolutionary dynamics is the key feature of living systems
[1], and the exponential growth of the replicators in the case
with sufficient nutrients is perhaps the first feature of living
systems. On the other hand, all known biological systems
possess rhythms. It is important to look at a model with both
features, and this forms the biological motivation of our work
here. One of the key findings of Eigen [1,2] was the existence
of two phases in an evolution model with a single-peak fitness
landscape. When the mutation probability is higher than the
threshold value, the system is in a nonselective phase where
the population is dissolved in the whole sequence space. In the
case of a dynamics fitness landscape, the situation becomes
more complicated. In Ref. [3], they consider a single-peak
fitness landscape with a peak sequence that changes after a
certain period of time. A minimal threshold value for the
mutation probability indicating the existence of the selective
phase is determined. Some approximate results have been
considered in Ref. [4] as well. In Ref. [5], they consider the
single-peak Crow-Kimura model [6–9], where the peak se-
quence changes after some time. In Ref. [10], the mean fitness
of the Crow-Kimura model on the static fitness landscape (first
calculated in Ref. [9]) has been derived using the ideas of spin-
glass models and the methods of quantum statistical physics
(the Ising model with the transverse magnetic field). Some
approximate solutions for the Eigen model with periodically
changing peak sequence have been found in Ref. [11]. In the
current study, we have adopted the methods from Ref. [10] for
general applicability and used it to solve for the two-season
model. The system uses one fitness function for the first
part of the period and another one for the second part. Such
evolutionary dynamics may be related to seasonal variation
[12–15] in the natural world.
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The calculation of the mean fitness for the quasispecies
model is the first step in the investigation of the biological
aspects of the model. First, we will calculate the exact mean
fitness for the evolutionary dynamics with the fitness land-
scape varying periodically. Next, we give the main results of
Ref. [10] in a way that can be generalized for the evolution
model with a fitness landscape that is periodic in time. We
then deduce the exact integral equation for the calculation
of mean fitness in the case of general periodic fitness land-
scape. Finally, we derive a simple approximate solution for
two-season evolution model that can be applied to certain
biological systems.

II. THE CROW-KIMURA MODEL

Using the Crow-Kimura model, we consider the evolution-
ary dynamics of a genome modeled as a chain of N genes each
having two alleles, ±1, which makes for 2N genotypes. The
Malthusian fitness of a sequence with l mutations from the ref-
erence (wild) sequence is Nrl , and the mutation rate for the
one allele change is μ. We collect all the sequences with l
number of mutations to the Hamming lth class and define their
probabilities as Pl . We then look at the system of equations:

dPl (t )

dt
= Pl N (rl − μ) + μ[Pl−1(N − l + 1)

+ Pl+1(l + 1)] − μPl (t )NR, (1)

where NR = ∑N
l=0 Nrl Pl is the mean fitness. We drop the Pl−1

and Pl+1 terms for the l = 0 and l = N cases, respectively.
We can deduce the solution of Eq. (1) from the solution of

the linear version of the same equation (dropping nonlinear
terms), using a nonlinear algebraic transformation [16]:

d pl (t )

dt
= plN (rl − μ) + μ[pl−1(N − l + 1) + pl+1(l + 1)],

Pl = pl∑
n pn

. (2)
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We assume the following form of the fitness landscape:

rl = f (x, t ), x = 1 − 2l/N.

Let us now look at a matrix representation of Eq. (2) as d
dt �p =

−H �p, where �p = (p0 · · · pN ). We can derive the mean fitness
of the steady state by inspecting the maximal eigenvalue of
the matrix −H . The matrix H has a simple presentation as a
quantum-mechanical Hamiltonian for the case of imaginary
time [7,10]:

−H = μ
∑

k

(
σ x

k − 1
) + f

(∑
k σ z

k

N
, t

)
. (3)

We can obtain a decomposition H = H1 + H2 by taking the
first and second terms in Eq. (3). In the standard Crow-Kimura
model, we have the static fitness landscape,

f (x, t ) = f0(x). (4)

We can define different states Si by inspecting the eigenstates
σ z

k . In Ref. [10], the mean fitness has been derived using the
formula:

R = lim
β→∞

log Tre−βH

β
. (5)

In Ref. [10], the following expression for the mean fitness has
been derived via the methods of quantum statistical physics
using large β limit:

R = 1

Nβ
log[Tre−H/L . . . e−βH/L]

= 1

Nβ
log[Tre−βH1/Le−βH2/L . . . e−βH1/Le−βH2/L]

= 1

Nβ
log

[∑
i

〈Si|e−βH1/Le−βH2/L . . . e−βH1/Le−βH2/L|Si〉
]
.

(6)

Using a Suzuki-Trottere formalism, the Tr has been expressed
by the classical statistical physics of the Ising model in the
magnetic field h(x). In Ref. [17], the following has been
derived:

log
∑

j

〈Si|e−βH1/Le−βH2/L . . . e−βH1/Le−βH2/L|S j〉

= NMax

[
−

∫ β

0
h(x)m(x)dx + f0[m(x)]

+ log
[
Tr(1 + σx )T̂ e

∫ β

0 dxh(x)σz+βσx
]]

, (7)

where T̂ means a time-ordered exponent, and we should
determine the maximum point via h(x), m(x).

For the static fitness landscape taking h(x) = h, m(x) = m
and the limit β → ∞, we obtain:

NR = log{Max[exp[−βhm + β f0(m) + φ1(β, h) − β]}|h,m],

(8)

where

φ1(β, h) = β
√

1 + h2. (9)

At the extreme point, we then obtain h = f ′
0(m), f ′

0(m) =
m√

1−m2 and the mean fitness as

R = Max[ f0(x) + μ(
√

1 − x2 − 1)]. (10)

The same result can be determined using the Hamilton-Jacobi
equation method [18,19], where the steady-state distribution
has been derived. Such an approach is crucial for the admis-
sion of exact dynamics [20]. Equation (8) was first derived in
Ref. [9] and the corresponding expression for the Eigen model
[21] are key mathematical results for quasispecies models.

III. THE GENERAL PERIODIC FITNESS CASE

Now let us consider the general periodic fitness case. When
fitness is periodic in time, i.e.,

f (x, t ) = f (x, t + T ). (11)

We are interested in the dynamics for a βT time period. We
define the mean fitness as

R = lim
β→∞

log
[
TrT̂ e− ∫ βT

0 dtH (t )
]

βT N
, (12)

where we consider the time-ordered exponent, and β is a large
integer. Then, slightly modifying the results of Ref. [17] given
in the previous section, we obtain:

R = max

{∫ T

0
[−h(x)m(x)dx + f0(m(x), x)]

+ log
[
TrT̂ e

∫ T
0 dxh(x)σz+T σx

]}
. (13)

We should look at the maximum of the right-hand side of
Eq. (13). One simple equation is

h(x) = f ′
0[m(x), x], (14)

where f ′
0 means the derivative with respect to m(x). We then

obtain a different form of the integral equation:

m(x) = TrG(x)σzG−x[G(T )]

TrG(T )
,

G(X ) = T̂ e
∫ X

0 dxh(x)σz+Xσx . (15)

Our Eqs. (13)–(15) are exact equations, and so the theoretical
results obtained are widely generalizable. We now investigate
an interesting real-world example from here.

IV. THE APPROXIMATE VERSION OF
TWO-SEASON EVOLUTION MODEL

A. The approximate formula

Consider evolution in the Crow-Kimura model with muta-
tion rate μ = 1 and fitness,

f (x, t ) = f1(x), Mod(t, T ) < T1,
(16)

f (x, t ) = f2(x), Mod(t, T ) > T1,

where T = T1 + T2. Let us look the version of Eq. (13) with

m(x) = m1, h(x) = h1, Mod(t, T ) < T1,

m(x) = m2, h(x) = h2, Mod(t, T ) > T1. (17)
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FIG. 1. The mean fitness R versus b = T1 = T2, f1(x) =
x, f2(x) = 2x. The smooth line corresponds to our analytical results
by Eq. (12), and the solid dots are the results of numerics.

We then derive the mean fitness

R(T1 + T2) = −T1h1m1 + T1 f1(m1) − T2h2m2

+ T2 f2(m2) + φ2(T1, h1,2 , h2), (18)

where eφ2(T1,h1,T2,h2 ) is the maximal eigenvalue of the linear
operator.

eT1(h1σz+σx )eT2(h2σz+σx ) (19)

and is derived in the Appendix:

φ2 = ln
cosh

(
β1

√
1 + h2

1

)
cosh

(
β2

√
1 + h2

2

)
X

cosh(u)
+ u

u = arctanh

√
Y 2 − Z2

X
,

X = 1 + t1t2
1 + h1h2√

1 + h2
1

√
1 + h2

2

,

Y = t1t2
h1 − h2√

1 + h2
1

√
1 + h2

2

,

Z =
√√√√t2

1 + t2
2 + 2t1t2

1 + h1h2√
1 + h2

1

√
1 + h2

2

(20)

and we denote t1 = tanh(T1

√
1 + h2

1 ), t2 = tanh(T2

√
1 + h2

2 ).

B. Two different linear fitness functions

Considering evolution in the T1 period via a fitness f1(x) =
k1x and T2 period via f2(x) = k2x. Then we can derive the
following:

R = φ2(T1, k1, T2, k2). (21)

In Fig. 1 we have compared our analytical results with the
numerics.

FIG. 2. The mean fitness R versus b = T1 = T2, f1(x) =
x, f2(x) = x2. The smooth line corresponds to our analytical results
by Eq. (12), and the solid dots are the results of numerics.

C. The case when one of the fitnesses is a linear function

Consider another simple case when one of the fitnesses is
a linear function. In order to calculate the mean fitness, we
should find the maximum

R = −T2h2m2 + T2 f2(m2) + φ2(T1, T2, h2). (22)

In Figs. 2 and 3, we have given the comparison of our re-
sults with the numerics. Clearly, there is excellent agreement
between the two.

V. THE TWO-DIMENSIONAL TWO-SEASON
FITNESS LANDSCAPE

For the case of the two-dimensional two-season fitness
landscape, let us consider the generalization of Eq. (1), when
the genome has two parts: lengths L1 = λ1N and L2 = λ2N
and the total fitness depends on the number of mutations in

FIG. 3. The mean fitness R versus b = T1 = T2, f1(x) =
0, f2(x) = x2. The smooth line corresponds to our analytical results
by Eq. (12), and the solid dots are the results of numerics.
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each part [22],

dPln(t )

dt
= Pln(rln − μ)N + μ[Pl−1,n(L1 − l + 1)

+ Pl,n−1(L2 − n + 1) + Pl+1,n(l + 1)

+ Pl,n+1(n + 1)] − Pln(t )NR, (23)

where RM = ∑
lnN rlnPln is the mean fitness and m1 =

1 − 2l/L1, m2 = 1 − 2n/L2. We have a mutation rate per
gene μ/N . The fitness is described here via two functions
f1(m1, m2) and f2(m1, m2) during the period β1 and β2.

Such a model adequately describes the situation whereby,
after some period of time, the fitness peak moves from
one peak sequence to the other one at some Hamming dis-
tance. For the static fitness landscape with fitness function
f1(m1, m2), the model has been solved in Refs. [22,23],

RT = −λ1T h1m1 − λ2T h2m2 + T f1(m1, m2)

+ λ1φ1(T, h1) + λ2φ1(T, h2), (24)

where λ1 = L1/N, λ2 = L − 2/N, N = L1 + L2. For the two-
season fitness landscape, we have the following expression for
the mean fitness:

R(T1 + T2) = −λ1(T1h1m1 + T2h2m2)−λ2(T1h3m3 + T2h4m4)

+φ2(T1, h1, T2, h2) + φ2(T1, h3, T2, h4)

+ T1 f1(m1, m3) + T2 f2(m2, m4). (25)

We should focus on the maximum of the latter expression.
Thus for the general case of two dimensional two-season evo-
lution, we have a system of four nonlinear algebraic equations.

VI. CONCLUSIONS

Both evolutionary dynamics and rhythms have played a
key role in the functioning of all forms of life. Hence, it is
important to investigate the evolution on a periodic landscape
and solve for such a model involving both features. We have
formulated the Crow-Kimura model with fitness landscape
that is periodic in time and deduced an exact integral equation
for a periodic fitness landscape with time-ordered exponent.
We have also formulated the two-season evolution model
and derived a simple approximate solution. Our analytical
results are well corroborated by numerical results as they
show excellent agreement. Our work has great relevance to
the quasispecies model which has far more applications than
the traditional population genetics [24], for example, in the
modeling of viruses [25] to cancer biology, genetic algorithms
and learning [26], and evolvability [27]. We perceive these
results to be of general significance for the understanding
and management of seasons-related infections, too. Critically,
we have obtained the first result to quasispecies involving
a smooth fitness landscape. The present study suggests a
framework for developing mathematical tools to realistically
capture the discontinuous characteristics in Hamilton-Jacobi
equation theory. A similar method may also be applied to the
two-season Eigen model.
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APPENDIX: THE DETERMINATION OF φ2

We should investigate the operator

eT1(hσz+σx )eT2(vσz+σx ). (A1)

Let us introduce the unit vectors

�a =
(

h√
1 + h2

,
1√

1 + h2

)
, �b =

(
v√

1 + v2
,

1√
1 + v2

)
, (A2)

exp[T1(hσx + σz )] = cosh(T1

√
h2 + 1)[1 + tanh(T1

√
h2 + 1)(�a · �σ )] exp[T2(vσx + σz )]

= cosh(T1

√
v2 + 1)[1 + tanh(T1

√
v2 + 1)(�b · �σ )]. (A3)

We should find the maximum eigenvalue of the matrix,

exp[T1(hσx +σz )] exp[T2(vσx +σz )] = cosh(T1

√
h2+1) cosh(T2

√
v2+1)[1 + tanh1 tanh2(�a · �b) + tanh1 tanh2 i(a1b2 − a2b1)σy]

+ (tanh1 �a + tanh2 �b)�σ = cosh(T1

√
h2 + 1) cosh(T2

√
v2 + 1)X + Yiσy + Z (�c�σ ),

X = 1 + tanh1 tanh2(�a · �b), Y = tanh1 tanh2(a1b2 − a2b1),

Z =
√

(tanh1)2 + (tanh2)2 + 2(tanh1)(tanh2)(�a · �b),

�c = tanh1 �a + tanh2 �b√
(tanh1)2 + (tanh2)2 + 2(tanh1)(tanh2)(�a · �b)

. (A4)
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Then we use

exp{u[(�n · �σ ) + siσy]} = exp

[
u
√

1 − s2

( �n · �σ√
1 − s2

+ si√
1 − s2

σy

)]

= cosh(u
√

1 − s2)

[
1 + tanh(u

√
1 − s2)

( �n · �σ√
1 − s2

+ si√
1 − s2

σy

)]
. (A5)

Finally, using Eq. (A5), we calculate

u = A tanh(
√

Z2 − Y 2/X ). (A6)

Thus we obtain for large n,

φ2(T1, h, T2, v) = ln(TrAn)1/n = ln
cosh(T1

√
h2 + 1) cosh(T2

√
v2 + 1)X

cosh(u)
+ u. (A7)
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