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Multiplicative measurement noise can facilitate consensus of multiagent networks
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Measurement noise may have an important impact on the collective motion. Here, we investigate the consensus
problem of multiagent networks with multiplicative measurement noise. Based on the stability theory of
stochastic differential equations and the algebra graph theory, we obtain sufficient conditions for the consensus
and nonconsensus. Both of our analytical and numerical results show that the multiplicative measurement noise
can facilitate the emergence of the consensus: the convergence rate increases with respect to the noise intensity
if the topologies of the underlying networks satisfy some conditions. Our results provide a better understanding
of the constructive role of noise. We also report that the convergence rate of multiagent networks is strongly
affected by the network topology and the group size.
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I. INTRODUCTION

Recently, the distributed coordinated control of multia-
gent systems has fascinated more and more researchers from
numerous disciplines due to its broad applications in many
fields. Examples include cooperative control of an unmanned
air vehicle [1], flocking [2–4], collective behavior [5–7], and
attitude alignment of clusters of satellites [8]. To reveal the
inherent mechanism of multiagent systems, some models have
been introduced [2,3,9]. A celebrated self-propelled particles
model is the Vicsek model, which assumes that each particle
has a tendency to adjust its direction to the average direction
of its neighbors [2]. Using the nearest-neighbor rule, the group
can move in a common direction eventually.

The consensus problem is one of the fundamental topics
in the distributed coordinated control, which focuses on de-
signing a protocol such that the states of all agents reach an
agreement. Olfati-Saber and Murray proposed a theoretical
framework for analysis of consensus algorithms for multia-
gent networked systems, and they investigated the consensus
problems of multiagent networks with switching topology and
communication time delay [10]. One of the most important
contributions of their work in Ref. [10] is that two proto-
cols were proposed to solve the cases of continuous-time
and discrete-time consensus problems. Further extensions
of their work were presented with a look toward noise in
Refs. [11–15].

Noise is ubiquitous in natural and man-made systems,
which means that the motion of the group is inevitably sub-
jected to noise perturbation in the environment. In a noisy
environment, each agent may not measure its neighbors’ states
accurately, leading to more complicated interactions among
agents. Because of the intrinsic nature of noise, it is always
regarded as mischievous, i.e., noise will destroy order or
add disorder in natural and artificial systems. Additive and
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multiplicative noise has been extensively used to model the
measurement uncertainties in multiagent systems [13,15], and
then, the deterministic multiagent system becomes a stochas-
tic system.

The influence of noise has been extensively investigated
in the context of synchronization [16], swarming [17], flock-
ing [2,15,18,19], and the consensus [12–14,20]. It was re-
ported that the ordered collective motion of the Vicsek model
can occur only when the noise intensity is sufficiently low [2].
The results in Ref. [18] show that the order parameter of
the collective motion is a decreasing function of the noise
intensity, indicating that noise can destroy the ordered col-
lective motion. Recently, the influence of noise on the con-
sensus dynamics of first-order [12,13] and second-order [14]
integrator systems has been investigated. It was shown that
strong noise may destroy the emergence of the consensus.
Some investigations have shown that noise may enhance the
collective behavior of networked systems. It was shown that
the multiagent system can achieve the consensus only via
noise-based coupling [20]. A quantitative description of how
locusts use noise to maintain swarm alignment was given
in Ref. [17], showing that noise can facilitate coherence in
collective swarm motion.

However, to the best of our knowledge, most of previous
studies only show the destructive role of noise, i.e., strong
noise may destroy the ordered collective motion. Additionally,
some experimental studies have shown that ordered group
behavior can be achieved by the coupling of stochastically
moving individuals [21–23]. For example, many types of
living cells can achieve robust large-scale ordered behav-
ior by combining and coordinating stochastic small-scale
components [21,22]. Recent experimental results show that
stochasticity offers a promising approach to develop collec-
tive robotic systems that exhibit robust deterministic ordered
behavior [23]. Inspired by the constructive role of stochas-
ticity in the collective motion of real biological and physical
systems, we focus on the constructive role of multiplicative
measurement noise in the consensus of multiagent networks.
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We propose a stochastic consensus model in which the inten-
sity of measurement noise is proportional to the error between
agents, and the measurement noise will disappear when the
states of all agents reach an agreement. We aim to answer
the following question: Can multiplicative measurement noise
facilitate the emergence of the consensus of multiagent net-
works? Based on the theory of stochastic differential equa-
tions and algebra graph theory, we obtain sufficient conditions
which guarantee that all agents can asymptotically reach an
average consensus with probability one. Sufficient conditions
for the nonconsensus are also established. To proceed, we
numerically study the influence of network topologies and
group size on the convergence rate. Our results show that
the multiplicative measurement noise may facilitate the emer-
gence of the consensus.

II. CONSENSUS MODEL WITH MULTIPLICATIVE
MEASUREMENT NOISE

We consider a multiagent system consisting of N agents
V = {v1, v2, . . . , vN }. Agent v j is called a neighbor of vi if vi

can receive the state information of v j . The set of neighbors of
agent vi is denoted by Ni. The information exchanging among
agents can be described by a simple digraph G = (V, E, A),
where E = {(vi, v j ): v j ∈ Ni, ∀ vi ∈ V} is the set of edges
and A ∈ NN×N is a weighted adjacency matrix with non-
negative elements. The element ai j > 0 if and only if v j ∈ Ni.
Moreover, we assume aii = 0. Let DA = diag{η1, η2, . . . , ηN },
where ηi = ∑

v j∈Ni
ai j . Then, the Laplacian matrix of the

digraph G can be defined as L = DA − A. Suppose each
individual is a dynamical agent which can be described as

ẋi = ui, i ∈ I, (1)

where xi ∈ R is the state of agent vi and I = {1, 2, . . . , N}
is the index set. Typically, ui ∈ R is called the protocol
which only depends on the states of the neighbors of vi.
Numerous protocols have been designed to investigate the
finite-time consensus [24], fixed-time consensus [15], and
the consensus with communication delays [14,25]. A typical
linear continuous-time consensus protocol,

ui =
∑
v j∈Ni

ai j (x j − xi ) (2)

was proposed by Olfati-Saber and Murray in Ref. [10], where
ai j is to account for the reliability of information that vi

received form v j . Nodes vi and v j are called to reach an agree-
ment if and only if xi(t ) = x j (t ) for i �= j. Furthermore, we
say that system (1) reaches the consensus if and only if for all
different agents vi, v j ∈ V and any given initial conditions vi

and v j reach an agreement as t → ∞. Especially, system (1)
is said to reach the average consensus if for any vi ∈ V state
xi(t ) converges to the consensus value of x∗ = 1

N

∑N
i=1 xi(0)

as t → ∞ [10].
As mentioned above, in a noisy environment, individuals

cannot measure their neighbor’s state exactly. In this paper,
we assume that the state of agent vi measured by agent i is
given by

yi j = x j + 1√
N

σi j (x j − xi )ξi j (t ), v j ∈ Ni, (3)

where σi j � 0 represent the noise intensity and ξi j (t ) are inde-
pendent Gaussian white noise. We note that 〈ξi j (t )〉 = 0 and
〈ξi j (t ), ξkl (t ′)〉 = δi jδklδ(t − t ′) where the angular brackets 〈·〉
denote the average over different realizations of the noise,
δi j is the Kronecker δ function, and δ denotes the Dirac’s
function. We consider the following protocol, which will be
shown to solve the average consensus problem with noise
perturbation:

ui =
∑
j∈Ni

ai j (yi j − xi ), i ∈ I. (4)

With Eqs. (3) and (4), system (1) can be rewritten in the
following Itô stochastic differential equation:

ẋi =
∑
j∈Ni

ai j (x j − xi )

+ 1√
N

∑
j∈Ni

ai jσi j (x j − xi )ξi j (t ), i ∈ I. (5)

It is apparent that, if σi j = 0 for all i, j ∈ I, system (5) is
equivalent to the continuous-time consensus model proposed
in Ref. [10]. It is worth mentioning that the measurement
noise in (5) is multiplicative. Thus, the strength of the noise
is proportional to the measurement error between individuals,
and the noise will disappear when the states of all agents reach
an agreement. Most previous studies of consensus dynamics
assume that the interactions of moving individuals are time
invariant, however, it has been reported that interactions be-
tween individuals of many real biological systems are time
varying [26,27]. The noise term in (5) is introduced to model
the fluctuating interactions of individuals in real biological
systems.

III. STOCHASTIC STABILITY ANALYSES

In order to understand the influence of noise on the
consensus dynamics of stochastic multiagent networks, we
analytically study the model (5) based on the algebra graph
theory and the stability theory of stochastic differential
equations. Denoting that Aσ = (ai jσi j ) ∈ RN×N and Dσ =
diag{ζ1, ζ2, . . . , ζN }, where ζi = ∑N

j=1 ai jσi j , we define G =
Dσ − Aσ . Obviously, G can be regarded as a Laplacian matrix
of digraph Ḡ = (V, E, Aσ ). For simplicity, we denote that the
Gaussian white noises are one dimensional, i.e., ξi j (t ) = ξ (t ).
Mathematically, the one-dimensional Gaussian white noise
can be expressed formally as ξ (t ) = Ẇ (t ), where W (t ) is
a one-dimensional standard Brownian motion defined on a
complete probability space (�,F , P). Thus, system (5) can
be rewritten in the following vector form:

dx = −Lx dt − 1√
N

Gx dW (t ). (6)

where x = (x1, . . . , xN )T . From the definition of the
Laplacian matrix, it is apparent that L1 ≡ 0 and G1 ≡ 0,
where 1T = (1, 1, . . . , 1). Suppose that digraphs G and Ḡ
are balanced, then 1T L = 0 and 1T G = 0 [10]. Let x̂(t )
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= 1
N

∑N
i=1 xi(t ) = 1

N 1T x(t ), t � 0, and we have

dx̂(t ) = 1

N
1T

[
−Lx(t )dt − 1√

N
Gx(t )dW (t )

]
= − 1

N

[
1T Lx dt + 1√

N
1T Gx dW (t )

]
= 0,

which means x̂(t ) is an invariant quantity. Therefore, the
average consensus value x̂(t ) ≡ x∗ = 1

N

∑N
i=1 xi(0). This

allows the decomposition of x = e + x∗1, where e =
(e1, e2, . . . , eN )T is a disagreement vector. Thus, 1T e =
1T (x − x∗1) = 1T x − Nx∗ = 0, and the disagreement system
can be expressed as

de = −Le dt − 1√
N

Ge dW (t ). (7)

The multiagent network (5) is said to reach the stochastic
average consensus if, for any given initial state xi(0),

P{ lim
t→∞ |xi[t, xi(0)] − x∗| = 0} = 1, ∀ i ∈ I.

Note that limt→∞ |xi[t, xi(0)] − x∗| = 0 is equivalent to
limt→∞ |ei[t, ei(0)]| = 0. One can clearly see that e(t, 0) ≡ 0
is a trivial solution of the disagreement system (7). Thus,
system (5) could reach the stochastic average consensus if
the trivial solution of (7) is almost surely asymptotically sta-
ble, i.e., for any initial value e0 ∈ RN , ‖e(t, e0)‖ → 0 almost
surely as t → ∞.

To proceed, based on the matrix theory, we further simplify
the model. Note that 1 is the left eigenvector of both L
and G associating with the zero eigenvalue. Then, let U =
[U1,

1√
N

1] ∈ RN×N be a real orthogonal matrix with U1 ∈
RN×(N−1). Thus, we have

U T LU =
[

U T
1 LU1 0(N−1)×1

01×(N−1) 0

]
,

U T GU =
[

U T
1 GU1 0(N−1)×1

01×(N−1) 0

]
.

Since 1T e = 0, one can see that U T e = [U1,
1√
N

1]
T

e =
[eT U1, 0]T . Thus, applying the Itô formula, the disagreement
system (7) is equivalent to the following system:

dz = −L̄z dt − 1√
N

Ḡz dW (t ), (8)

where z = U T
1 e ∈ R(N−1), L̄ = U T

1 LU1, and Ḡ = U T
1 GU1 ∈

R(N−1)×(N−1). Furthermore, let digraphs G and Ḡ be strongly
connected, the eigenvalues of L and G have non-negative real
parts [10]. That means all eigenvalues of L̄ and Ḡ have positive
real parts.

In the following, we first derive the sufficient conditions
for the consensus of stochastic multiagent networks (5).

Proposition 1. Suppose that digraphs G = (V, E, A) and
Ḡ = (V, E, Aσ ) are strongly connected and balanced. The
multiagent network (5) can reach the stochastic average

consensus if

γ � 2λmin

(
L̄T + L̄

2

)
− 1

N
λmax(ḠT Ḡ)

+ 2

N
λ2

min

(
ḠT + Ḡ

2

)
> 0.

Proof. Applying the Itô formula [28] to the function
V (z) = ln zT z along with system (8), we have

V [z(t )] = V [z(0)] +
∫ t

0
LV [z(s)]ds

− 1√
N

∫ t

0
VzḠz(s)dW (s), t � 0, (9)

where

LV (z) = −VzL̄z + 1

2
tr

[(
− 1√

N
Ḡz

)T

Vzz

(
− 1√

N
Ḡz

)]

= −VzL̄z + 1

2N
tr[zT ḠT VzzḠz],

and

Vz = 2zT

zT z
, Vzz = 2I

zT z
− 4zzT

(zT z)2
.

Then,

LV (z) = −2
zT L̄z

zT z
+ 1

N

zT ḠT Ḡz

zT z
− 2

N

(zT Ḡz)2

(zT z)2
. (10)

Since digraph G is strongly connected and balanced, (LT +
L)/2 is a valid Laplacian matrix of a undirected graph, and
rank[(LT + L)/2) = N − 1 [10]. By the definition of L̄ and
Ḡ, we have

λmin

(
L̄T + L̄

2

)
� zT L̄z

zT z
� λmax

(
L̄T + L̄

2

)
,

λmin

(
ḠT + Ḡ

2

)
� zT Ḡz

zT z
� λmax

(
ḠT + Ḡ

2

)
. (11)

Here, λmin(·) and λmax(·) denote the smallest and largest
eigenvalues of a symmetric matrix, respectively. Also, we
have

zT ḠT Ḡz

zT z
� λmax(ḠT Ḡ). (12)

Substituting (11) and (12) into (10), we obtain

LV [z(t )] � −2λmin

(
L̄T + L̄

2

)
+ 1

N
λmax(ḠT Ḡ)

− 2

N
λ2

min

(
ḠT + Ḡ

2

)
, ∀ t � 0.

Let

γ � 2λmin

(
L̄T + L̄

2

)
− 1

N
λmax(ḠT Ḡ)

+ 2

N
λ2

min

(
ḠT + Ḡ

2

)
, (13)
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then ∫ t

0
LV [z(s)]ds � −γ t, ∀ t � 0.

From (9), we obtain the following estimation:

V [z(t )]

t
� V [z(0)]

t
− γ + M(t )

t
, ∀ t � 0,

where

M(t ) =
∫ t

0
VzḠz(s)dW (s)

= − 2√
N

∫ t

0

zT Ḡz

zT z
dW (s) (14)

is a continuous martingale with M(0) = 0. Calculating the
quadratic variation of M(t ), we have

〈M(t ),M(t )〉 = 4

N

∫ t

0

(
zT Ḡz

zT z

)2

ds

� 4

N
λ2

max

(
ḠT + Ḡ

2

)
t, ∀ t � 0.

Thus,

lim
t→+∞

〈M(t ),M(t )〉
t

< ∞.

Applying the strong law of large numbers [28], we have

lim
t→+∞

M(t )

t
= 0, a.s.

Here “a.s.” is an abbreviation for “almost surely”. In probabil-
ity theory, one says that an event happens almost surely if it
happens with probability one. Thus, we get

lim
t→+∞ sup

V [z(t )]

t
� −γ , a.s.

Consequently,

lim
t→+∞ sup

ln ‖z(t )‖
t

� −γ /2, a.s.

If γ is a positive number, the solution z(t ) of system (8) is
almost surely exponentially convergent to 0. This indicates
that the multiagent network (5) reaches the stochastic average
consensus. �

To get an intuition of the conditions in Proposition 1, we
consider a special case that graph G is undirected. Assuming
that the noise intensity matrix Aσ is relative with the adjacency
matrix A, we obtain the following corollary.

Corollary 1. Suppose that graph G = (V, E, A) is undi-
rected and connected and σi j ≡ σ0 > 0 when ai j > 0. Sys-
tem (5) can reach the stochastic average consensus if

μ � 2λmin(L̄) + σ 2
0

N

[
2λ2

min(L̄) − λ2
max(L̄)

]
> 0.

Proof. According to the definition of the balanced di-
graph [10], the undirected graph G is a balanced graph. Since
σi j ≡ σ0, we have G = σ0L, where L is the Laplacian matrix
of graph G, and G is the Laplacian matrix of graph Ḡ. Thus,
graph Ḡ is balanced and connected when the undirected graph
G is connected. Note that the Laplacian matrices L and G are

symmetric. Thus, it is obvious that L̄ and Ḡ are symmetric as
well. Therefore,

2λmin

(
L̄T + L̄

2

)
− 1

N
λmax(ḠT Ḡ) + 2

N
λ2

min

(
ḠT + Ḡ

2

)
= 2λmin(L̄) + σ 2

0

N

[
2λ2

min(L̄) − λ2
max(L̄)

]
� μ.

From Proposition 1, if μ > 0 then the multiagent network (5)
can reach the stochastic average consensus. �

From the proof of Proposition 1, one can see that the
parameter γ characterizes the decay rate of the group error.
Thus, the convergence rate of consensus is proportional to the
parameter γ . For undirected networks, the results in Corol-
lary 1 show that, if 2λ2

min(L̄) > λ2
max(L̄), the convergence rate

of consensus will increase with respect to the noise intensity.
Thus, from the above analysis we can claim that the multi-
plicative measurement noise may facilitate the emergence of
the consensus of multiagent networks if some conditions on
the network topologies are satisfied.

It is worth noting that the conditions in Proposition 1 are
not necessary. Thus, the multiagent networks may diverge if
the conditions in Proposition 1 are not satisfied. The following
proposition shows that the multiagent network (5) cannot
reach the stochastic average consensus if some conditions on
the network topologies and the noise intensity are satisfied.

Proposition 2. Suppose that digraphs G and Ḡ are strongly
connected and balanced. The multiagent network (5) is expo-
nentially divergent in a mean square if

υ � −2λmax

(
L̄T + L̄

2

)
+ 1

N
λmin(ḠT Ḡ) > 0.

Proof. Applying the Itô formula [28] for the function
U (z) = zT z along with the system (8), we have

U [z(t )] = U [z(0)] +
∫ t

0
LU [z(s)]ds

− 1√
N

∫ t

0
UzḠz(s)dWs, t � 0, (15)

where

LU (z) = −UzL̄z + 1

2
tr

[(
− 1√

N
Ḡz

)T

Uzz

(
− 1√

N
Ḡz

)]

= −2zT L̄z + 1

N
(zT ḠT Ḡz).

It is easy to estimate that

zT ḠT Ḡz � λmin(ḠT Ḡ)U (z). (16)

Thus, we obtain from (11) and (16) that

LU (z) �
[
−2λmax

(
L̄T + L̄

2

)
+ 1

N
λmin(ḠT Ḡ)

]
U (z),

� υU (z). (17)

Obviously, the last term on the right hand of Eq. (15) is a
continuous martingale. Taking the mathematical expectation
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of both sides of (15), we obtain from (17) that

E[U (t )] = E[U (0)] +
∫ t

0
E{LU [z(s)]}ds

� E[U (0)] + υ

∫ t

0
E[U (s)]ds.

Therefore,

dE[U (t )]

dt
� υE[U (t )].

Clearly, we have

d{e−υtE[U (t )]}
dt

= e−υt

[
−υE[U (t )] + dE[U (t )]

dt

]
� 0.

Then, we get

e−υtE[U (t )] � E[U (0)], ∀ t > 0,

i.e.,

E[U (t )] � E[U (0)]eυt , ∀ t > 0.

Therefore E[‖z(t )‖2] → ∞ as t → ∞ if υ is positive, which
yields that the solution of system (8) is exponentially diver-
gent in a mean square. Thus, individuals in system (5) cannot
reach the average consensus in a mean square. �

IV. SIMULATIONS

To validate the validity of the theoretical analysis, we
perform numerical simulations for multiagent networks (5)
with different topologies. We use the Euler-Maruyama numer-
ical scheme [29] in our numerical simulations to deal with
the stochastic differential equations. In all the simulations,
the initial conditions are randomly taken from the interval
[−1, 1]. The adjacency matrix A of all network topologies is
limited to the 0-1 matrix. For simplicity, we set σi j = σ0 for
all i, j ∈ I. The group error E (t ) = ‖e(t )‖ is chosen to clarify
the evolution process. We say multiagent networks reach
the average consensus at time T if E (t ) � 10−4,∀ t � T .
Thus, the convergence time is defined as T = inf{T : E (t ) �
10−4,∀ t � T }. In the following simulations, the convergence
rate of the consensus is assessed by the convergence time T .
And the convergence time is computed by averaging over 100
simulations.

We begin with numerical simulations of multiagent net-
work (5) with topology as shown in Fig. 1(a). Obviously,
the undirected graph in Fig. 1(a) is connected. It is easy to
calculate that λmin(L̄) = 6, λmax(L̄) = 8, and γ = 12.25 when
σ0 = 0.5. Thus, the conditions in Corollary 1 are satisfied.
Figure 1(b) displays the evolutions of the group error E (t )
(main plot) and individuals’ states (insert plot). One can
clearly see that system (5) reaches the average consensus
asymptotically as predicted by Corollary 1. To further verify
the influence of noise on the convergence rate of the con-
sensus, we performed numerical simulations of system (5)
with different values of σ0. Figure 1(c) shows a plot of the
convergence time as a function of σ0, computed in networks
with topology as shown in Fig. 1(a). From this figure, it is
apparent that the convergence rate of the consensus strictly
increases with σ0, which confirms that noise can accelerate
the emergence of the consensus.

FIG. 1. (a) A connected undirected network with eight nodes.
(b) The evolution of each individual’s state xi(t ) (the inset) and
the variation of group error E (t ) (main) where the noise intensity
σ0 = 0.5. (c) The convergence time as a function of noise intensity
σ0 for a multiagent network with topology as shown in (a).

To proceed, we investigate the influence of network topolo-
gies on the convergence rate. We show the simulation results
for multiagent networks with two well-known topologies: the
small-world graph [30] and the scale-free graph [31]. The
small-world network model was first introduced by Watts
and Strogatz, which has two important structural character-
istics: a high clustering coefficient and a short average path
length [30]. These topological features underly the collective
dynamics processes on networks, such as synchronization and
coordination processes [32]. Using a topological randomness
parameter p, the small-world network (0 < p � 1) is capable
of interpolating between a regular network (p = 0) and a
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FIG. 2. The impact of the noise intensity on the convergence time
of multiagent networks with small-world and scale-free topologies.
(a) The convergence time as a function of noise intensity σ0 for
small-world networks with N = 500, p = 0.3 and different values of
the mean degree k = 4 (dotted line), k = 6 (dashed line), and k = 8
(solid line). (b) The convergence time as a function of noise intensity
σ0 for scale-free networks with N = 500 and different values of the
degree exponent γd = 2.1 (dotted line), γd = 2.3 (dashed line), and
γd = 2.5 (solid line).

random network (p = 1). Using the method in Ref. [30], we
generated small-world networks with p = 0.3 and N = 500.

It was shown that the second smallest eigenvalue of the
Laplacian matrix, also known as the algebraic connectivity,
of the underlying networks characterizes the performance of
consensus dynamic of deterministic multiagent networks [10].
The results in Corollary 1 show that the convergence rate
of stochastic multiagent networks (5) also depends on the
algebraic connectivity. Grabow et al. showed that, for fixed
network size, the algebraic connectivity of small-world net-
works increases with respect to the mean degree k (see
Fig. 2(a) in Ref. [33]). Therefore, it is intuitively imaginable
that a higher k leads to faster convergence rate of consensus.
In what follows, we will assess the effect of the mean degree
and noise intensity on the convergence rate of the consensus
of a multiagent network (5) with small-world topologies. The
convergence time T is plotted in Fig. 2(a) as a function of
σ0, computed in small-world networks with different values
of mean degree k. First, we observe that the network with
larger mean degree yields a higher convergence rate of the
consensus. This observation can be easily explained by the
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FIG. 3. The impact of network size on convergence time com-
puted in a scale-free network with different degree exponents γd =
2.1 (dotted line), γd = 2.3 (dashed line), and γd = 2.5 (solid line).
The noise intensity σ0 is taken as 0.4.

effect of mean degree k on the algebraic connectivity of small-
world networks. Second, we observe that the convergence
rate of the multiagent network (5) monotonously increases
with respect to the noise intensity. This observation supports
the conclusion that noise can facilitate the emergence of the
consensus.

The scale-free network is characterized by a highly hetero-
geneous degree distribution P(k), defined as the probability
that a randomly chosen node is connected to k other nodes,
showing a power-law form P(k) ∼ k−γd [31]. The presence of
a scale-free degree distribution can have an important impact
on the performance of some dynamic processes on networks,
such as flocking of multiagent networks [27] and propaga-
tion of infectious agents [34]. We generated the scale-free
networks by using the uncorrelated configuration model [35]
in which the average nearest-neighbor degree of each node is
almost the same. It was shown that networks with small degree
exponents γd have relatively large average nearest-neighbor
degrees. Average nearest-neighbor degrees can give a more
refined measure of the connectivity of the network. It was
shown that, in the absence of noise, the convergence rate
of a multiagent system strictly increases with the number of
topological neighbors [36]. Thus, it is expected that stochastic
multiagent networks with a larger average nearest-neighbor
degrees still display higher rate of convergence to the consen-
sus. In Fig. 2(b), we plot the convergence time as a function
of σ0, computed in scale-free networks with different values
of degree exponent γd . We observe that the smaller the degree
exponent γd (the average nearest-neighbor degree is large) of
the scale-free network is, the faster the convergence rate of the
consensus is. The results in Fig. 2(b) also illustrate that the
convergence rate of the consensus significantly increases with
respect to the noise intensity, which confirms the constructive
role of noise.

In the following, we focus on the influence of the network
size on the convergence rate of the consensus. In Fig. 3,
for a given noise intensity, we plot the convergence time as
a function of network size N for scale-free networks with
different values of degree exponent γd . From this figure, it

022319-6



MULTIPLICATIVE MEASUREMENT NOISE CAN … PHYSICAL REVIEW E 100, 022319 (2019)

FIG. 4. (a) A connected directed network with eight nodes.
(b) The evolution of each individual’s state xi(t ) where the noise
intensity σ0 = 12. (c) The convergence time as a function of noise
intensity σ0.

is apparent that multiagent networks with larger size need
more time to achieve the consensus. This observation can be
easily explained by the fact that the stochastic interactions in
system (5) decrease with respect to the network size. Thus,
the convergence rate of the consensus mainly depends on the
algebraic connectivity of the underlying networks when the
network size is too large. Previous investigation has shown
that the algebraic connectivity of the scale-free graph is a
decreasing function of the graph size [37]. In addition, the
theoretical analysis in Sec. III shows that the decay rate of
the group error is proportional to the value of γ defined
in (13) which decreases with the network size N . Therefore,
the observation in Fig. 3 is in accord with the above theoretical
analysis.

All the above observations together with the theoretical
results in Proportion 1 confirm that the multiplicative mea-
surement noise may facilitate the emergence of the consen-
sus dynamics of multiagent networks if some conditions on

the network topology and the noise intensity are satisfied.
It should be noted that the conditions in Proposition 1 are
not necessary. Thus, it is expected that the multiagent net-
works may diverge if the conditions in Proposition 1 are not
satisfied. We then turned to show the numerical results for
the nonconsensus. Figure 4(a) shows a directed graph with
eight nodes. It is easy to calculate that λmax[(L̄ + L̄T )/2] =
3.34 and λmin[(L̄ + L̄T )/2] = 0.34. Taking σi j = σ0, then
λmin(ḠT Ḡ) = 0.39σ 2

0 . Thus, the conditions in Proposition
2 are satisfied if σ0 > 11.7. Noting that the conditions in
Proposition 2 are only sufficient, it may give an overestima-
tion of the critical noise intensity for the nonconsensus. The
numerical results show that the consensus cannot occur for the
multiagent network (5) if σ0 > 11.5 [σ0 = 12 in Fig. 4(b)].
For 0 � σ0 � 11.5, Fig. 4(c) displays the convergence time as
a function of noise intensity. The results in this figure illustrate
that noise may inhibit the emergence of the consensus if the
network topology satisfies the conditions in Proposition 2.

V. CONCLUSION AND DISCUSSION

To summarize, we have investigated the influence of noise
on the consensus dynamics of multiagent networks. By means
of extensive numerical simulations and the theory of stochas-
tic analysis, we find that multiplicative measurement noise
can facilitate the emergence of the consensus. Our results are
in sharp contrast with most of the previous studies [12–14]
that strong perturbation of noise can destroy the consensus
behavior of multiagent systems. In the consensus models
with additive measurement noise, the strength of the noise
is independent of individuals’ states. Multiagent systems
only rely on the attractive interactions of the deterministic
coupling to achieve ordered group behavior [12–14]. The
additive measurement noise will not disappear even if the
states of all individuals reach an agreement. Thus, the ordered
group behavior will not occur if the perturbation of noise is
too strong. In our model, we assume that the measurement
noise is multiplicative. The constructive role of multiplicative
measurement noise can be explained by regarding the noise
term as additional stochastic interactions imported into the
deterministic system. In this way, individuals in our model
are subjected to two interactions, a deterministic attractive
coupling and a white-noise-based stochastic coupling. The
stochastic interactions in our model are attractive (positive) at
some times and repulsive (negative) at other times. The tran-
sition between attractive and repulsive interactions is stochas-
tic. With the stochastic coupling, the interactions between
individuals are fluctuating. This is in accord with many real
biological systems, e.g., fish school [26] and bird flocks [27].
Although the repulsive interactions caused by the stochastic
coupling can weaken the mutual attraction between individ-
uals, the attractive interactions from both deterministic and
stochastic couplings will drive the group to the coordinated
collective motion. And the stochastic interactions in model (5)
will become weak and eventually disappear when the group
gradually converges to the consensus.

To get some insight into the mechanism of the constructive
role of noise, we carried out the theoretical analysis, and
sufficient conditions for the consensus are obtained. It is
worthwhile to note that the consensus dynamics of model (5)
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depends on both the deterministic and the stochastic cou-
plings. Thus, in order to realize the consensus, some con-
ditions on the Laplacian matrix of the network topologies
and the noise intensity matrix should be satisfied. And
we also show that the multiagent system cannot reach the
consensus if the conditions in Proposition 2 are satisfied.
The influence of network topologies on the convergence
rate of the consensus has also been investigated. It shows
that, for the multiagent networks with small-world topolo-
gies, the larger the mean degree, the faster the conver-
gence rate. And for the multiagent networks with scale-free
topologies, a smaller degree exponent is better for the sys-
tem to reach the consensus. Furthermore, our results show
that the convergence time is a decreasing function of the
network size.

Our paper highlights the constructive role of multiplicative
measurement noise in the emergence of the consensus of
multiagent networks. In addition to the consensus dynamics,

flocking is another important collective behavior exhibited
by many living beings, such as birds and fish. In 1995,
Vicsek et al. numerically investigated the influence of additive
measurement noise on the flocking dynamics of a three-
dimensional self-propelled particle model. It was shown that
the flocking occurs only when the strength of noise is suffi-
ciently small [2]. However, the role of multiplicative measure-
ment noises in the flocking dynamics of Vicsek type models is
still not clear. We hope that the proposed analytical framework
in this paper can help to investigate the constructive role of
noise in the flocking dynamics.
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