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Spatial point pattern and urban morphology: Perspectives from entropy, complexity, and networks
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Spatial organization of physical form of an urban system, or city, both manifests and influences the way
its social form functions. Mathematical quantification of the spatial pattern of a city is, therefore, important for
understanding various aspects of the system. In this work, a framework to characterize the spatial pattern of urban
locations based on the idea of entropy maximization is proposed. Three spatial length scales in the system with
discerning interpretations in terms of the spatial arrangement of the locations are calculated. Using these length
scales, two quantities are introduced to quantify the system’s spatial pattern, namely, mass decoherence and
space decoherence, whose combination enables the comparison of different cities in the world. The comparison
reveals different types of urban morphology that could be attributed to the cities’ geographical background and

development status.
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I. INTRODUCTION

Cities as complex systems [1-4] have been a topic of re-
search beyond the traditional discipline of urban studies. The
idea of complexity in cities arises from the fact that they com-
prise many entities interacting with one another locally and
generating global emergent patterns. Those interactions and
the associated patterns have been shown to exhibit properties
[e.g., Ref. 3] similar to those observed in theoretical models
developed in the fields of statistical physics or mathematics.
Quantitative tools from these fields, therefore, can be fruit-
fully applied toward constructing a framework for Science of
cities.

Of the many aspects of studying cities, the spatial orga-
nization of physical form, i.e., infrastructure elements, in a
city provides a fundamental understanding of the city’s way
of life. Various methods have been employed to tackle the
problem of characterizing spatial patterns of urban systems,
including fractal dimension [5], land use patterns [6,7], street
networks [8,9], or entropy of population density [10]. Among
them, percolation has proved to be a powerful and useful tool
to study urban morphology [11]. In recent years, percolation
method has becoming increasingly popular in analyzing the
spatial organization of places in urban systems at various
scales, from city [12,13], to nation [14], and intercountry
level [15]. The application of percolation in such studies has
so far been mainly concerned with studying the evolution
of the giant cluster formed when the distance threshold p
for interpoint interaction [16] changes. The growth of such
cluster involves a transition from a segregate state where
points are disconnected to an aggregate state in which a path
exists between a pair of points located at opposite ends of
the system. The identification of such transition regime is
normally done via rate of growth of the giant cluster as the
distance threshold increases. The profiles of such growth can
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be divided into three parts, namely, slow growth, rapid growth,
and stabilization (Fig. 1). At small value of distance threshold,
most clusters are localized due to limited connections with
other nearby points. As p increases, points can have access to
farther neighbors, making small clusters merge to form larger
ones. When p is sufficiently large, a dominant cluster emerges
and rapidly grows within a narrow range of p, known as
transition regime [17]. After this regime, the dominant cluster,
also called a giant cluster, starts to stabilise as it has already
grasped most of the points and only grows slowly until no
further expansion is possible, i.e., all points now belong to a
single, unified cluster with a path existing between any pair of
points in the set.

Traditionally, theoretical study of percolation on regularly
spaced lattices provides procedures to quantify the transition
regime and characterize it in the framework of universality
classes [17,18]. Extending to continuous space, continuum
percolation theory relaxes the position of points and studies
their properties, including the conditions for existence of
the giant cluster under different settings [19,20]. While a
number of studies have been devoted to estimate the value of
percolation threshold, especially in thermodynamic limit for
theoretical systems [e.g., Refs. 21,22], much less focus has
been put on determining the transition in a finite set of points,
which could appear very fuzzy, especially in real data. In the
context of urban studies, some measures have been applied to
investigate the percolation transition in road networks [23],
yet the transition regime in finite systems remains largely
unexplored. Such result is particularly useful for practical
applications like quantitative urban morphology, where data
are always bounded.

This study, therefore, aims to present a framework to
examine the transition in the context of continuum percolation
of a finite set of points, by identifying different length scales
associated with different states of the system as the distance
threshold p changes and combining them to quantify the tran-
sition. In the remaining of this paper, these length scales are
calculated in Sec. II, which will be employed to characterize
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FIG. 1. Growth of largest cluster in a set of points as the range of
interaction among points increases. Three stages of growth could be
observed, namely, slow growth, rapid growth, and stabilization. As
will be discussed in the text later, the window of rapid growth can
be determined by two length scales that signify the maximization
of entropy measures of connected clusters (oo and red dashed curve)
and robust components of the giant cluster (ps and blue dotted curve)
as range of interaction p changes. The rapid growth window also
encompasses the transition of the system from segregate to aggregate
state, represented by the percolation threshold pc at which the sizes
of the clusters are most diverse (green dash-dot curve).

the transition growth of giant cluster via two measures of mass
and space decoherence. The two measures will be used to
first study artificial point patterns in Sec. III and then assess
different real urban systems in Sec. IV. Finally, discussions
and summary are offered in Sec. V

II. LENGTH SCALES IN CONTINUUM
PERCOLATION PROCESS

A. Critical distance threshold

Drawing upon the an important property of percolation
that physical quantities (e.g., correlation length) diverge, i.e.,
lack of characteristic size, at the critical point, it could be
paralleled that the variance of cluster size (number of points
in a cluster) maximizes when the system experiences the
most abrupt change in its state. In other words, the values of
cluster size are most spread when the system transits across
a “critical” point differentiating the aggregate and segregate
state in the system [24,25].

To make things concrete, let us consider a set of N points
in a two-dimensional domain R?. Given a distance threshold
0, the set is divided into n clusters of size &;, which sum up

to N, i.e.,

D> &=N, e
i=1

and whose variance is given by o> = (£2) — (£)°. The value
of distance threshold at which the variance o> maximizes
is denoted pc to mark the critical point in the transition of
the system (see green dash-dot curve in Fig. 1). This value
is analogous with the percolation threshold in the classic
percolation theory. As with percolation theory, the percolation
threshold itself is not sufficient in characterising the phase
transition in the system. Rather, the manner of transition is
more important with many interesting properties. In what
follows, it will be shown that the window of transition could
be characterized by employing the measures of entropy. In
particular, the measures of entropy can be used to quantify the
pattern of clusters formed at every value of distance threshold
and identify the length scales at which the entropy measures
maximize. As will be argued later, these length scales corre-
spond to the change of state of spatial agglomeration in the set
of points.

B. Measures of fragmentation and complexity
of clustering configuration

1. Measure of fragmentation

For the clusters in Eq. (1), the probability of choosing a
random point a that belongs to a cluster C; of size &;, also
the probability of picking the cluster C; itself, is simply given
by the fraction of points in that cluster, p; = p(a € ;) = f—\}
With this, we can easily calculate the Shannon entropy of the
particular cluster division in Eq. (1),

n

. & &
S=—Zpi10gpi=—2ﬁ10gﬁ- )
im1 =1

It could be seen from Eq. (2) that when there is a dominant
cluster C; of very large size alongside several tiny clusters of
vanishingly small sizes (which are yet to be absorbed into the
giant cluster), the entropy is close to O since log % ~ 0 and

% ~ 0, Vi # i*. This reflects the state of division that the set
of N points is barely fragmented, where most of them belong
to a single, unified cluster. However, it is a well-known fact for
Shannon entropy formula that given n events, the respective
entropy is maximized when each of them takes place with
equal probability %, which simply yields
max(S)——illo l—10 n 3)
- i1 ¢ no -
i.e., the scenario of dividing the set of N points into n equal
clusters. This is the state of maximal uncertainty since any of
the clusters can be picked with equal probability. Equation (3)
also indicates that the upper bound of entropy measure for
n events increases with the number of events. This points
to the fact that maximal possible entropy in the system is
Smax = log N when there are N clusters, each of size 1 and
being picked with equal probability [lv This corresponds to a
state of being totally fragmented when each point forms its
own cluster. In other words, the Shannon entropy in Eq. (2)
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can be interpreted as measure of fragmentation in the set
of N points. This is considered “first-order” measure in the
sense that the formula operates directly on the size fraction of
the individual clusters. In the following, we consider another
measure that operates on the size distribution of the clusters.

2. Measure of complexity and onset of giant cluster formation

We again consider a set of N points being divided into n
clusters of size &;, which consist of points within distance p of
one another. Let us denote m (&) the number of clusters having
size & so that we have

Emax
Y mE¥E =N, )
g=1

in which &« is the size of the largest cluster. The probability
of randomly choosing a é)omt that belongs to a cluster of size
& is given by P(§) = % With this, the entropy of cluster
sizes could be calculated as

émax Emax
ek mEE
ZP(E)logP(é)— Z — ©®

When there are several tiny clusters of vanishingly small
sizes alongside a dominant cluster C;» of very large size, i.e.,
very large p, the entropy x is close to 0 since log === me, — S~ ()
(for m(&+) = 1 and & ~ N) and 2% ~ 0, V& # g,.. At the
other extreme, when every point forms a cluster of its own,
i.e., very small p, the probability of choosing a random point
that belongs to a cluster of size £ is given by a Kronecker delta
P(&) = 6, ¢, for which the entropy  is trivially 0. This points
to the fact that at either extreme of cluster formation, the set
of points is divided into a trivial pattern when the size of a
randomly picked cluster is not uncertain, yielding vanishing
entropy measure, i.e.,

ll)i_lg)x = —P[m(§) =N,§ = 1]logP[m(§) =N, § = 1],

=0,
Jim x = —Plm(&)=1.§ = NllogP[m(§) =1.& = N]

=0. (6)

From this, it can be seen that the measure of entropy yx in
Eq. (5) exhibits a maximum value at some finite value of
o when the clusters are formed with various sizes at which
the proportion of points in different cluster sizes are most
uniform. At this juncture, it could be pictured that each point
in a cluster of size & carries a label £ and the division of
N points into different label groups transits from trivial to
non-trivial and back to trivial again, as p changes.

While the entropy S defined in Eq. (2) is interpreted as the
measure of fragmentation of the clusters, the second entropy
x defined in Eq. (5) could be interpreted as the measure of
complexity of the clusters’ pattern. The pattern is simple when
most of the points carry the same label, i.e., indistinguishable,
whereas a more complex pattern is produced when many
labels are needed to describe the points. This complexity
measure is useful because we can employ it to mark the
onset of giant cluster formation as the value of p changes.

At small value of p, many small clusters exist but the number
of labels is limited as the largest cluster size remains small
[a fragmented pattern can be observed in Fig. 2(a)]. When
p increases, the labels become more diverse when more
cluster sizes come to existence with the lifting of the largest
cluster size [a mixed pattern can be observed in Fig. 2(b)].
However, as p progresses further, the largest cluster starts
to grow by absorbing smaller ones, reducing the number of
labels needed, and hence, decreasing the complexity x of the
clusters’ pattern [a simple pattern with a dominating cluster
can be observed in Fig. 2(c)]. Once the giant cluster has been
formed, it continues to (slowly) absorb other smaller clusters,
further reducing the number of labels and decreasing the
complexity x, which eventually vanishes when only a single
label is needed for all the points in a single cluster. The value
of p at which the complexity measure attains its maximum
Xmax 18 denoted po to mark the onset of giant cluster formation
(see red dashed curve in Fig. 1), as reasoned above.

C. Measure of fragility of giant cluster

The determination of clusters based on distance threshold
indicates that there is a path between every pair of points of a
cluster. It, however, does not tell how strongly connected the
points are. To understand the internal structure of a cluster,
pairwise connection between every pair of points in the cluster
has to be taken into account.

To this end, a network of points’ connections within a
cluster could be constructed [see Figs. 2(b), 2(d) and 2(f)],
where a link between a pair of points, a and b, exists if
and only if their distance d,;, is less than the threshold p.
The strength w,, of connection between the pair is further
taken into account in the form of the inverse of their distance,
Wap X d(;l, i.e., a distant pair is less connected than a closer
one. With this network, it could be examined which parts
of the cluster are only weakly connected to the rest, using a
community detection method [26], the Louvain method [27]
in particular. Once the communities within a cluster have been
identified, one can then apply the measure of fragmentation
introduced in Eq. (2) to determine the fragility of a cluster.
To do this, each of the identified communities is considered a
sub-cluster within the larger cluster of interest (whose fragility
is to be quantified), and the size of the sub-cluster enters
Eq. (2) as &;. If a cluster can be broken up into multiple
tight-knit communities, then it is said to be more fragile than
a cluster that consists of only one or few closely connected
communities.

Applying this to the giant cluster, it could be conceived
that when the giant cluster grows, it initially only contains a
few points that are closely connected to one another, yielding
low fragility (only one or few tight-knit communities). When
the giant cluster grows further, more points are added to
the cluster, whose ties are not yet strengthened, producing
multiple communities, and hence, high fragility. This trend
continues into the transition regime, with increasing fragility.
After the transition regime, most of the points are now part of
the giant cluster, slowing down the cluster’s growth. At this
point, with sufficiently large value of distance threshold p,
points across different (distant) regions of the giant cluster can
form links to strengthen the ties within the community they
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FIG. 2. Illustration of complexity and fragility measures of the percolation clusters at different values of parameter distance (colors online).
Left column (a, ¢, e): patterns of clusters to illustrate complexity measure. Right column (b, d, f): patterns of network formed by the giant
cluster, whose communities are color coded, to illustrate fragility measure. Top row (a, b): patterns slightly before the measures peak. Middle
row (c, d): patterns when the measures peak. Bottom row (e, f): patterns slightly after the measures peak. For clear visuality, each points is
surrounded by a circle of radius that is equal half the value of the distance parameter p. Any two overlapping (or touching) circles belong to
the same cluster. These circles are not to be confused with the calculation of cluster area in Fig. 4.
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belong to, making the cluster more robust, or less fragile. The
measure of fragmentation is useful in this case as the distance
threshold p at which the entropy S peaks, denoted pg, is a
good indicator of the onset of stabilization of the giant cluster
[see blue dotted curve in Fig. 1]. This is where the giant cluster
is most fragile to be broken into components.

It should be remarked that the size of giant cluster changes
with the distance parameter. In practice, to make its fragility
measure comparable across different values of p, the sum of
all the subclusters in Eq. (2) is kept constant by lumping the
remaining points (outside the giant cluster) as a single cluster
whose size also contributes an extra term in Eq. (2). This treat-
ment also helps to take care of the scenario where multiple
robust clusters (almost fully connected, and of similar sizes)
have been established but are not yet connected to form a giant
cluster. As p increases, the overall fragility should increase
and peaks when these clusters merge, where the newly formed
giant cluster only has loosely connected components. In most
other cases, this has mild effect after the giant cluster has
been formed as the number of non-giant-cluster points is much
smaller than the size of the giant cluster itself.

As an example for illustration, Figs. 2(b), 2(d) and 2(f)
show the networks formed by points in the giant cluster at dif-
ferent values of the distance parameter p, right before, at, and
after the peak value for the fragility measure. The points in the
giant cluster are surrounded with black solid circles, whereas
the others are marked with blue dashed circles. Within the
giant cluster, any pair of points whose distance is less than or
equal to distance threshold is linked by a line, which makes an
edge of the corresponding network. The communities in this
network, identified using Louvain method, are color-coded in
the plots for clarity, with intracommunity links represented as
colored solid lines and intercommunity ones as black dashed
lines. There are in total N = 33 points in the entire set. At
o = 25m, the giant cluster contains 14 points divided into
four subclusters of size (4,4,3,3), leaving 19 points outside.
Hence, the corresponding fragility measure is ¢ = 1.265.
Similarly, at p = 30 m, the subcluster sizes are (8,4,4,4,4,3),
yielding ¢z = 1.895. Finally, at p = 35 m, the subcluster sizes
are (8,7,6,5,4), yielding ¢ = 1.742.

D. Effective width of transition window

The two distance scales pp and pg discussed above can be
used to determined the window of rapid growth of the giant
cluster across the transition of the system from segregate to
aggregate state. Further combination with the critical perco-
lation distance pc would enable calculation of the effective
width of transition window, which characterizes how the
system transits from segregate to aggregate state. To do this,
it is noted that a linear growth of the giant cluster between po
and pc should indicate a longer effective width than that of an
exponential-like growth. For this, it is useful to use the ratio
between the area /| under the growth curve of giant cluster
and the change in cluster size & — &p as the effective width
(see Fig. 3). Similarly, the effective width after the critical
distance, between pc and pg could be calculated in the same
manner. Subsequently, the effective width w of the transition
window w is simply the sum of widths both before and after

Eof----------4
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0 p pc p P

FIG. 3. Calculation of effective width of transition window be-
fore (marked by po) and after (marked by py) the critical value pc of
percolation threshold.

the critical percolation threshold

Fi n ) .
§c—&0 & —&
This effective width is useful for it characterizes the sharpness
of transition or the growth of the largest cluster, similar to
the critical exponents that characterize the divergence of a
system’s physical quantities (e.g., correlation length, average
cluster size, etc.) in standard percolation theory. For the pur-
pose of comparing different systems, a dimensionless width
rescaled by the critical percolation threshold is used,

w = 8(po, pc) + 8(pc, ps) = @)

€= —. (8)
oc

It could be seen that this quantity indeed provides a measure
of “decoherence” of relative distance among points in a set. In
other words, if the points are regularly spaced, their relative
distances are mostly uniform, i.e., more coherent, yielding
a small value of €. However, if the points are scattered
with interpoint distances ranging a wide spectrum, i.e., less
coherent, the value of € would surge.

E. Mass decoherence versus space decoherence

It should be noted that the discussion so far has been
concerned with the measure of size (or mass) of the clusters
formed in the continuum percolation process. As have been
previously shown [12,13], the area of clusters, i.e., their
spatial extent, provides a different perspective to understand
the (relative) spatial arrangement of points in a domain.

The area measure A of a cluster of points, formed via
percolation at distance parameter p, is defined as the union
area of all the circles of radius p centered at those points,
normalized by the area of a single such circle (see Fig. 4). The
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FIG. 4. Calculation of area measure of a cluster of points. In the
upper panel (a), 6 points (§ = 6) are arranged in a 2 x 3 lattice of
spacing d = 1, i.e., the nearest-neighbor distance of every point is 1.
In the lower one (b), the points’ nearest-neighbour distance is ei-
ther 1 or %, in the form of an isosceles right triangle. In both
cases, the parameter distance is set at p = 1.1, sufficient to have
all the points belong to a single cluster. The area measure A is
the union area (dotted) of all the circles of radius p, normalised
by the area of a single circle. Simple calculations yield the values
A=44+% 4 o0/T 37 Scos ra3.200 and A =4+ % 4+
%\/1 —r2 4+ %«/2 —r2—2cos ' r —4cos”! % ~ 2.625, respec-

d 1

tively, with r = 2 = 33

normalization is needed to emphasise the fact that the cluster
area measures the compactness of the set of points, that as
the larger p gets, the cluster area does not necessarily expand
unless new points are grasped by the cluster. This definition
of cluster area is also dimensionless and directly comparable
with the size of the cluster, i.e., number of points in the cluster,
which makes all the measures discussed above conveniently
extended to cluster area. It could be easily proven that the area
A of a cluster (in this definition) is always smaller than its size
& due to the non-tiling nature of circles when packed to fill
space. As illustrated in Fig. 4, a cluster of a fixed size £ takes
different values for its area A for different arrangements, with
the more compact one [smaller average nearest-neighbour
distance, see Fig. 4(b)] possessing smaller area.

The measures of size and area complement one another and
their combination can be employed to distinguish different
types of spatial point distribution. In the following discussion,
€4 and €; are used to denote the normalized spread in Eq. (8)
calculated for cluster area and cluster size, respectively. Here-
after, the subscripts A and £ also correspondingly denote other
quantities with respect to cluster area and cluster size. On

the one hand, cluster size measures the amount of points
contained in the cluster and can be interpreted as mass, on
the other hand, cluster area measures the (two-dimensional)
space (continuously) occupied by the points of the cluster and
can be interpreted as spatial extent. For that, we shall term €4
space decoherence and egmass decoherence.

II1. TRANSITION WINDOW OF DIFFERENT
TYPES OF POINT PATTERN

To illustrate the framework developed in Sec. II, two
artificial point patterns are analysed in details, showing the
growth profiles of the largest cluster in terms of both the
cluster area and size. The effective width of transition window
is also calculated for each of the simulated point patterns,
which will then be used to calculate the decoherence mea-
sures. The two point patterns are examples of homogenous
pattern with approximately equal nearest-neighbor distance
and inhomogeneous pattern whose density of points varies.

A. Homogeneous point pattern

As an example of homogeneous point pattern, the points
are generated by randomly displacing the sites of a regular
square lattice [see Fig. 5(a)]. The amplitude of displacement
applied is sufficient but not more than the lattice spacing. The
growth of both the largest cluster area and size [Figs. 5(c)
and 5(e), respectively] is probed by gradually increasing the
distance parameter p. It could be observed that there is an
abrupt increase in both the largest cluster size and area around
pc = 125 m, which is the inverse of the linear density of the
point pattern, i.e., square root of the number of points per unit
area (1024 over 4000m x 4000m). The complexity mea-
sures peak rapidly when p approaches (just before) the critical
distance threshold, and drop sharply as p increases beyond pc.
The fragility measures of the giant cluster, however, also peak
rapidly right after pc but gradually decrease further after that.
If one reverses the process, tracing the fragility measures as p
decreases, then it could be seen that more (long-range) links
are removed from the network formed by the giant cluster,
making it more fragile. Slightly above the critical distance
pc, the giant cluster quickly becomes disintegrated, broken
up into smaller clusters, of which the largest cluster is now
much smaller but more robust. The window of transition
for the point pattern, marked by the peaks of complexity
and fragility measures, is narrow for both cluster size and
area. The decoherence measures as defined in Eq. (8) are
both very small with space decoherence €4 = 0.037 and mass
decoherence €; = 0.034.

B. Inhomogeneous point pattern

For inhomogeneous point pattern, a simple example is
obtained by having more points concentrated in the center
region, whose density is about 4 times more than the rest
[see Fig. 5(b)]. As the distance parameter p increases, the
growth of both largest cluster cluster size and area shows
gradual increase pattern. Since the points tend to be clustered
in the center region (higher density, shorter nearest-neighbor
distance), the largest cluster size grows faster than the area
counterpart [see Figs. 5(f) and 5(d), respectively] as more
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FIG. 5. Application of the measures in Sec. II to simulated point patterns (colors online). Left column (a, c, e): results for a homogeneous
point pattern, which is obtained by adding noise to a regular square lattice pattern. Right column (b, d, f): results for an inhomogeneous
point pattern, whose density varies with more points concentrating near the center. Top row (a, b): distribution of points in a domain of size
4,000m x 4, 000m, with 1024 (32 x 32) points on the left and 1000 points on the right. Middle row (c, d): growth profile of the largest
cluster area, with vertical lines marking the length scales described in Sec. II. Bottom row (e, f): growth profile of the largest cluster size, with
vertical lines marking the corresponding length scales, namely, maximum complexity (onset of giant cluster, pp), maximum diversity (critical
distance, pc) and maximum fragility (stabilization of giant cluster, pg). The homogeneous pattern exhibits a sharp growth of both largest cluster
area and size and consequently a narrow window of transition, whereas the inhomogeneous pattern produces a gradual growth of both largest
cluster area and size resulting in a wide window of transition.
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FIG. 6. Measures of mass and space decoherence of 49 sets of
public transport nodes from 39 global cities [28]. Some cities are
split into multiple parts due to geography. General patterns could
be observed where American and European cities flock in the lower
left corner of the plot together with highly developed Asian cities
from Japan, South Korea, and Singapore, while other cities are found
scattered.

points covering the same area compared to a lower-density
pattern. Due to the faster growth pattern, the complexity
measure for cluster size peaks earlier than that for cluster
area. However, the fragility measure of the giant cluster only
peaks once many points have been (loosely) encompassed by
the cluster when p reaches a sufficiently large value, before
declining when the giant cluster becomes more robust with
more long-range links allowed to establish at large values of
p. As a result, the transition window for the point pattern
is wide for both cluster size and area, with the latter being
narrower due to the initial slower growth. The corresponding
decoherence measures are €4 = 0.114 and e; = 0.731, for
space and mass, respectively.

IV. APPLICATION TO REAL URBAN LOCATIONS DATA

In what follows, the two measures of space and mass
decoherence are applied to a set of 39 cities in the world to
compare the spatial patterns of their urban morphology. The
set of 39 cities is drawn from the list of top 44 cities ranked by
the Global Power City Index (GPCI) [28]. The data on spatial
locations of the cities’ public transport nodes were either
obtained from Open Street Map via Nextzen project [29] or
from General Transit Feed Specification sources [30]. Five
cities were excluded since reliable data could not be obtained.
Due to geographical features, some cities are divided into
multiple parts by large water bodies (wide rivers or large bays
or even open sea). As a result, the quantification of spatial
pattern is reported for a total of 49 sets of points (see Fig. 6).

Using the measures of mass and space decoherence to
quantify spatial patterns of points, three regions could be high-
lighted, namely, highly coherent (€4, €; < 0.15), coherent
(0.15 < €4, € < 0.5), and decoherent (¢4 2 0.5 or ez 2 0.5).
When the points are decoherent, their pattern can be further
classified as clustered or dispersed if one of the two measures

is significantly smaller than the other (same reasoning for o4
and o¢ in Ref. [12]).

From the spatial pattern of 49 sets, it could be observed
that most of American and European cities possess coherent
spatial patterns with values of €4 and €; not exceeding 0.5.
The borderline case of Los Angeles (e ~ 0.5) appears to
support the perception that it is one of the most sprawl-
ing cities in the U.S. [31]. Quite a number of Asian cities
also belong to this group of coherent spatial patterns, all of
which are from developed countries and ranked very high
by GPCI, like Tokyo (3), Singapore (5), or Seoul (7). The
decoherent group with either €4 > 0.5 or € > 0.5 contains
cities mostly from developing countries like Egypt, India, or
those in Southeast Asia. It is worth mentioning that different
parts of the same city divided by geography like water bodies
can possess very different morphologies. For example, the
different boroughs in New York city possess patterns ranging
from high coherence of gridlike street pattern (Manhattan) to
decoherence of unplanned Staten Island. Another interesting
example is Istanbul where the Asian part east of the Bosporus
strait appears more coherent than its European portion in
the west, which has been noted in literature and could be
explained by the major urban growth in Anatolian Istanbul
in the later half of last century [32]. Further observations also
suggest that cities known to be well-planned (and generally
ranked high by GPCI) appear to possess small decoherence
values, while the ones known for being sprawling (with ten-
dency of lower GPCI rank) exhibit large space and/or mass
decoherence, which could either have clustered (g >> €4) or
dispersed (e; < €,4) patterns.

V. CONCLUSIONS

In summary, this work illustrates that patterns of points
embedded in two-dimensional space can be quantified using
measures of complexity of the set of points and fragility of
the giant cluster in the set, formed via a continuum perco-
lation process. Although many sophisticated techniques have
been developed for understanding different types of spatial
data [33], the general framework of percolation proves to
provide a powerful toolbox to study spatial organization of
point pattern, providing a different perspective from that of
common techniques of point pattern analysis. While point
pattern analysis mostly deals with whether a collection of
points exhibit complete spatial randomness (CSR), uniform or
clustered patterns, continuum percolation, however, explores
the structure of points’ locations based on global distribution,
via the growth of the largest, dominating cluster in the system.
This growth is typically characterized by three stages of initial
and final slow expansion, sandwiching a rapid development
region that embraces all the interesting properties of a phase
transition. Here, it is shown that window of the transition
could be determined by two length scales concerning the
complexity measure of the entire system, which marks the
onset of the existence of dominant cluster, and the component
entropy of the giant cluster, which measures its fragmentation
or fragility. The former is the point at which the complexity
measure of connected clusters is maximum, while the latter
is where the giant cluster is most fragile to be broken into
components, from a perspective of network presentation of
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clusters. The two length scales together with a third length
scale, at which clusters are most diverse in the spirit of critical
phase transition, allow the characterisation of transition of the
system across the critical regime, in the form of decoherence
measure. The combination of mass decoherence (for amount
of points accumulated) and space decoherence (for spatial
extent of points accumulated) can be employed to quantify
the pattern of a set of spatial locations, enabling comparison
among different sets. Applying this framework to the set
of public transport nodes in cities in the world from both
developed and developing countries, different types of spatial
pattern can be discerned and attributed to the cities’ economi-
cal and geographical backgrounds. It is also worth mentioning
that the framework could be applied to any point data sets in

urban context, e.g., building locations, road junctions etc., not
necessarily restricted to public transport nodes.

As a final note, the term “complexity” in this work is
inspired by a previous study of statistical complexity mea-
sure [34], in which two measures of metric entropy / and
statistical complexity Cs were calculated for nonlinear dy-
namical systems. The measure of fragmentation S in Eq. (2) is
similar to s, measure of randomness, which maximizes at one
extreme of the system parameter and vanishes at the other;
whereas the measure of cluster size entropy x in Eq. (5) is
similar to Cg, measure of complexity, which peaks at some
intermediate value of the system parameter, suggesting the
idea that a system is most complex at the interface of different
states.
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