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Edge dynamics is relevant to various real-world systems with complex network topological features. An edge
dynamical system is controllable if it can be driven from any initial state to any desired state in finite time
with appropriate control inputs. Here a framework is proposed to study the impact of correlation between in-
and out-degrees on controlling the edge dynamics in complex networks. We use the maximum matching and
direct acquisition methods to determine the controllability limit, i.e., the limit of acceptable change of the edge
controllability by adjusting the degree correlation only. Applying the framework to plenty complex networks,
we find that the controllability limits are ubiquitous in model and real networks. Arbitrary edge controllability
in between the limits can be achieved by properly adjusting the degree correlation. Moreover, a nonsmooth
phenomenon occurs in the upper limits, and exponential and power-law scaling behaviors are widespread in the
approach or separation speed between the upper and lower limits.
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I. INTRODUCTION

Networked structures are common in most social, phys-
ical, biological, and technological systems [1–3]. How to
control complex networks is one of the most challenging
problems in modern network science [4–6]. Liu et al. [7]
made a breakthrough by developing structural control theory
for complex networks and offered efficient tools based on
the maximum matching to characterize the controllability
of directed networks. Much interest has been stimulated to-
ward exploring controllability properties of complex networks
[8–19].

By far most studies of network controllability are carried
out based on nodal dynamics, in which variables are defined
on nodes and interactions occur among the neighboring nodes.
However, the behavior of edge dynamics is also very im-
portant in network science. A pioneering work to address
the edge controllability was proposed by Nepusz et al. [20].
They introduced switchboard dynamics to describe the edge
dynamics in complex networks and developed structural edge
controllability. Then we expanded the switchboard dynamics
to the generalized switchboard dynamics (GSBD) [21] to
characterize a dynamical process on the edges of directed
and undirected networks with arbitrary interaction strengths
among edges. Many findings of controllability properties of
the GSBD significantly differ from that of nodal dynamics
and structural edge controllability. Representative discovery
is that the interaction strength plays a more important role
in the edge controllability than network structure. Despite
the interesting findings, the simulation and analytical results
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of the edge controllability in Ref. [21] are performed by
assuming that in- and out-degrees are uncorrelated in complex
networks. Some studies already suggest a correlation between
in- and out-degrees in real networks [22,23]. It is unreasonable
to assume that such degree correlation has no influence on
edge controllability. We refer to correlation between in- and
out-degrees as degree correlation in the remainder of this
paper for simplicity.

In this paper, we focus on the degree correlation on edge
controllability. The edge controllability is measured by the
minimum numbers of driver nodes and driven edges. A
framework based on the maximum matching is proposed to
determine the limit of acceptable change of the edge con-
trollability by adjusting the degree correlation only. We use
this framework to uncover a number of phenomena associ-
ated uniquely with the edge controllability. Specifically, the
degree correlation plays an important role in edge controlla-
bility. There exist universal lower and upper limits of edge
controllability for model and real networks. A vast range
is existed between the limits, especially for networks with
structural switching matrices. Arbitrary edge controllability
in between the limits can be achieved by properly adjusting
the degree correlation. A nonsmooth phenomenon occurs in
the upper limits of part model networks. Exponential and
power-law scaling behaviors are widespread in the approach
or separation speed between the upper and lower limits of
model networks. For all the results concerning nonsmooth,
exponential and power-law scaling behaviors, we provide the
analytic formula and results from extensive numerical tests. In
summary, our findings indicate that it is imperative to consider
the degree correlation to offer a better understanding of the
edge controllability.
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II. CONTROLLING EDGE DYNAMICS

The GSBD [21] provides a general characterization of
dynamics occurring on edges of a directed network G(V, E ).
Let y−

v and y+
v denote the state vectors comprised of the states

of the incoming and outgoing edges of node v, respectively.
The state vector y+

v can be influenced by the state vector y−
v ,

the vector of the damping terms τv and the external input
vector uv . So the equation governing the edge dynamics is

ẏ+
v = Svy−

v − τv ⊗ y+
v + σvuv, (1)

where Sv ∈ Rk+
v ×k−

v is the general switching matrix with row
number equaling the out-degree k+

v and column number equal-
ing the in-degree k−

v of node v. ⊗ denotes the entrywise
product of the two vectors of the same size. σv is 1 if node
v is a driver node and 0 otherwise. Note that the elements
in Sv capture the interaction strengths among edges. In the
structural edge controllability [20], Sv must be a structural
matrix, in which all nonzero elements are independent free
parameters. Instead, the GSBD releases the restriction of
Sv , in which the elements could be arbitrary fixed values
(including 0). A correspondence between the GSBD and the
linear time-invariant dynamical system can be established by
reformulating Eq. (1) in terms of xi of the edges, yielding

ẋ = (W − T )x + Hu, (2)

where W ∈ RM×M is the transpose matrix of the adjacency
matrix of the line graph L(G) of G, in which wi j is nonzero if
and only if the head of edge j is the tail of edge i. T ∈ RM×M

is a diagonal matrix composed of the damping terms of each
edge. H ∈ RM×M is a diagonal matrix where the ith diagonal
element is σv if node v is the tail of edge i. Note that for the
edge dynamics in undirected networks, the GSBD can be de-
fined by splitting each undirected edge into two directed edges
with opposite directions. Each undirected edge is denoted by
a couple of state variables (xi, x′

i ) corresponding to its two
directed edges. For the whole network, the dynamical process
can be still described by Eq. (2), but matrices W , T , and H
belong to R2M×2M .

One key result in Ref. [21] is that the minimum number of
driver nodes can be determined by selecting the nodes with-
out full row-rank switching matrix (rank(Sv ) < k+

v ) and one
arbitrary node from each full rank component (the switching
matrices of all nodes in a connected component are square
matrices with full rank). Each driver node must control k+

v −
rank(Sv ) of its outgoing edges, and the selected nodes in each
full rank component must control one of its outgoing edges.
Moreover, there exist upper and lower bounds of the numbers
of driver nodes and driven edges required to maintain full
control, which are determined by the interaction strengths.
The upper and lower bounds are reached if Sv of each node is
an unweighted matrix (all elements are one) and a structural
matrix, respectively.

Despite the interesting findings, the simulation and analyt-
ical results of the edge controllability in Ref. [21] are per-
formed by assuming that in- and out-degrees of each node are
uncorrelated in complex networks. So we will be interested in
the effect of the degree correlation on the edge controllability
in this paper.

III. CONTROLLABILITY LIMITS

The edge controllability is measured by the minimum num-
ber ND of driver nodes and the minimum number MD of driven
edges required to maintain full control [20,21]. The criterion
for discerning driver nodes and driven edges in Ref. [21]
indicates that the edge controllability is influenced by the
interaction strength. In order to exclude the influence from
the interaction strength, only the upper and lower bounds of
edge controllability are considered in this paper. Specifically,
for a directed network with unweighted switching matrices
corresponding to the upper bound or with structural switching
matrices corresponding to the lower bound, we analyze the
limits of acceptable change of its ND and MD by adjusting the
degree correlation only. The upper and lower limits of ND and
MD are simply referred to as controllability limits.

For a directed network with structural switching matrices,
a node v can contribute rank min(k−

v , k+
v ). So the node with

k+
v > k−

v must be a driver node. Each driver node must control
k+
v − k−

v of its outgoing edges. The dependence of driver node
and driven edge on local structures allows us to determine the
controllability limits by the maximum matching. For the upper
limit of ND, the maximum matching is used to find out the
maximum possible number of divergent nodes constituted by
the in- and out-degree sequences of the network. Specifically,
an undirected bipartite graph H with 2N nodes is generated
by the in-degree sequence Kin = {k−

1 , k−
2 , . . . , k−

N } and the
out-degree sequence Kout = {k+

1 , k+
2 , . . . , k+

N } of the network.
As shown in Fig. 1(a), i from in-degree sequence and j from
out-degree sequence are connected if k−

i < k+
j . Each edge

in H corresponds to a potential driver node in the generated
network. So the upper limit of ND can be given by

NU
D = max(1, |MH |), (3)

where |MH | is the number of edges in the maximum matching
of H . For the lower limit of ND, as shown in Fig. 1(b), an
undirected bipartite graph H is generated by connecting i
from in-degree sequence and j from out-degree sequence if
k−

i � k+
j . Each edge in H corresponds to a potential nondriver

node in the generated network. So the lower limit of ND can
be described by

NL
D = max(1, N − |MH |), (4)

where |MH | is the number of edges in the maximum matching
of H . For the upper limit of MD, as shown in Fig. 1(c), a
weighted bipartite graph H∗ is generated by assigning the
weight k+

j − k−
i to each edge in H . An edge weight cor-

responds to the number of outgoing edges controlled by a
potential driver node in the generated network. So the upper
limit of MD can be given by

MU
D = max(1, |MH∗ |), (5)

where |MH∗ | is the sum of edge weights in the weighted
maximum matching of H∗. For the lower limit of MD, as
shown in Fig. 1(d), a weighted bipartite graph H∗ is generated
by connecting arbitrary two nodes from in- and out-degree
sequences. The edge weight is k−

i − k+
j if the edge satisfies

k−
i < k+

j and 0 otherwise. The absolute value of an edge
weight corresponds to the number of outgoing edges con-
trolled by a potential driver node in the generated network.
So the lower limit of MD can be described by

ML
D = max(1, |MH∗ |), (6)
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FIG. 1. Controllability limits. (a) Upper limit of ND. An undirected bipartite graph H generated by the in-degree sequence Kin = {0, 1, 2, 3}
and the out-degree sequence Kout = {1, 1, 2, 2}, where node i from the in-degree sequence and node j from the out-degree sequence are
connected if k−

i < k+
j . Its generated network in has NU

D = 2. (b) Lower limit of ND. An undirected bipartite graph H generated by connecting
i from the in-degree sequence and j from the out-degree sequence if k−

i � k+
j . Its generated network in has NL

D = 1. (c) Upper limit of MD. A
weighted bipartite graph H∗ is generated by assigning the value k+

j − k−
i to each edge in H . Its generated network in has MU

D = 3. (d) Lower

limit of MD. A weighted bipartite graph H∗ is generated by connecting arbitrary two nodes, and assigning the value k−
i − k+

j to the edges
satisfied k−

i < k+
j , and zero for other edges. Its generated network in has ML

D = 1. Note that the matching nodes in the generated networks are
from the matched edges in the maximum matching, and other nodes are randomly generated.

where |MH∗ | is the absolute values of the sum of edge weights
in the weighted maximum matching of H∗.

For a directed network with unweighted switching matri-
ces, a node v with k+

v > 0 and k−
v > 0 can only contribute rank

one. So the node with k+
v > 1 or the node with k+

v = 1 and
k−
v = 0 must be a driver node. Each driver node with k+

v > 0
and k−

v > 0 must control k+
v − 1 of its outgoing edges, and

each driver node with k+
v > 0 and k−

v = 0 must control all of
its outgoing edges. The dependence of driver node and driven
edge on local structures enables us to directly determine the
controllability limits. Detailed results are shown in Table I.

In summary, the controllability limits of any directed net-
work can be calculated by means of maximum matching or

direct acquisition. Note that we do not consider the undirected
network because all nodes in the undirected network are
balanced (k−

v = k+
v ). In addition, the full rank component is

infrequent in directed networks. It have little influence to ND

and MD [20,21]. We thus neglect the possible presence of the
full rank component when analyze the controllability limits.

IV. CONTROLLABILITY LIMITS IN MODEL NETWORKS

We employ the model and real networks to substantiate
the controllability limits. Figure 2 shows their average degree
〈k〉 dependence for Erdős-Rényi (ER) random network [24]
and exponential (EX) network, and power-law exponent γ

TABLE I. Controllability limits. The upper and lower limits of ND and MD. The number of nodes under some conditions is defined as N (∗)
with the conditions in its subscript.

Unweighted switching matrix Structural switching matrix

NU
D N(k+

v >1) + min(N(k+
v =1), N(k−

v =0) ) max(1, |MH |)

NL
D

{
N(k+

v >1) if N(k+
v =1) � N(k−

v >0)

N(k+
v >1) + N(k+

v =1) − N(k−
v >0) if N(k+

v =1) > N(k−
v >0)

max(1, N − |MH |)

MU
D

{
M if N(k+

v >0) � N(k−
v =0)

M − N(k+
v >0) + N(k−

v =0) if N(k+
v >0) > N(k−

v =0)

max(1, |MH∗ |)

ML
D M − min(N(k+

v >0), N(k−
v >0) ) max(1, |MH∗ |)
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FIG. 2. Controllability limits in model networks. The upper and lower limits of driver nodes and driven edges in [(a)–(d)] ER networks and
[(e)–(h)] EX networks as the function of the average degree 〈k〉 and in [(i)–(l)] SF networks as the function of the power-law exponent γ and
the exponential cutoff parameter κ . The exponential cutoff parameter for the red full lines in (j) and (l) is, from top to bottom, κ = 1, 2, 5, 100,
and reverse order for others. The controllability limits of model networks with unweighted switching matrices are shown in (a), (b), (e), (f),
(i), and (j) and with structural switching matrices are shown in (c), (d), (g), (h), (k), and (l). How to generate model networks are presented in
Appendix A.

dependence for scale-free (SF) network [25]. An important
observation is that the upper and lower limits of nD and mD

hold for all kinds of model networks. Any values of nD and
mD in between the limits are achievable by properly adjusting
the degree correlation. This demonstrates that the degree
correlation plays an important role in the edge controllability.
Another notable result is that, the degree correlation has a big-
ger effect on nD and mD in networks with structural switching
matrices, in which the range between the upper and lower
limits is very large. Conversely, the impact of the degree corre-
lation is very limited in networks with unweighted switching
matrices. This shows that the edge controllability of networks
with structural switching matrices is more susceptible to the
degree correlation. Note that the upper and lower limits in SF
networks with unweighted switching matrices [see Fig. 2(i)
and 2(j)] are the same because Pin

0 = Pout
0 = 0 in SF model

networks, where Pin
k and Pout

k are the in-degree distribution
and the out-distribution distribution, respectively. The detailed
procedures for deriving the analytical results are presented in
Appendix B. As shown in Fig. 2, the analytical results are in
fairly good agreement with numerical simulations.

A nonsmooth phenomenon occurs in the upper limit of
nD of ER networks [see Fig. 2(c)], and the upper limit of

mD of the ER, EX, and SF networks [see Figs. 2(d), 2(h)
and 2(l)]. In ER networks, both in- and out-degrees follow
the Poisson distribution, which is Pin

k = Pout
k = 〈k〉ke−〈k〉/k!,

where 〈k〉 is the average degree. The Poisson distribution is a
unimodal distribution. The degree of its peak is a step function
that increases with 〈k〉, i.e., kpeak = �〈k〉	, where �〈k〉	 is the
largest integer not greater than 〈k〉. The kpeak is the origin
of the nonsmooth phenomenon in the upper limit of nD in
ER networks. In contrast, in ER, EX and SF networks, the
nonsmooth phenomenon in the upper limit of mD stems from
the median kmid of the ordered degree sequence, where kmid

is also a step function that increases with 〈k〉 in ER and EX
networks, and with γ in SF netwotks. See Appendix C for
details.

The simulation results in Fig. 2 show that the upper and
lower limits approach or separate from each other as 〈k〉
and γ increase. This inspired us to study the approach or
separation speed between the upper and lower limits, where
the speed is defined as (nU

D − nL
D)′ and (mU

D − mL
D)′. We find

that a speed scaling law is ubiquitous in model networks.
Specifically, as shown in Fig. 3, a exponential scaling behavior
exists in ER networks with unweighted switching matrices
and SF networks, and a power-law scaling behavior exists
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FIG. 3. Approach or separation speed. The approach or separation speed between the upper and lower limits in [(a)–(d)] ER networks and
[(e)–(h)] EX networks as the function of the average degree 〈k〉 and in [(i)–(l)] SF networks as the function of the power-law exponent γ . The
exponential cutoff parameter κ → ∞ in (i)–(l). The speeds of model networks with unweighted switching matrices are shown in (a), (b), (e),
(f), (i), and (j) and with structural switching matrices are shown in (c), (d), (g), (h), (k), and (l).

in ER networks with structural switching matrices and EX
networks. In particular, as shown in Figs. 3(c), 3(d) and 3(h),
the speed is discontinuous. This is due to the nonsmooth phe-
nomenon in the upper limit of nD and mD in model networks.
Note that Figs. 3(i)–3(l) only show the speed results of SF
networks when κ → ∞. The analytical results of the speed
are presented in Appendix D, where simple and closed-form
theoretical expectations are offered for all kinds of model
networks.

V. CONTROLLABILITY LIMITS IN REAL NETWORKS

We use the tools developed above to study the edge control-
lability in real networks to determine the controllability limits.
The upper and lower limits of nD and mD of different types of
real networks are displayed in Table II. A notable finding is
that there is a large gap between the upper and lower limits
of nD and mD. This demonstrates the significant effect of the
degree correlation on edge controllability of real networks.

Next we focus on the dependence of the controllability
limits of real networks. As shown in Fig. 4, nD and mD of real
networks with different 〈k〉 basically disperse in two regions,
where the curves in two regions are the analytical results
of the upper and lower limits of EX networks, respectively.
The controllability limits of real networks with unweighted
switching matrices disperse in two relatively small regions
[see Figs. 4(a) and 4(c)] since their insensitivity to the net-
work structure. By contrast, the affection of network structure

on the controllability limits of real networks with structural
switching matrices is much bigger, leading to much larger
dispersion about the analytical prediction based on model net-
work [see Figs. 4(b) and 4(d)]. Another prominent observation
is that the lower limits nL

D and mL
D of real networks with

structural switching matrices is much lower than that with
unweighted switching matrices, which is in accordance with
the results of model networks in Fig. 2. This indicates that
the edge controllability of networks with structural switching
matrices have a much higher potential to be optimized by
perturbing the network structure.

In summary, instead of focusing on the degree distribution
and the interaction strength, one has to take the degree correla-
tion into account to offer a deeper and realistic understanding
of the edge controllability in real networks, especially for the
networks with structural switching matrices.

VI. CONCLUSION

We developed a framework to explore the effect of the
correlation between in- and out-degrees on controlling edge
dynamics in complex networks. Applying the framework to
model and real networks, we find that the degree correlation
plays an important role in edge controllability. To be specific,
the existing results demonstrate that the controllability of
nodal and edge dynamics is mainly determined by the degree
distribution and the interaction strength [7,8,20,21]. However,
our findings indicate that, to offer a better understanding
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TABLE II. Controllability limits in real networks. For each network with unweighted switching matrices or structural switching matrices,
we show its type, name, nodes number, edges number, and controllability limits.

Unweighted switching matrices Structural switching matrices

Type No. Name N M nU
D nL

D mU
D mL

D nU
D nL

D mU
D mL

D

Regulatory 1 Ownership-USCorp [26] 8497 6726 0.159 0.061 1.000 0.799 0.159 0.028 0.875 0.738
2 TRN-EC-2 [27] 423 578 0.274 0.182 0.879 0.799 0.274 0.071 0.879 0.545
3 TRN-Yeast-1 [28] 4684 15451 0.064 0.057 0.985 0.981 0.064 0.025 0.985 0.802
4 TRN-Yeast-2 [27] 688 1079 0.190 0.145 0.968 0.879 0.190 0.063 0.968 0.610

Trust 5 Prison inmate [29,30] 67 182 0.925 0.821 0.692 0.670 0.761 0.179 0.511 0.110
Food Web 6 St. Marks [31] 45 224 0.711 0.689 0.835 0.830 0.711 0.156 0.701 0.143

7 Seagrass [32] 49 226 0.714 0.694 0.827 0.823 0.714 0.102 0.655 0.097
8 Grassland [33] 88 137 0.341 0.330 0.620 0.613 0.341 0.148 0.620 0.314
9 Ythan [33] 135 601 0.474 0.467 0.864 0.862 0.474 0.052 0.844 0.195
10 Silwood [34] 154 370 0.214 0.208 0.897 0.895 0.214 0.084 0.897 0.508
11 Little Rock [35] 183 2494 0.995 0.989 0.927 0.927 0.831 0.497 0.818 0.299

Electronic circuits 12 S208a [27] 122 189 0.549 0.541 0.413 0.407 0.549 0.311 0.413 0.201
13 s420a [27] 252 399 0.560 0.556 0.416 0.414 0.560 0.325 0.416 0.206
14 s838a [27] 512 819 0.564 0.563 0.418 0.416 0.565 0.332 0.418 0.208

Neuronal 15 C. elegans [36] 297 2359 0.949 0.859 0.881 0.880 0.923 0.081 0.639 0.069
Citation 16 Small World [37] 233 1988 0.309 0.300 0.451 0.450 0.309 0.047 0.869 0.469

17 SciMet [37] 2729 10416 0.613 0.487 0.862 0.829 0.613 0.037 0.830 0.153
18 Kohonen [38] 3772 12731 0.381 0.314 0.877 0.857 0.381 0.029 0.876 0.436

Internet 19 Political blogs [39] 1224 19090 0.870 0.769 0.953 0.945 0.870 0.165 0.908 0.163
20 p2p-1 [40] 10876 39994 0.381 0.380 0.877 0.877 0.381 0.255 0.870 0.325
21 p2p-2 [40] 8846 31839 0.387 0.374 0.883 0.879 0.387 0.265 0.878 0.352
22 p2p-3 [40] 8717 31525 0.383 0.374 0.884 0.881 0.383 0.264 0.878 0.347

Organizational 23 Freeman-1 [41] 34 695 1.000 1.000 0.951 0.951 0.735 0.118 0.285 0.048
24 Consulting [42] 46 879 1.000 1.000 0.950 0.950 0.848 0.109 0.369 0.079

Language 25 English words [43] 7381 46281 0.479 0.463 0.862 0.860 0.480 0.003 0.862 0.087
26 French words [43] 8325 24295 0.333 0.290 0.736 0.721 0.333 0.009 0.736 0.092

Transportation 27 USair97 [44] 332 2126 0.762 0.602 0.894 0.869 0.762 0.030 0.861 0.045
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FIG. 4. Controllability limits in real networks. The upper and lower limits of driver nodes and driven edges in [(a) and (c)] real networks
with unweighted switching matrices and in [(b) and (d)] real networks with structural switching matrices. The curves are analytical results of
the controllability limits in EX networks.
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of the edge controllability, it is imperative to consider the
degree correlation. Furthermore, we explored the cause of
the nonsmooth phenomenon in the controllability limits, and
found the exponential and power-law scaling behaviors in
the approach or separation speeds between the controllability
limits.

Our results not only offer a new perspective on the role
of network structure on edge controllability, but also raise
several questions. Future research directions include how
to optimize edge controllability by perturbing the network
structure. The effect of degree correlation on the robustness,
on the controllable subspace and target control, and on the
energy consumption in control.
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APPENDIX A: MODEL NETWORK

A model network with N nodes is structured by given
in- and out-degree distributions, including Poisson distribu-
tion, exponential distribution and power-law distribution. One
can obtain a degree sequence by the given degree distribu-
tion, where the in- and out-degree sequences are denoted
by Kin = {k−

1 , k−
2 , . . . , k−

N } and Kout = {k+
1 , k+

2 , . . . , k+
N }, re-

spectively. Note that N must be big enough to ensure
the degree sequence is encoded completely by the degree
distribution.

A directed network starts from N isolated nodes. Each node
is assigned in-degree k−

i and out-degree k+
j from in- and out-

degree sequences, respectively. Two nodes u with k−
u > 0 and

node v with k+
v > 0 are randomly selected and connected with

direction from node v to u. Then the in-degree of node u turns
into k−

u − 1 and the out-degree of node v turns into k+
v − 1.

This process is repeated until all nodes satisfy the given in-
and out-degrees. Note that the multiple edges in the generated
network will be disposed by edges exchanging, i.e., turning
edges euv and ekl to edges eul and ekv if there exist multiple
edges euv , where k �= u and l �= v.

APPENDIX B: ANALYTICAL RESULTS OF
CONTROLLABILITY LIMIT

The analytical results of the controllability limits depend
on the degree distribution. The in- and out-degrees of mode
networks follow the same distribution, i.e., Pin

k = Pout
k = Pk .

We first give the analytical results of networks with un-
weighted switching matrices. The formulas for determining
controllability limits in Table I enable us to directly give the
analytical results. Specifically, the upper limit of nD is

nU
D =

∞∑
k=2

Pk + min(P0, P1)

= 1 − P0 − P1 + min(P0, P1). (B1)

The lower limit of nD is

nL
D =

∞∑
k=2

Pk

= 1 − P0 − P1. (B2)

The upper limit of mD is

mU
D =

{
1 if

∑∞
k=1 Pk � P0

1 − 1
〈k〉

(∑∞
k=1 Pk − P0

)
if

∑∞
k=1 Pk > P0

=
{

1 if P0 � 1/2
1 − 1

〈k〉 (1 − 2P0) if P0 < 1/2 , (B3)

where the average degree is 〈k〉 = 〈k+〉 = 〈k−〉 = M/N . The
lower limit of mD is

mL
D = 1

〈k〉

[ ∞∑
k=1

Pk (k − 1)

]

= 1 − 1

〈k〉 (1 − P0). (B4)

Then we give the analytical results of networks with struc-
tural switching matrices. The upper limit of nD is first con-
sidered. The exponent distribution of EX networks is mono-
tone, i.e., Pk > Pk+1, where k ∈ [0, kmax]. We assign each
divergent node with k−

v = k+
v − 1. The maximum number of

those divergent nodes are determined by the number of nodes
with k+

v > 0. Meanwhile, a node with k+
v = 0 must not be a

divergent node. So the upper limit of nD in EX networks is
determined by the number of nodes with k+

v > 0, yielding

nU
D = 1 − P0. (B5)

Evidenced by the same token, the upper limit of nD in SF
networks is also given by the above equation. Conversely,
the poisson distribution of ER networks is unimodal and the
degree of its peak is kpeak = �〈k〉	, where �〈k〉	 is the largest
integer not greater than 〈k〉. The poisson distribution can be
processed in two segments since it has a monotone increasing
and a monotone decreasing at the left and right sides of its
peak. So the upper limit of the number of driver nodes is
NU

D = N(k−
v <�〈k〉	) + N(k+

v >�〈k〉	). This leads to that the upper
limit of nD in ER networks is

nU
D = 1 − Pkpeak . (B6)

For the lower limit of nD, we assign k−
i = k+

i to each node
to generate a connected network with no divergent nodes,
yielding

nL
D = 1

N
. (B7)

To calculate the upper limit of mD, we design a subtraction
formula α − β. Each time, the biggest degree k+

max from the
out-degree sequence and the smallest degree k−

min from the
in-degree sequence are selected to put into the set α and
β, respectively. Meanwhile, the selected degrees are deleted
from their degree sequences. Repeat the above steps until
k+

max = k−
min, we thus have the largest difference value be-

tween α and β. α − β is nothing but the upper limit of the
number of driven edges. So the upper limit of mD can be
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described by

mU
D = 1

〈k〉

⎡
⎣ ∞∑

k=km+1

Pkk +
⎛
⎝1

2
−

∞∑
k=km+1

Pk

⎞
⎠km −

km−1∑
k=0

Pkk −
(

1

2
−

km−1∑
k=0

Pk

)
km

⎤
⎦

= 1

〈k〉

⎡
⎣km−1∑

k=0

Pk (km − k) +
∞∑

k=km+1

Pk (k − km)

⎤
⎦, (B8)

where km is the median of the ordered degree sequence in
model networks. It satisfies

km∑
k=0

Pk � 1

2
and

∞∑
k=km

Pk � 1

2
. (B9)

Note that, if km = 0, the upper limit of mD is simplified to
mU

D = 1
〈k〉

∑∞
k=1 Pkk = 1. For the lower limit of mD, we assign

k−
i = k+

i to each node to generate a connected network with
no divergent nodes, yielding

mL
D = 1

M
. (B10)

1. Poisson distributed network

For ER networks, both the in- and out-degrees fol-
low the Poisson distribution, i.e.,P(k+

v = k) = P(k−
v = k) =

〈k〉ke−〈k〉/k!.
For ER networks with unweighted switching matrices, by

substituting the Poisson distribution into Eq. (B1), we have

nU
D = 1 − e−〈k〉 − 〈k〉e−〈k〉 + min(e−〈k〉, 〈k〉e−〈k〉)

=
{

1 − e−〈k〉 if 〈k〉 � 1
1 − 〈k〉e−〈k〉 if 〈k〉 > 1

. (B11)

Similarly, the lower limit of nD is

nL
D = 1 − e−〈k〉 − 〈k〉e−〈k〉. (B12)

By substituting the Poisson distribution into Eq. (B3), we have

mU
D =

{
1 if 〈k〉 � ln2

1 − 1−2e−〈k〉
〈k〉 if 〈k〉 > ln2

. (B13)

Similarly, the lower limit of mD is

mL
D = 1 − 1

〈k〉 (1 − e−〈k〉). (B14)

For ER networks with structural switching matrices, the
upper limit of nD is

nU
D = 1 − P�〈k〉	

= 1 − e−〈k〉〈k〉�〈k〉	

�〈k〉	!
. (B15)

The lower limit of nD is simply given by

nL
D = 1

N
.

(B16)

The upper limit of mD is

mU
D = e−〈k〉

〈k〉

⎡
⎣km−1∑

k=0

〈k〉k

k!
(km − k) +

∞∑
k=km+1

〈k〉k

k!
(k − km)

⎤
⎦

= 1

km!
[km! − km�(km, 〈k〉) − km(km − 1)�(km − 1, 〈k〉)]

+ km

〈k〉km!
[km�(km, 〈k〉) + �(km + 1, 〈k〉) − km!],

(B17)

where km satisfies

�(km + 1, 〈k〉)

km!
� 1/2 and

�(km, 〈k〉)

(km − 1)!
� 1/2. (B18)

The lower limit of mD is simply given by

mL
D = 1

N〈k〉 . (B19)

2. Exponentially distributed network

For EX networks, both the in- and out-degrees follow
the exponential distribution, i.e., P(k+

v = k) = P(k−
v = k) =

Ce−k/κ , where C = 1 − e−1/κ and κ = 1/log 1+〈k〉
〈k〉 .

For EX networks with unweighted switching matrices, by
substituting the exponential distribution into Eq. (B1), we
have

nU
D = 1 − C − Ce−1/κ + min(C,Ce−1/κ )

= 〈k〉
〈k〉 + 1

. (B20)

Similarly, the lower limit of nD is

nL
D = 1 − C − Ce−1/κ

= 〈k〉2

(〈k〉 + 1)2
. (B21)

By substituting the exponential distribution into Eq. (B3), we
have

mU
D =

{
1 if C � 1/2

1 − 1
〈k〉 (1 − 2C) if C < 1/2

=
{

1 if 〈k〉 � 1
〈k〉2+1

〈k〉2+〈k〉 if 〈k〉 > 1
. (B22)
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Similarly, the lower limit of mD is

mL
D = 1 − 1

〈k〉 (1 − C)

= 〈k〉
〈k〉 + 1

. (B23)

For EX networks with structural switching matrices, the
upper limit of nD is

nU
D = 1 − C

= 〈k〉
〈k〉 + 1

. (B24)

The lower limit of nD is simply given by

nL
D = 1

N
. (B25)

The upper limit of mD is

mU
D = C

〈k〉

⎡
⎣km−1∑

k=0

e−k/κ (km − k) +
∞∑

k=km+1

e−k/κ (k − km)

⎤
⎦

= 2
〈k〉km

(〈k〉 + 1)km
+ km

〈k〉 − 1, (B26)

where km satisfies

ln(1/2)

ln( 〈k〉
〈k〉+1 )

� km � ln(1/2)

ln( 〈k〉
〈k〉+1 )

− 1. (B27)

The lower limit of mD is simply given by

mL
D = 1

N〈k〉 . (B28)

3. Power-law distributed network

For SF networks, both in- and out-degrees follow the same
power-law distribution with power-law exponent γ and an ex-
ponential cutoff, i.e., P(k+

v = k) = P(k−
v = k) = Ck−γ e−k/κ ,

where C = 1/Liγ (e−1/κ ), 〈k〉 = CLiγ−1(e−1/κ ), and Lis(z) is
the polylogarithm function. Note that P0 = 0 in SF networks.

For SF networks with unweighted switching matrices,
there is no nodes with k+

v = 0 or k−
v = 0 in networks. So the

number of driver nodes in the upper limit is always the same
as that in the lower limit. Thus, the expected fraction of driver
nodes in both upper and lower limits is

nD = 1 − e−1/κ

Liγ (e−1/κ )
. (B29)

When κ → ∞, the exponential cutoff vanishes and the poly-
logarithm function reduces to the Riemann ζ function ζ (s).
So the function of driver nodes in both upper and lower limits
is simplified as nD = 1 − 1/ζ (γ ). For the same reason, the
expected fraction of driven edges in both upper and lower
limits is

mD = 1 − Liγ (e−1/κ )

Liγ−1(e−1/κ )
. (B30)

When κ → ∞, it is simplified as mD = 1 − ζ (γ )/ζ (γ − 1).
For SF networks with structural switching matrices, the

upper limit of nD is

nU
D = 1 − P1

= 1 − e−1/κ

Liγ (e−1/κ )
. (B31)

When κ → ∞, it is simplified as nU
D = 1 − 1/ζ (γ ). The

lower limit of nD is

nL
D = 1

N
. (B32)

The upper limit of mD is

mU
D = C

〈k〉

⎡
⎣km−1∑

k=0

k−γ e−k/κ (km − k) +
∞∑

k=km+1

k−γ e−k/κ (k − km)

⎤
⎦

= e−(km+1)/κ

Liγ−1(e−1/κ )
[	(e−1/κ , γ − 1, km + 1) − km	(e−1/κ , γ , km + 1)] − 1

+ e−km/κ

Liγ−1(e−1/κ )
[	(e−1/κ , γ − 1, km) − km	(e−1/κ , γ , km )] + kmLiγ (e−1/κ )

Liγ−1(e−1/κ )
, (B33)

where 	(z, s, a) is the Lerch transcendent function and km satisfies

e−(km+1)/κ	(e−1/κ , γ , km + 1)

Liγ (e−1/κ )
� 1

2
and

e−km/κ	(e−1/κ , γ , km)

Liγ (e−1/κ )
� 1

2
. (B34)

When κ → ∞, it is simplified as

mU
D = 1

ζ (γ − 1)
[ζ (γ − 1, km) + ζ (γ − 1, km + 1)] − km

ζ (γ − 1)
[ζ (γ , km) + ζ (γ , km + 1) − ζ (γ )] − 1, (B35)
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FIG. 5. Nonsmooth phenomenon. (a) The correspondence between (nU
D )′ and kpeak in ER networks. [(b)–(d)] The correspondence between

(mU
D )′ and km in ER, EX, and SF networks.

where ζ (s, a) is the Hurwitz ζ function and km satisfies

ζ (γ , km + 1)

ζ (γ )
� 1

2
and

ζ (γ , km)

ζ (γ )
� 1

2
. (B36)

The lower limit of mD is

mL
D = Liγ (e−1/κ )

NLiγ−1(e−1/κ )
. (B37)

When κ → ∞, it is simplified as mL
D = ζ (γ )/[Nζ (γ − 1)].

APPENDIX C: NONSMOOTH PHENOMENON

A nonsmooth phenomenon exists in nU
D of ER networks,

and mU
D of ER, EX, and SF networks. Figure 5(a) shows the

correspondence between (nU
D )′ and kpeak in ER networks. The

simulation results indicate that the nonsmooth phenomenon
in nU

D of ER networks is caused by kpeak. Evidenced by the
same token, as shown in Figs. 5(b)–5(d), the nonsmooth
phenomenon in mU

D is caused by km. The analytical results are
presented in Appendix D.

APPENDIX D: ANALYSIS RESULTS OF SPEED

1. Poisson distributed network

For ER network with unweighted switching matrices, when
〈k〉 > 1, the approach speed between nU

D and nL
D is(

nU
D − nL

D

)′ = −e−〈k〉. (D1)

When 〈k〉 > ln2, the approach speed between mU
D and mL

D is(
mU

D − mL
D

)′ = −e−〈k〉

〈k〉2
− e−〈k〉

〈k〉
≈ − 1

〈k〉e−〈k〉. (D2)

For ER networks with structural switching matrices, we
calculate the speeds by neglecting the lower controllability
limit since nL

D = 1/N and mL
D = 1/M. The nonsmooth phe-

nomenon is presented in the upper limit of nD of ER networks.
According to Eq. (B15), the nonsmooth phenomenon stems
from Ppeak = �〈k〉	. The parameter �〈k〉	 changes from 〈k〉 −
1 to 〈k〉 at the jump point. Thus, when �〈k〉	 = 〈k〉 − 1, the
separation speed between nU

D and nL
D is given by(

nU
D − nL

D

)′ = e−〈k〉
( 〈k〉〈k〉−1

(〈k〉 − 1)!
− 〈k〉〈k〉−2

(〈k〉 − 2)!

)

= 1√
2π

〈k〉−1.5. (D3)

When �〈k〉	 = 〈k〉, the separation speed is

(
nU

D − nL
D

)′ = e−〈k〉
[ 〈k〉〈k〉

(〈k〉)!
− 〈k〉〈k〉−1

(〈k〉 − 1)!

]
.

= 0. (D4)
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The approach speed between mU
D and mL

D is

(
mU

D − mL
D

)′ = 〈k〉km−1e−〈k〉

(km − 1)!
+ 〈k〉km−2e−〈k〉

(km − 2)!
+

[−〈k〉km−1e−〈k〉

(km − 1)!
+ −〈k〉km e−〈k〉

km!

]
km

〈k〉

−
[
�(km, 〈k〉)

(km − 1)!
+ �(km + 1, 〈k〉)

km!
− 1

]
km

〈k〉2

= −e−〈k〉〈k〉km−2

(km − 1)!
−

[
�(km, 〈k〉)

(km − 1)!
+ �(km + 1, 〈k〉)

km!
− 1

]
km

〈k〉2
. (D5)

Note that the nonsmooth phenomenon is presented in the upper limit of mD. According to Eq. (B17), the nonsmooth phenomenon
stems from km. The parameter km is determined by Eq. (B18). Thus, when �(km, 〈k〉)/(km − 1)! = 1/2, the approach speed is

(
mU

D − mL
D

)′ = − e−〈k〉〈k〉〈k〉−1

√
2π〈k〉(〈k〉/e)〈k〉 −

[
−1

2
+ 〈k〉�(〈k〉, 〈k〉) + 〈k〉〈k〉e−〈k〉

√
2π〈k〉(〈k〉/e)〈k〉

]
〈k〉−1

= − 2√
2π

〈k〉−1.5. (D6)

When �(km + 1, 〈k〉)/km! = 1/2, the approach speed is

(
mU

D − mL
D

)′ = − e−〈k〉〈k〉〈k〉−1

√
2π〈k〉(〈k〉/e)〈k〉 −

[
−1

2
+ �(〈k〉 + 1, 〈k〉) − 〈k〉〈k〉e−〈k〉

√
2π〈k〉(〈k〉/e)〈k〉

]
〈k〉−1

= 0.

(D7)

2. Exponentially distributed network

For EX networks with unweighted switching matrices, the
approach speed between nU

D and nL
D is

(
nU

D − nL
D

)′ = 1 − 〈k〉
(1 + 〈k〉)3

≈ −〈k〉−2. (D8)

When 〈k〉 > 1, the approach speed between mU
D and mL

D is

(
mU

D − mL
D

)′ = − 2〈k〉 + 1

(〈k〉2 + 〈k〉)2

≈ −2〈k〉−3. (D9)

For EX networks with structural switching matrices, we
calculate the speeds by neglecting the lower controllability
limit since nL

D = 1/N and mL
D = 1/M. So the separation speed

between nU
D and nL

D is(
nU

D − nL
D

)′ = (〈k〉 + 1)−2 ≈ 〈k〉−2. (D10)

The approach speed between mU
D and mL

D is

(
mU

D − mL
D

)′ = 2km

( 〈k〉
〈k〉 + 1

)km−1

(〈k〉 + 1)−2 − km〈k〉−2.

(D11)

Note that the nonsmooth phenomenon is presented in the
upper limit of mD. According to Eq. (B26), the nonsmooth
phenomenon stems from km. The parameter km is determined
by Eq. (B27). Thus, when km = ln(1/2)/ln(〈k〉/(〈k〉 + 1)),
the approach speed is

(
mU

D − mL
D

)′ =2
ln

1
2

ln
〈k〉

〈k〉+1

1/2

〈k〉/(〈k〉 + 1)
(〈k〉 + 1)−2− ln

1
2

ln
〈k〉

〈k〉+1

〈k〉−2

= ln
1
2 〈k〉−2. (D12)

When km = ln(1/2)/ln(〈k〉/[〈k〉 + 1)] − 1, the approach
speed is

(
mU

D − mL
D

)′ =
(

ln
1
2

ln
〈k〉

〈k〉+1

− 1

)[( 〈k〉
〈k〉 + 1

)−2

(〈k〉+1)−2−〈k〉−2

]

= 0. (D13)

3. Power-law distributed network

For SF networks with unweighted switching matrices, the
number of driver nodes and driven edges in the upper limit is
always the same as that in the lower limit. We calculate the
approach speed between the controllability limit and the zero
value. When κ → ∞, the approach speed between nD and 0
is

(nD − 0)′ = ζ ′(γ )

ζ (γ )2
. (D14)

When κ → ∞, the approach speed between mD and 0 is

(mD − 0)′ = 1

ζ (γ − 1)2
[ζ (γ )ζ ′(γ − 1) − ζ ′(γ )ζ (γ − 1)].

(D15)

For SF networks with structural switching matrices, we
calculate the speeds by neglecting the lower controllability
limit since nL

D = 1/N and mL
D = 1/M. When κ → ∞, the

separation speed between nU
D and nL

D is(
nU

D − nL
D

)′ = ζ ′(γ )

ζ (γ )2
. (D16)

When κ → ∞ and γ > 2, median km ≡ 1 and mU
D = 1 −

ζ (γ )/ζ (γ − 1). So the approach speed between mU
D and mL

D
is(
mU

D − mL
D

)′ = 1

ζ (γ − 1)2
[ζ (γ )ζ ′(γ − 1)− ζ ′(γ )ζ (γ − 1)].

(D17)
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