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Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold
for Weibull and Gamma infections but Poisson curings
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Although non-Markovian processes are considerably more complicated to analyze, real-world epidemics are
likely non-Markovian, because the infection time is not always exponentially distributed. Here, we present
analytic expressions of the epidemic threshold in a Weibull and a Gamma SIS epidemic on any network, where
the infection time is Weibull, respectively, Gamma, but the recovery time is exponential. The theory is compared
with precise simulations. The mean-field non-Markovian epidemic thresholds, both for a Weibull and Gamma
infection time, are physically similar and interpreted via the occurrence time of an infection during a healthy
period of each node in the graph. Our theory couples the type of a viral item, specified by a shape parameter
of the Weibull or Gamma distribution, to its corresponding network-wide endemic spreading power, which is
specified by the mean-field non-Markovian epidemic threshold in any network.
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I. INTRODUCTION

We confine ourselves here to a particularly simple epi-
demic model, the susceptible-infected-susceptible (SIS) epi-
demic process on a graph that, as argued earlier [1], “allows
for the highest degree of analytic treatment, which is a major
motivation for the continued effort toward its satisfactory
understanding.” The graph G is unweighted and undirected,
containing a set N of N nodes (also called vertices) and a
set L of L links (or edges). The topology of the graph G
is represented by a symmetric N × N adjacency matrix A
with spectral radius λ1, which is the largest eigenvalue of the
adjacency matrix A of the contact graph. In an SIS epidemic
process [2–7] on the graph G, the viral state of a node i at time
t is specified by a Bernoulli random variable Xi(t ) ∈ {0, 1}:
Xi(t ) = 0, when node i is healthy, but susceptible, and Xi(t ) =
1, when node i is infected at time t . A node i at time t can
only be in one of these two states: infected, with probability
Pr[Xi(t ) = 1], or healthy but susceptible to the infection, with
probability Pr[Xi(t ) = 0] = 1 − Pr[Xi(t ) = 1]. The recovery
or curing process for node i is a Poisson process with rate δ

and the infection rate over the link (i, j) is a Poisson process
with rate β. Only when node i is infected can it infect its
healthy direct neighbors with rate β. All Poisson curing and
infection processes are independent. This description defines
the continuous-time, Markovian homogeneous SIS epidemic
process on a graph G. The SIS process can be alternatively
described in terms of “time” random variables, which is
valuable for the remainder of this article. The recovery time
R of a node i is the duration between the time at which node
i is just infected and the subsequent time at which node i
is again recovered and healthy. Analogously, the infection
time T is the time needed for a just infected node to infect
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one of its direct, healthy neighbors. In a Poisson process
[8], interevent times are exponentially distributed so that both
recovery time R and infection time T are exponential random
variables with mean E [R] = 1

δ
and E [T ] = 1

β
, respectively.

We do not consider (a) heterogeneous epidemics, where each
node i can have its own curing rate δi and each link (i, j)
its own infection rate βi j nor (b) time-dependent rates β(t )
and δ(t ) as in Ref. [9]. Perhaps, more importantly, we limit
ourselves to a mean-field approximation of the SIS process.

Since real epidemics may not be Markovian, non-
Markovian epidemic modeling has been studied for a long
time (see, e.g., Refs. [10] and [6], p. 951). For SIS epidemic
processes on networks, a non-Markovian infection was re-
ported in Ref. [11] to alter the epidemic threshold signifi-
cantly. The SIS process with general infection and recovery
times has been analyzed in Ref. [12]. In the Weibullian SIS
model, as coined in Ref. [13], the exponential distribution of
the infection time T is extended to a Weibull distribution with
probability density function (pdf) [8, p. 56],

fTWeibull (x; α) = α

b

(x

b

)α−1
e−( x

b )α

, (1)

which is explained in Sec. III and Appendix A. In
Refs. [11,12], the Weibullian SIS model is extensively studied,
generalizes the Markovian process, and parameterizes the
non-Markovian behavior via the shape parameter α in Eq. (1).
The limiting case α → ∞ of the Weibullian SIS process is an-
alyzed by a mean-field governing equation in Ref. [13], when
the Weibull probability density function Eq. (1) reduces to a
Dirac delta function and the corresponding epidemic thresh-
old was found to be 1/ ln(1 + λ1). Simulations hinted that
1/ ln(1 + λ1) is the largest epidemic threshold for any Weibull
infection time. That result is partly verified in Ref. [14] by an
independent simulation, based on Ref. [15] and revisited here
in Sec. V.

In epidemiology, the infection time T is called the gen-
eration time [16], which characterizes the infectivity of
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pathogens and is defined as the time between the infections (or
the symptoms onsets) of the primary case and the secondary
case infected by the primary case. The generation time is usu-
ally obtained by monitoring the first cases and secondary cases
in households and follows skewed distributions, which have
been fitted by the Gamma, Weibull, or lognormal distribution.
For example, Heijne et al. [17] evaluated a norovirus outbreak
[18] in Sweden in 1999 by fitting the generation time with a
Gamma distribution. Cowling et al. [19] fitted the generation
time of influenza in Hong Kong with all the three distributions
and indicated that the Weibull distribution performs slightly
better than the Gamma and lognormal distributions, based on
the Akaike information criterion. The generation time of the
Severe Acute Respiratory Syndrome (SARS) in Singapore in
2003 is well fitted by the Weibull distribution [20]. Further-
more, the Weibull distribution was also used to fit [21] the
generation time of an Ebola outbreak in Uganda in 2000.
In summary, real disease measurements suggest to consider
Weibull, Gamma, and lognormal infection times.

Here, we present analytic expressions for the mean-field
epidemic threshold of the Weibull and Gamma SIS model
on any network. First, we summarize in Sec. II the non-
Markovian mean-field method developed earlier in Ref. [12].
In Sec. III, we apply the method to Weibull and Gamma in-
fection times and exponential recovery times. Section IV con-
siders the occurrence time of an infection in a given interval
and generalizes a fundamental theorem in Poisson theory to a
renewal process setting, which helps to interpret the behavior
of the non-Markovian mean-field epidemic threshold for any
infection time distribution. We present Lagrange series for
the Weibull mean-field epidemic threshold in Sec. VI, which
illustrates that a Weibull infection time leads to consider-
ably more complicated computation than a Gamma infection
time. Section VII compares the non-Markovian mean-field
epidemic threshold for both Weibull and Gamma distribution,
whereas the conclusion in Sec. VIII concisely covers the
lognormal distribution as well.

II. BRIEF REVIEW OF NON-MARKOVIAN
SIS EPIDEMICS ON NETWORKS

We briefly review the main results in Ref. [12] of the non-
Markovian SIS analysis on an arbitrary network, where the
infection and recovering process are assumed to be indepen-
dent (as in the Markovian case). However, both the infection
time T and the recovery time R can possess an arbitrary
distribution, whereas, in Markov theory as mentioned above,
T and R are exponential random variables with mean 1

β
and

1
δ
, respectively. In the homogeneous setting, each node has

the same distribution of the curing or recovery time R and
each link transfers the viral item following a same distribution
of the infection time T . Only the metastable state of the
non-Markovian SIS epidemic process is analyzed in Ref. [12]
in a mean-field setting. Assuming that the metastable state
exists and invoking renewal theory, the mean-field steady state
probability vi∞ of infection of node i is shown in Ref. [12] to
obey

E [M](1 − vi∞)
N∑

j=1

ai jv j∞ = vi∞, (2)

which is surprisingly close to the Markovian equation of the
N-intertwined mean-field approximation (NIMFA) [22],

τ (1 − vi∞)
N∑

j=1

ai jv j∞ = vi∞.

Clearly, the Markovian mean-field steady-state regime is
transformed into a non-Markovian one (and vice versa), if we
replace the effective infection rate τ = β/δ by the average
number E [M] of infection events during a healthy period,
which is specified in [12] by a (complex) integral

E [M] = 1

2π i

∫ c+i∞

c−i∞

ϕT (z)ϕR(−z)

1 − ϕT (z)

dz

z
, (3)

where ϕT (z) = E [e−zT ] and ϕR(z) = E [e−zR] are the proba-
bility generating function of the infection time T and recovery
or curing time R, respectively.

The analogy with the NIMFA equations in Refs. [22,23]
immediately leads to a definition of the mean-field epidemic
threshold in non-Markovian SIS epidemics,

E [Mc] = 1

λ1
. (4)

Thus, if E [M] > 1
λ1

, then the epidemic process is eventu-
ally endemic (in the mean-field approximation), in which a
nonzero fraction of the nodes remains infected, else the epi-
demic process dies out after which the network is eventually
overall healthy.

If the infection time T is exponential or the infection
follows a Poisson process, then, for any distribution of the
recovery time R, it is shown in Ref. [12] that E [M] = τ .
Hence, the epidemic threshold in the non-Markovian SIS
epidemics with an arbitrary recovery time R reduces, under
the mean-field approximation, precisely to the mean-field epi-
demic threshold1 τ (1)

c = 1
λ1

of the Markovian SIS epidemics.
The other variant, where the recovery time R is exponential

and the infection time T is more attractive and explored
further in this paper. As shown in Ref. [12], the NIMFA
epidemic threshold criterion Eq. (4) reduces then to

ϕT (δ) = 1

1 + λ1
. (5)

III. GENERAL INFECTION TIME T AND EXPONENTIAL
RECOVERY TIME R

To compare different distributions for the infection time
T and recovery time R, we require that they all have the
same average E [T ] = 1

β
and E [R] = 1

δ
, so that the effective

infection rate in Markovian SIS epidemics equals τ = E [R]
E [T ] .

We consider the two most used distributions for the infec-
tion time T in real diseases, a Weibull and Gamma distribu-
tion, whose main difference lies in the tail behavior. Phys-
ically, both distributions provide the same insight, although

1The specification of the actual epidemic threshold τc, even in the
thermodynamic limit when the size N of the graph tends to infinity
and τc reduces to one value, is still an open problem in Markovian
(and certainly in non-Markovian) epidemics.
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they are computationally very different. We will show that the
Gamma distribution possesses a simple analytic mean-field
epidemic threshold Eq. (11) below, while the corresponding
computation for the Weibull (Sec. VI) is involved. However,
the computation of the time occurrence of an infection event
in a given time interval (see Fig. 1 below) is more elegant for
the Weibull random variable, because its distribution function
has an closed analytic form (see Appendix A) in contrast to
the Gamma random variable.

A. The infection time T has a Weibull distribution

While the curing or recovery process is still Poissonean
with rate δ, the infection process at each node infects direct
neighbors in a time TWeibull with a Weibull pdf Eq. (1), mean
E [TWeibull] = b	(1 + 1

α
), and variance Eq. (A6), computed in

Appendix A,

Var[TWeibull] = bE [TWeibull]

[
2

2
α√
π

	

(
1

α
+ 1

2

)
− 	

(
1

α
+ 1

)]
.

To compare the Weibull with the exponential distribution, we
fix the average infection time E [TWeibull] to 1

β
, so that

b =
[
	

(
1 + 1

α

)
β

]−1

.

The major theoretical reason to choose the Weibull dis-
tribution is that, for α = 1, the Weibull distribution reduces
to the exponential distribution and, hence, to Markovian SIS
epidemics. A small shape parameter α in Eq. (1) corresponds
to heavy tails and a large variance Var[TWeibull], while a large α

corresponds to almost deterministic infection times with small
variance Var[TWeibull].

The probability generating function (pgf) of a Weibull
random variable TWeibull is given in Eq. (A1) in Appendix A,

ϕTWeibull (w; α) = α

∫ ∞

0
e−wx−xα

xα−1dx,

where w = bz and b (in seconds) is chosen as the unit of time.
The NIMFA epidemic threshold criterion Eq. (5) of the non-
Markovian SIS process with Weibullian infection time TWeibull

is the solution for τ in

ϕTWeibull

(
1

	
(
1 + 1

α

)
τ

; α

)
= 1

1 + λ1
. (6)

After inversion of Eq. (6), the NIMFA epidemic threshold
τ

(1)
c;W (α) is equal to

τ
(1)
c;W (α) = 1

	
(
1 + 1

α

)
ϕ−1

TWeibull

(
1

1+λ1
; α
) . (7)

The bounds Eq. (A7) on the inverse function w = ϕ−1
TWeibull

(y; α)
of y = ϕTWeibull (w; α) show that the NIMFA mean-field epi-
demic threshold is bounded by

1

	
(
1 + 1

α

)
	

1
α (α + 1)(1 + λ1)

1
α

< τ
(1)
c;W (α) <

1

λ1
+ 1. (8)

In Sec. VI, we will derive exact Lagrange series Eqs. (20)
and (19) for the Weibull NIMFA epidemic threshold τ

(1)
c;W (α),

in which the respective first terms are precisely equal to the
above bounds.

B. The infection time T has a Gamma distribution

Instead of a Weibull distribution, we also consider a
Gamma distribution [8, pp. 45–46] for the infection time T ,

fTGamma (x; ξ ) =
1

b	

(
x

b	

)ξ−1

	(ξ )
e− x

b	 , (9)

with mean E [TGamma] = b	ξ , variance Var[TGamma] = ξb2
	 ,

and with corresponding pgf

ϕTGamma (z; ξ ) = (1 + b	z)−ξ . (10)

Similar to the Weibull distribution, the Gamma distribution
reduces for ξ = 1 to an exponential distribution. After fixing
the average infection E [T ] to 1

β
, the value of b	 = 1

βξ
. The

NIMFA epidemic threshold τ
(1)
c;	 (ξ ) is the solution for τ in the

criterion Eq. (5), which translates with b	 = 1
βξ

to

1

1 + λ1
=
(

1 + 1

τξ

)−ξ

,

from which the NIMFA epidemic threshold follows as

τ
(1)
c;	 (ξ ) = 1

ξ
[
(1 + λ1)

1
ξ − 1

] . (11)

If ξ = k � 1 is an integer, then the Gamma random vari-
able equals the sum of k independent and identically dis-
tributed exponential random variables [8, pp. 45–46]. Thus,
the SIS model with a Gamma infection time can be interpreted
as a dose-infection process: Each infected node can infect each
healthy neighbor via a Poisson process with rate r, but only a
small dose of infection is transmitted. A healthy node needs
to receive k continuous doses of infection from an infected
neighbor to become infected. The infection time T in this
interpretation follows a Gamma distribution with ξ = k and
b	 = 1/r. The overall effective infection rate τ = E [R]

E [T ] = r
kδ

.
Thus, there exists a dose threshold kc such that, if k > kc,
then the Gamma SIS process is below the epidemic threshold,
while if k < kc, then it is above the threshold. Here, the dose
threshold kc can be a real number. Equating τ

(1)
c;	 (ξ ) = r

kcδ
in

Eq. (11) with ξ = kc, we obtain the following dose threshold:

kc = log(1 + λ1)

log
(
1 + δ

r

) . (12)

Equation (12) shows that the dose threshold kc increases loga-
rithmically with the largest eigenvalue λ1 of the contact graph,
that can be interpreted as a “dynamic” average nodal degree
[24]. When δ

r > 1, then log(1 + δ
r ) ≈ δ

r + O[( δ
r )

2
] leading to

kc ≈ log(1+λ1 )
δ

r for sufficiently large δ
r > 1: the dose threshold

kc increases approximately linearly with the transmission rate
r of each dose of infection.

In summary, the Weibull analysis is characterized by α,
whereas the key parameter for the Gamma infection time is
ξ . Appendix B investigates their relation as well as whether
τ

(1)
c;	 (ξ ) can be transformed into τ

(1)
c;W (α) for some transform g

so that ξ = g(α) leads to τ
(1)
c;	[g(α)] = τ

(1)
c;W (α).
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IV. OCCURRENCE OF INFECTION EVENTS
IN AN INTERVAL

The theorem [8, p. 146] “Given that exactly one event
of a Poisson process has occurred in the interval [0, t], the
time of occurrence of this event is uniformly distributed over
[0, t]” is of a remarkable simplicity. That theorem associates
the Poisson process to the uniform distribution and indicates
that a Poisson process can be viewed as the “most” random
process, void of any correlation. Here, we investigate the
generalization of this theorem to a renewal process [8, Chapter
8], where events still occur independent of the others, but
where the interarrival time of renewal events has a general
distribution, instead of an exponential distribution as in the
Poisson process. In particular, we compute the probability
y(s, t ) that a renewal event happens between s and s + ds,
given that precisely one renewal occurs in the interval [0, t],
where s � t . We denote the interarrival times in the renewal
process by τ1, τ2, . . . and the time that the kth renewal occurs
by Wk . The interarrival times are i.i.d with distribution Fτ (x) =
Pr [τ � x] and probability density function (pdf) fτ (x) =
dFτ (x)

dx . The number of renewal events N (t ) at time t is related
to the waiting time of Wn by the fundamental equivalence
{N (t ) � n} ⇐⇒ {Wn � t}.

Instead of a fixed length t , we present the derivation for
a random time interval and we replace t by a non-negative
random variable V , with distribution FV (t ) = Pr [V � t] and
pdf fV (t ) = dFV (t )

dt . We assume that the length V and the
interarrival time τ of the renewal process are independent (as
in the non-Markovian SIS epidemic). Applying the formula
for the conditional probability, the occurrence of precisely one
renewal event in the interval [0,V ] is

yV (s) = Pr [{τ1 ∈ [s, s + ds]} ∩ {1 renewal event in [0,V ]}]
Pr [1 renewal event in [0,V ]]

.

Invoking the renewal fundamental equivalence Pr[N (t ) �
n] = Pr[Wn � t],

Pr [1 renewal event in [0,V ]] = Pr [N (V ) = 1]

= Pr [W1 � V ] − Pr [W2 � V ],

and the law of total probability [8], p. 23],

Pr [Wk � V ] =
∫ ∞

0
Pr [Wk � u|V = u]

d Pr [V � u]

du
du,

we obtain, taking into account that τ and V are independent,

Pr [1 renewal event in [0,V ]]

=
∫ ∞

0
(Pr [W1 � u] − Pr [W2 � u]) fV (u)du

=
∫ ∞

0

(
Fτ (u) − F (2∗)

τ (u)
)

fV (u)du,

where the convolution (see Ref. [8, p. 160]) is

F (2∗)
τ (u) =

∫ u

0
Fτ (u − x) fτ (x)dx.

Thus, we find that

Pr [1 renewal event in [0,V ]]

=
∫ ∞

0

{∫ u

0
[1 − Fτ (u − x)] fτ (x)dx

}
fV (u)du.

The event {τ1 ∈ [s, s + ds]} ∩ {1 renewal event in [0,V ]} is
equivalent to {τ1 ∈ [s, s + ds]} ∩ {τ2 > V − s}, because the
second renewal event has not yet occurred so that its inter-
arrival time must be larger than V − s. Since renewals are
independent (in nonoverlapping intervals), it holds that

Pr [{τ1 ∈ [s, s + ds]} ∩ {1 renewal event in [0,V ]}]
= Pr [{τ1 ∈ [s, s + ds]}] Pr [τ2 > V − s].

With the law of total probability,

Pr [τ2 > V − s] =
∫ ∞

s
Pr [τ2 > u − s|V = u]

d Pr [V � u]

du
du

=
∫ ∞

s
(1 − Fτ (u − s)) fV (u)du.

Combining all yields the probability yV (s) that a renewal event
occurs between s and s + ds, given that there is precisely one
renewal in an interval [0,V ] with random length V ,

yV (s) = fτ (s)
∫∞

s [1 − Fτ (u − s)] fV (u)du∫∞
0

{∫ u
0 [1 − Fτ (u − x)] fτ (x)dx

}
fV (u)du

. (13)

We verify from Eq. (13) that
∫∞

0 yV (s)ds = 1, because∫∞
0 {∫∞

s [1 − Fτ (u − s)] fV (u)du} fτ (s)ds becomes, after re-
versal of the s- and u-integration, equal to the denomina-
tor. For exponential distributions, fτ (t ) = λe−λt and fV (t ) =
qe−qt , we find from Eq. (13) that yV (s) = (λ + q)e−(λ+q)s.
For a Weibull distribution Eq. (1) and fV (t ) = qe−qt , yV (s)
in Eq. (15) becomes

yV (s) =
(

s
b

)α−1
e−( s

b )α ∫∞
s e−( u−s

b )α

e−qudu∫∞
0

[∫ u
0

(
x
b

)α−1
e−( u−x

b )α−( x
b )α

dx
]
e−qudu

, (14)

which is, unfortunately, demanding to evaluate numerically.
Therefore, we proceed with the simplest case where the

time interval is fixed V = t and fV (u) = δD(t − u) is the Dirac
function. In that case, yV (s) in Eq. (13) simplifies to the
probability y(s, t ) that a renewal event occurs between s and
s + ds, given that there is precisely one renewal in an interval
[0, t],

y(s, t ) = [1 − Fτ (t − s)] fτ (s)∫ t
0 [1 − Fτ (t − u)] fτ (u)du

. (15)

For example, if the interarrival time τ is exponentially dis-
tributed as fτ (t ) = λe−λt , then∫ t

0
[1 − Fτ (t − u)] fτ (u)du =

∫ t

0
e−λ(t−u)λe−λudu = λte−λt ,

so that

yexponential(s, t ) = λe−λse−λ(t−s)

λte−λt
= 1

t
,

which, indeed, reflects that the occurrence of a Poisson event
is uniformly distributed over [0, t] and that y(s, t ) is inde-
pendent of s, meaning that each time s ∈ [0, t] is equally
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FIG. 1. The pdf of the occurrence η(σ, 1) of a Weibull event in
the interval [0, 1] for various values of α.

likely. The uniform spread of a Poisson event over [0, t] can
be regarded as a reflection of “complete,” unbiased and un-
correlated, randomness of the Poisson process. For a Weibull
distribution Eq. (1), we find from Eq. (15) or from Eq. (14)

yWeibull(s, t ) =
(

s
b

)α−1
e−( s

b )α

e−( t−s
b )α

∫ t
0

(
u
b

)α−1
e−( u

b )α

e−( t−u
b )α

du
.

Let x = u
b and measure time in units of b, then with normal-

ized time σ = s
b and ρ = t

b , we have

η(σ, ρ) = byWeibull(s, t ) = σα−1e−σα

e−(ρ−σ )α∫ ρ

0 xα−1e−xα e−(ρ−x)α dx
.

For Gamma distribution Eq. (9), Eq. (15) reduces to

yGamma(s, t ) =
[
1 − ∫ t−s

0

1
b ( x

b )ξ−1

	(ξ ) e− x
b dx
]
( x

b )ξ−1e− x
b∫ t

0

[
1 − ∫ t−u

0

1
b ( x

b )ξ−1

	(ξ ) e− x
b dx
]
( u

b )ξ−1e− u
b du

,

which is less attractive than the Weibull case. Thus, we confine
ourselves further to the Weibullian infection time.

Figure 1 illustrates the scaled probability η(σ, ρ) that a
Weibullian renewal event occurs between σ and σ + dσ ,
given that there is precisely one renewal in an interval [0, ρ]
versus normalized time σ ∈ [0, ρ] for ρ = 1 time unit, ex-
pressed in b seconds, and various values of α. Figure 1
indicates that the regime α < 1 models a different behavior
than the regime α > 1 (as also follows from the functional
equation (A5) of the probability generating function). For
α < 1, a Weibull event occurs increasingly likely at smaller
times, the smaller α is. For α > 1, the occurrence of a Weibull
event is more evenly distributed over the entire interval with
preference at later times. Figure 1 may also be consulted in
practice to characterize a disease, if the occurrence time of an
infection can be measured for an SIS process (with repeated
infections and recoveries for each node). Indeed, if the recov-
ery of each node is deterministic at t, 2t, 3t, . . ., then Fig. 1
shows that Weibullian infections with small shape parameter
α occur most likely soon after the recovery moment, implying
that the node is infected most of the time. A large α, however,
reflects that a node is with high probability healthy for a long
time, but becomes infected, just before the recovery of the
next cycle takes place. For a random time interval V , a similar

interpretation holds, but the recovery times for each node
occur at different times V1,V2, . . . (almost surely) and these
differences per node complicate network-wide prognoses of
the evolutions of the SIS epidemic.

V. THE EPIDEMIC THRESHOLD limα→∞ τ
(1)
c;W (α) EQUALS

limξ→∞ τ
(1)
c;�(ξ)

Apart from the analysis in Ref. [13] that established

lim
α→∞ τ

(1)
c;W (α) = 1

ln (1 + λ1)
(16)

and claimed that any mean-field SIS epidemic threshold
τ (1)

c � 1
ln (1+λ1 ) , we present here different derivations and an

asymptotic result for the Weibull and Gamma infection time,
that support our earlier claim.

First, the limit case α → ∞ in Eq. (16) is immediate from
Eqs. (5) and (A3),

1

1 + λ1
= lim

α→∞

∫ ∞

0
e
− u

1
α

	(1+ 1
α )τ

−u
du =

∫ ∞

0
e− 1

τ
−udu = e− 1

τ .

A second derivation interprets the general Eq. (4) directly,
without resorting to the integral representation in Eq. (3).
For α → ∞, the average number E [M] of infection events
during a healthy period E [M] is computed as follows. Without
loss of generality, we assume that a node i is infected at
time t = 0. The infected node i infects its neighbors at times
t = 1/β, . . . , k/β, . . ., until node i is recovered at time R.
The recovery time R follows an exponential distribution with
expectation 1/δ. Thus, if the recovery time R falls into k/β <

R < (k + 1)/β, then the infected node i infects each of its
neighbor k times, and we obtain

E [M] =
∞∑

k=0

k
∫ (k+1)/β

k/β

δe−δxdx

=
∞∑

k=0

k
(
e−k/τ − e−(k+1)/τ

) = 1

e
1
τ − 1

.

Equating 1

e
1
τ −1

= 1/λ1 in Eq. (4) again leads to Eq. (16).

Direct application of Eq. (A17) for w = 1
	(1+ 1

α
)τ

and y =
1

1+λ1
leads to the asymptotic expression of the epidemic

threshold τ
(1)
c;W (α) for large α,

1

τ
(1)
c;W (α)

= ln (1 + λ1)+ 1

12

[
π

	
(

1
α

)
]2

ln2 (1 + λ1)+ O

(
1

α3

)
.

(17)
The asymptotic expression Eq. (17) illustrates that τ (1)

c (α) <
1

ln (1+λ1 ) , which supports the claim in Ref. [13].
The corresponding limiting epidemic threshold

limξ→∞ τ
(1)
c;	 (ξ ) for Gamma infection times follows from

Eq. (11), after substitution x = 1
ξ
, as

lim
x→0

τ
(1)
c;	 (x) = lim

x→0

x

[(1 + λ1)x − 1]
= 1

ln (1 + λ1)
,
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where de l’Hospital’s rule has been used. Since τ
(1)
c;	 (ξ ) is

increasing in ξ , the claim τ
(1)
c;	 (ξ ) < 1

ln (1+λ1 ) is again demon-
strated, now based on the Gamma distribution.

Finally, we rewrite Eq. (11) as

τ
(1)
c;	 (ξ ) =

1
ξ

e
ln (1+λ1 )

ξ − 1
(18)

and recognize the right-hand side as the famous generat-
ing function [25, Sec. 23] of the Bernoulli numbers Bk ,
from which an expansion for the Gamma epidemic threshold
τ

(1)
c;	 (ξ ), analogous to the asymptotic series Eq. (17) for the

Weibull epidemic threshold τ
(1)
c;W (α), follows as

τ
(1)
c;	 (ξ ) = 1

ln (1 + λ1)
− 1

2ξ
+

∞∑
k=1

B2k ln2k−1 (1 + λ1)

(2k)!ξ 2k
,

which converges provided that ln (1+λ1 )
ξ

< 2π .

VI. LAGRANGE SERIES APPROACH FOR τ
(1)
c;W (α)

For each α, the epidemic threshold τ
(1)
c;W (α) in Eq. (7) is

expressed in terms of the inverse function ϕ−1
TWeibull

(y; α). In
Appendix A 5, we derive the Lagrange series for ϕ−1

TWeibull
(y; α).

In particular, for α � 1, the epidemic threshold τ
(1)
c;W (α)

follows after substitution of the Lagrange series Eq. (A20) into
Eq. (7) as

1

τ
(1)
c;W (α)

= 	

(
1

α
+ 1

) ∞∑
n=1

cn

(
1

α

)[ λ1
1+λ1

	
(

1
α

+ 1
)
]n

. (19)

The companion series of Eq. (19) for the Gamma infection
time is given in the Appendix in Eq. (B1). We explicitly listed
the first seven coefficients of cn(α), defined by Eq. (A21), in
Appendix A 5 and mention the interesting result that cn(0) =
1
n � cn( 1

α
) � 1 = cn(1) for α � 1. As shown in Appendix

A 5, both extremes have well-known series. The geometric
series 1

1−z =∑∞
n=0 zn indicates that

1

τ
(1)
c;W (1)

=
∞∑

n=1

(
λ1

1 + λ1

)n

= 1

1 − λ1
1+λ1

− 1 = λ1,

indeed agreeing with the Markovian NIMFA threshold
τ

(1)
c;W (1) = τ (1)

c = 1
λ1

, while the Taylor series ln (1 − z) =
−∑∞

n=1
zn

n , obtained by integrating the geometric series,
shows that

1

τ
(1)
c;W (∞)

=
∞∑

n=1

1

n

(
λ1

1 + λ1

)n

= − ln

(
1 − λ1

1 + λ1

)

= ln (1 + λ1),

which agrees with our earlier result Eq. (16). When only the
first K terms are computed,

1

τ
(1)
c,W (α; K )

= λ1

1 + λ1
+

K∑
n=2

cn

(
1

α

)[ λ1
1+λ1

	
(

1
α

+ 1
)
]n

,

the truncated series at the first K terms is a lower bound for
the infinite series in Eq. (19), because all coefficients cn( 1

α
)

FIG. 2. The mean-field epidemic threshold τ
(1)
c;W (α) of a Weibul-

lian SIS process versus the shape parameter α in different type
of graphs. Simulations of the precise Weibullian SIS process are
compared with mean-field theory and with a mean-field asymptotic
approximation Eq. (17). It is known [27] that the SIS mean-field
approximation is reasonably accurate for ER graphs, less accurate
for scale-free graphs, but inaccurate for d-dimensional lattices (and
the worst for a path, a one-dimensional lattice), which explains the
larger deviation for a rectangular grid.

are positive. Consequently, τ
(1)
c,W (α; K ) > τ

(1)
c;W (α), for α > 1.

Moreover, cn(α) decreases with α ∈ [1,∞), which implies
that τ

(1)
c;W (α) increases with α towards τ

(1)
c;W (∞) = 1

ln (1+λ1 ) .
For large realistic graphs, the spectral radius λ1 can be

large so that
λ1

1+λ1

	( 1
α
+1)

→ 1
	( 1

α
+1)

→ 1 for sufficiently large α

and the right-hand side Lagrange series converges slowly
with a comparable convergence rate as the geometric series
toward its pole at z = 1. In fact, for λ1 → ∞, we find that
τ

(1)
c;W (α) → 0 and the Lagrange series Eq. (19), valid for

α � 1, diverges! However, in these limit regimes, either the
asymptotic expression Eq. (17) is applicable or the series
needs to be transformed, e.g., by the Euler transform [26].
Since K = 30 terms in the truncated series of Eq. (19) lead to
a two-digit accuracy for τ

(1)
c,W (α; 30) for α ∈ [1, 100], which

is indistinguishable from the exact computation on a plot
as Fig. 2, we content ourselves to ignore further numerical
considerations of the Lagrange series Eq. (19).

When α � 1, we find from Eq. (A22) that

τ
(1)
c;W (α) = 1

	
(

1
α

+ 1
){ 1

	(α + 1)(1 + λ1)

+
∞∑

n=2

cn(α)

[
1

1+λ1

	(α + 1)

]n} 1
α

. (20)

Since 1
1+λ1

is small for realistic graphs, the series in Eq. (20)
converges amazingly fast and only a few terms are suf-
ficient. Indeed, the first term in the series Eq. (20) for
the epidemic threshold τ

(1)
c;W (α) reduces to the estimate in
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Ref. [12], Eq. (11)] for a large spectral radius λ1,

τ
(1)
c;W (α) � 1

	
(
1 + 1

α

)[ 1

	(α + 1)λ1

] 1
α

.

More accurate expressions for α < 1 than the above estimate
are immediate from Eq. (20) by incorporating a few higher
order terms in O( 1

λn
1
). Just in the α < 1 regime, where a

few terms (n < 5) in the series Eq. (20) already provide
very precise values, accurate simulations to deduce τ

(1)
c;W (α)

are very difficult, which underlines the utility of the series
Eq. (20) in practice.

VII. NUMERICAL EVALUATION OF τ
(1)
c;W (α) AND τ

(1)
c;�(ξ)

Figure 2 shows the epidemic threshold τ
(1)
c;W (α) of the

Weibullian SIS process for different values of the shape
parameter α on (a) an Erdős-Réyni graph G0.15(50) on N =
50 nodes with link density p = 0.15, (b) a rectangular grid
with N = 484 nodes and L = 925 links, and (c) a scale-free,
Barabási-Albert graph with N = 500 and L = 1491 links.
The simulation results are obtained by averaging over 105

realizations with curing rate δ = 1 and each realization runs
for 50 time units. Since the Weibullian infection time may
cause oscillations in the prevalence (as illustrated in Fig. 1 in
Ref. [13]), the threshold is chosen as the value of the effective
infection rate τ , which leads to the maximum prevalence
around 0.001 at the last oscillating period.

The simulations agree with the Lagrange series Eqs. (19)
and (20) and with numerical inversion of Eq. (6). Figure 2,
shows, interestingly, that the asymptotic expansion Eq. (17) is
already accurate for reasonably small α > 10.

Furthermore, the interpretation of Fig. 1 above intuitively
explains the behavior of τ

(1)
c;W (α) versus the shape parameter

α in Figure 2. In the small α regime, infections occur pre-
dominantly early during the healthy period for each node, so
that the larger part of the nodes is longer infected. To cause
a network-wide persistence of the epidemic, the viral item
only needs a small “push” to infect a substantial part of the
nodes long enough to enter the endemic state. In other words,
a weak strength of the viral item to infect nodes, which is
related to the effective infection rate τ

(1)
c;W (α), is sufficient to

cause endemic behavior. As a consequence, τ
(1)
c;W (α) is small

for small α, which agrees with Figure 2. The other regime for
large α is understood analogously. Most nodes are likely most
of the time healthy and infected only shortly when α is large.
Hence, the strength of the viral item to cause the network-wide
persistence of the epidemic must be high, resulting in a high
effective infection rate τ

(1)
c;W (α).

The one-to-one relation between α and ξ of the infection
time distributions with the corresponding thresholds τ

(1)
c;W (α)

and τ
(1)
c;	 (ξ ), immediately couples the type of viral item k (via

a specific value of αk or ξk or of another distribution) to its
endemic impact τ

(1)
c;W (αk ) and τ

(1)
c;	 (ξk ) on any contact network

(assuming a mean-field approximation). Both Fig. 2 for the
Weibull and Fig. 3 for the Gamma SIS threshold look very
similar.

FIG. 3. The NIMFA epidemic threshold τ
(1)
c;	 (ξ ) of a Gamma SIS

process versus the parameter ξ for the same graphs as in Fig. 2. The
theory in Eq. (11) is also added in full line.

VIII. CONCLUSION

A mathematical analysis of the Weibull probability gener-
ating function and its inverse function in Appendix A have
led to analytical expressions for the mean-field epidemic
threshold τ (1)

c (α) of the Weibullian SIS process on a graph
as a function of the shape parameter α. Similar results for
a Gamma infection time are deduced. The mean-field epi-
demic threshold τ

(1)
c;W (α) and τ

(1)
c;	 (ξ ) increases with α and ξ ,

respectively, from 0 for α, ξ = 0 to [ln (1 + λ1)]−1 for α, ξ →
∞. The Lagrange series Eqs. (19) and (20), and perhaps
the asymptotic expansion Eq. (17), may be used to rapidly
compute the epidemic threshold of a real epidemic, once its
shape parameter α is specified.

The Weibull and Gamma distribution were focal here,
while digital spread of information, for instance on Twitter
[28], has an infection time close to a lognormal [8, p. 60-64],

fTlognormal (x) =
exp
[
− (log x−μ)2

2σ 2

]
σx

√
2π

, (21)

with mean E [Tlognormal] = exp (μ) exp ( σ 2

2 ) and pgf

ϕTlognormal (z; μ, σ 2) = 1

σ
√

2π

∫ ∞

0
e−zx e− (log x−μ)2

2σ2

x
dx. (22)

The non-Markovian SIS epidemic threshold criterion Eq. (5)
with lognormal infection time T and exponential recovery
time R, normalized by E [Tlognormal] = 1

β
, which allows us to

eliminate μ = − ln β − σ 2

2 , is the solution τ
(1)
c;l (σ ) for τ in

1

λ1 + 1
= 1

σ
√

2π

∫ ∞

0
e− y

τ
e− (log y+ σ2

2 )2

2σ2

y
dy. (23)

Since limσ→0 fTlognormal (x) = δD(x − eμ) = δD(x − 1
β

), where
δD(x) is the Dirac function, the threshold criterion Eq. (5) with
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FIG. 4. The NIMFA epidemic threshold τ
(1)
c;l (σ−1) of a lognormal

SIS process versus the parameter σ−1 for the same graphs as in Fig. 2.
The theory (full line) is obtained by numerical evaluation of Eq. (23).

lognormal infection time T becomes

1

λ1 + 1
=
∫ ∞

0
e−δyδD

(
y − 1

β

)
dy = e− 1

τ .

Thus, it holds that limσ→0 τ
(1)
c;l (σ ) = limα→∞ τ

(1)
c;W (α) =

limξ→∞ τ
(1)
c;	 (ξ ), which further supports the claim that 1

ln (λ1+1)
is a maximum possible SIS epidemic threshold. The solution
for τ in Eq. (23) poses a similar difficulty as for the Weibull
infection time and is placed on the agenda for future research,
because simulations in Fig. 4 exhibit a similar behavior for
the lognormal epidemic threshold τ

(1)
c;l (σ−1) as for τ

(1)
c;W (α) and

τ
(1)
c;	 (ξ ). The criterion Eq. (4) for the epidemic threshold shows

that the analysis can be repeated for any other distribution of
the infection time and other recovery times than exponential.
Thus, the presented Weibull and Gamma analysis may serve
as a guideline for computations with other distributions. Since
the SIR epidemic threshold is slightly higher than the SIS
epidemics (due to re-infections that potentially lead to more
infected nodes), the SIS non-Markovian threshold can be re-
garded as a lower bound for SIR, so enlarging the scope of the
presented theory. Finally, as the influence of the underlying
contact graph is incorporated, the non-Markovian thresholds
τ

(1)
c;W (α), τ

(1)
c;	 (ξ ) and τ

(1)
c;l (σ−1) may be more suitable than the

classical reproduction number R0, which is critically recon-
sidered in Ref. [29].

ACKNOWLEDGMENTS

We are very grateful to Eric Cator and Caterina Scoglio for
their constructive input.

APPENDIX A: PROBABILITY GENERATING FUNCTION
OF THE WEIBULL DISTRIBUTION

The probability generating function (pgf) ϕT (z) = E [e−zT ]
of a continuous random variable T is defined as the

double-sided Laplace transform [8, p. 20] of the probability
density function fT (x). Clearly, ϕT (0) = 1. In this section, we
explore properties of the pgf of the Weibull distribution with
pdf, defined in Eq. (1), but we replace TWeibull by T to shorten
the notation,

fT (x) = α

b

(x

b

)α−1
e−( x

b )α

,

with mean E [T ] = b	(1 + 1
α

) and distribution function
FT (t ) = Pr [T � t],

FT (t ) =
∫ t

0

α

b

(x

b

)α−1
e−( x

b )α

dx = 1 − e−( t
b )α

,

and pgf

ϕT (z) = α

b

∫ ∞

0
e−zu
(u

b

)α−1
e−( u

b )α

du.

Let x = u
b , then we obtain with w = bz and explicitly

expressing the dependence on the “shape” parameter α,

ϕT (w; α) = α

∫ ∞

0
e−wx−xα

xα−1dx, (A1)

which illustrates that the pgf of a Weibull distribution consists
of two parameters, w = zb (which is a complex number) and
the real nonnegative number α. In fact, and to be precise, the
substitution w = bz means that

ϕT (z) = E [e−zT ] = E
[
e−w( T

b )] = ϕ T
b
(w),

which indicates that ϕT (w; α) should be written as ϕ T
b
(w; α).

Assuming that all moments of T exists, by expanding the en-
tire function ez into a Taylor series that converges everywhere
in the complex z-plane, we obtain

ϕ T
b
(w) =

∞∑
k=0

(−1)k

k!
E

[(
T

b

)k
]
wk =

∞∑
k=0

(−1)k

k!bk
E [T k]wk,

(A2)
which relates all moments E [T k] to the pgf ϕ T

b
(w). In the

sequel, we simplify the notation, use T as a dimensionless
random variable instead of T

b and remember that the infection
time T is measured in units of b seconds.

Further, differentiating Eq. (A1),

dϕT (w; α)

dw
= −α

∫ ∞

0
e−wx−xα

xαdx

demonstrates, since the integrand is always nonnegative
for real w, that ϕT (w; α) monotonously decreases with
w along the real w axis from ϕT (0; α) = 1 towards
limw→∞ ϕT (w; α) = 0.

After substituting u = xα , we find for all α > 0 that

ϕT (w; α) =
∫ ∞

0
e−wu

1
α e−udu. (A3)

Differentiating Eq. (A3),

dϕT (w; α)

dα
= −w

α

∫ ∞

0
e−uu

1
α
−1e−wu

1
α du

indicates that ϕT (w; α) is decreasing for real, positive w and
all real α > 0 and that | dϕT (w;α)

dα
| � w	( 1

α
+ 1).
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Partial integration of the integral in Eq. (A1) yields

ϕT (w; α) = 1 − w

∫ ∞

0
e−wxe−xα

dx. (A4)

Let u = wx, then ϕT (w; α) = 1 − ∫∞
0 e−w−αuα

e−udu and
comparison with Eq. (A3) leads to a functional equation for
the pgf of a Weibull random variable T ,

ϕT (w; α) = 1 − ϕT

(
1

wα
;

1

α

)
, (A5)

which illustrates the central role of α = 1.
Only for a few values of α, the pgf ϕT (w; α) can be

analytically evaluated. For α = 1, the Weibull distribution
reduces to an exponential and Eq. (A1) is ϕT (w; 1) = 1

1+w
.

For α = 2, we find that ϕT (w; 2) = 1 − we
w2

4
∫∞

w
2

e−u2
du

and the functional equation (A5) gives us ϕT (w; 1
2 ) =

1 − ϕT (w− 1
2 ; 2) = e

1
4w√
w

∫∞
1

2
√

w

e−u2
du. From Eq. (A3), we find

that limα→∞ ϕT (w; α) = e−w and limα→0 ϕT (w; α) = 0 for
Re (w) > 0, but limα→0 ϕT (w; α) = ∞ if Re (w) < 0.

Formally, i.e., ignoring convergence constraints, equating
the corresponding powers of w in the moment expansion
Eq. (A2) and the Taylor expansion Eq. (A10) below shows
that the moments of T (measured in seconds) are

E [T k] = bk	

(
k

α
+ 1

)
,

from which the variance Var[T ] = E [T 2] − (E [T ])2 follows
as

Var[T ] = b2

[
	

(
2

α
+ 1

)
− 	2

(
1

α
+ 1

)]
.

Invoking the duplication formula [25, 6.1.18] of the Gamma
function, 	(2z) = 22z

2
√

π
	(z)	(z + 1

2 ) leads to

Var [T ] = bE [T ]r(α), (A6)

where the factor

r(α) = 2
2
α√
π

	

(
1

α
+ 1

2

)
− 	

(
1

α
+ 1

)

is monotonously decreasing from ∞ at α = 0 towards 0 when
α → ∞. Further, r(1) = 1 and r(α) > 1 for α < 1, while
r(α) < 1 for α > 1. Thus, the variance Var[T ] is always larger
than the mean E [T ] for α < 1, while smaller than the mean in
the regime α > 1, which demonstrates, besides the functional
equation (A5), the fundamental difference between the two
α-regimes. The difficulty to express the shape parameter α as a
simple function of the moments of T or probabilistic measures
such as the mean and variance, underlines the importance of
α as the basic characteristic of the Weibull distribution.

1. Lower and upper bound for ϕT (w; α)

Since ∫ ∞

0
e−wxe−xα

dx <

∫ ∞

0
e−xα

dx

= 1

α

∫ ∞

0
t

1
α
−1e−t dx = 	

(
1

α
+ 1

)
,

we find from Eq. (A4) the lower bound

ϕT (w; α) > 1 − w	

(
1

α
+ 1

)
.

The inversion y = ϕT (w; α) indicates that

w = ϕ−1
T (y; α) >

1 − y

	
(

1
α

+ 1
) .

An upper bound is immediate from

ϕT (w; α) = α

∫ ∞

0
e−wxe−xα

xα−1dx

< α

∫ ∞

0
e−wxxα−1dx = 	(α + 1)

wα
,

and the inversion y = ϕT (w; α) indicates w = ϕ−1
T (y; α) that

w = ϕ−1
T (y; α) <

(
	(α + 1)

y

) 1
α

.

Combining the lower and upper bound for the inverse function
ϕ−1

T (y; α) yields, for any α > 0, an inequality

1 − y

	
(

1
α

+ 1
) < ϕ−1

T (y; α) <

(
	(α + 1)

y

) 1
α

. (A7)

Invoking the mean-value theorem [30, p. 322], the bounds
on ϕT (w; α) can be turned into equalities,

ϕT (w; α) = 1 − e−wq2w	

(
1

α
+ 1

)
= e−qα

1
	(α + 1)

wα
,

for some nonnegative numbers q1 and q2. Inversion yields

ϕ−1
T (y; α) =

(
e−qα

1 	(α + 1)

y

) 1
α

,

and if we are satisfied to use the inverse2 function Wλ(z) of
ze−λz (see a series expansion in Ref. [31, pp. 36–37]), then

ϕ−1
T (y; α) = q−1

2 W1

[
(1 − y)q2

	
(

1
α

+ 1
)
]
.

The constants q1 and q2, which depend on both y and
α, may be fitted from simulations or theory. For example,
when α = 1, then ϕ−1

T (y; 1) = 1
y − 1 = e−q1

y , from which q1 =
− ln (1 − y).

2The inverse function of ze−λz is also known as the Lambert
function.
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2. A complex integral for ϕT (w; α)

Taking the Mellin transform of ϕT (w; α),∫ ∞

0
ws−1ϕT (w; α)dw

= α

∫ ∞

0

(∫ ∞

0
ws−1e−wxdw

)
e−xα

xα−1dx

= α	(s)
∫ ∞

0
e−xα

xα−s−1dx = 	(s)
∫ ∞

0
e−t t− s

α dt,

and3 ∫ ∞

0
ws−1ϕT (w; α)dw = 	(s)	

(
1 − s

α

)
, (A8)

valid for 0 < Re (s) < α. The inverse Mellin transform [32]
gives

ϕT (w; α) = 1

2π i

∫ c+i∞

c−i∞
	(s)	

(
1 − s

α

)
w−sds, with 0 < c <α.

(A9)

3. Two series for the Weibull pgf ϕT (w) in Eq. (A1)

We present two series for the integral in Eq. (A1) by
expanding first e−wx and next e−xα

in a Taylor series around
x = 0. Thus, first we have

ϕT (w; α) = α

∫ ∞

0

∞∑
k=0

(−1)kwk

k!
e−xα

xk+α−1dx

= α

∞∑
k=0

(−1)kwk

k!

∫ ∞

0
e−xα

xk+α−1dx.

Since
∫∞

0 e−xα

xk+α−1dx = 1
α
	( k

α
+ 1), we obtain

ϕT (w; α) =
∞∑

k=0

(−1)k	
(

k
α

+ 1
)

k!
wk, (A10)

which converges4 for all w, only when α � 1. The limit
limα→∞ ϕT (w; α) = e−w.

The second series is derived analogously,

ϕT (w; α) = α

∫ ∞

0

∞∑
k=0

(−1)k

k!
e−wxxαk+α−1dx

= α

∞∑
k=0

(−1)k

k!

∫ ∞

0
e−wxxα(k+1)−1dx,

3Invoking the reflection formula [25, 6.1.7] shows that
	(s)	(1 − s

α
) = π	(s)

sin π ( s
α )	( s

α ) .
4Indeed, invoking [25, 6.1.39] the asymptotic form 	(αz + b) ∼√
2πe−αz(αz)(αz)+b− 1

2 , the absolute value of the k-term in Eq. (A10)
becomes, for large k,

	
(

k
α

+ 1
)

k!
|w|k ∼

√
2πe− k

α

(
k
α

)( k
α

)
+ 1

2

√
2πe−kkk+ 1

2

|w|k

= e−( 1
α −1)kk( 1

α −1)k

(
1

α

)( k
α )+ 1

2

|w|k,

showing that the dominant factor k( 1
α −1)k only tends to zero with k if

α � 1, for any w.

and

ϕT (w; α) = α

∞∑
k=0

(−1)k

k!

	[α(k + 1)]

wα(k+1)
,

which converges for α � 1. After letting k → k − 1 and using
the functional equation of the Gamma function 	(z + 1) =
z	(z), we arrive at

ϕT (w; α) =
∞∑

k=1

(−1)k−1

k!
	(αk + 1)

(
1

wα

)k

, (A11)

from which limα→0 ϕT (w; α) = 1 − e−1. Comparing both se-
ries Eqs. (A10) and (A11),

1 −
∞∑

k=1

(−1)k−1	
(

k
α

+ 1
)

k!
wk

=
∞∑

k=1

(−1)k−1

k!
	(αk + 1)

(
1

wα

)k

,

again verifies the functional equation (A5). By closing
the contour5 in Eq. (A9) over the half-plane where
lims→∞ 	(1 − s

α
)	(s) = 0, we again find the series

Eqs. (A10) and (A11).

4. Asymptotic series for the Weibull pgf ϕT (w)

Next, we expand 	( k
α

+ 1) in a Taylor series around z = 1,

	

(
k

α
+ 1

)
=

∞∑
m=0

1

m!

dm	(z)

dzm

∣∣∣∣
z=1

(
k

α

)m

, (A12)

which converges for k
a < 1. Introduced into the series

Eq. (A10) yields

ϕT (w; α) =
∞∑

k=0

(−1)k

k!
wk

∞∑
m=0

1

m!

dm	(z)

dzm

∣∣∣∣
z=1

(
k

α

)m

.

We assume that the summations can be reversed and obtain

ϕT (w; α) =
∞∑

m=0

1

m!

dm	(z)

dzm

∣∣∣∣
z=1

1

αm

∞∑
k=0

(−1)k

k!
kmwk .

Invoking characteristic coefficients [31], we can show that
∞∑

k=0

kn

k!
zk = ez

n∑
j=0

S ( j)
n z j, (A13)

5By moving the line of integration to the left at −k < c < −k +
1, we encounter k poles of 	(s) at negative integers and Cauchy’s
residue theorem [33] shows that

1

2π i

∫ c+i∞

c−i∞
	(s)	

(
1 − s

α

)
w−sds

=
k−1∑
n=0

(−1)n

n!
	
(

1 + n

α

)
wn

+ wk

2π i

∫ c+i∞

c−i∞
	(s − k)	

(
1 − s − k

α

)
w−sds.
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where S (k)
n are the Stirling numbers of the second kind [25,

21.1.4]. Hence, we arrive at

ϕT (w; α) = e−w

∞∑
m=0

1

m!

dm	(z)

dzm

∣∣∣∣
z=1

1

αm

m∑
j=0

S ( j)
m w j, (A14)

which converges if the polynomial
∑m

j=0 S
( j)
m w j � αm for

large m and which is useful as an asymptotic expansion6 for
large α.

We deduce an approximate inversion of ϕT (w; α) = y for
large α. Limiting Eq. (A14) to the first few values of m,

ϕT (w; α) = e−w

[
1 + γ

1

α
w + 1

2

d2	(z)

dz2

∣∣∣∣
z=1

× 1

α2
(w2 − w) + O

(
1

α3

)]
,

where the Euler constant equals γ = 0.577216 . . . and
d2	(z)

dz2 |
z=1

= 1.97811, we consider ln ϕT (w) = ln y and take
the logarithm of the last order estimate,

ln y = −w + ln

[
1 + γ

1

α
w + 1

2

d2	(z)

dz2

∣∣∣∣
z=1

× 1

α2
(w2 − w) + O

(
1

α3

)]
.

Since α is large, we may expand ln (1 + x) = x − x2

2 + O(x3)
and obtain up to order O( 1

α3 ) that

L = ln

[
1 + γ

1

α
w + 1

2

d2	(z)

dz2

∣∣∣∣
z=1

1

α2

(
w2 − w

)+ O

(
1

α3

)]

= γ
1

α
w+ 1

2

d2	(z)

dz2

∣∣∣∣
z=1

1

α2
(w2 − w)

− 1

2
γ 2 1

α2
w2+ O

(
1

α3

)
.

Invoking the Taylor expansion Eq. (A12) for 	(1 + 1
α

), we
obtain

ln y = −	

(
1 + 1

α

)
w

+ 1

2α2

(
d2	(z)

dz2

∣∣∣∣
z=1

− γ 2

)
w2+ O

(
1

α3

)
,

6Indeed, reversing the summation yields

ϕT (w) = e−w

∞∑
j=0

( ∞∑
m= j

1

m!

dm	(z)

dzm

∣∣∣∣
z=1

1

αm
S ( j)

m

)
w j .

With the bounds on the Stirling numbers of the second kind,

jm−1 − ( j − 1)m

( j − 1)!
� S ( j)

m � jm

j!
, (A15)

we find that
∑∞

m= j
1

m!
dm	(z)

dzm |
z=1

1
αm S ( j)

m does not converge anymore for
j > α.

which is, ignoring the order term O( 1
α3 ), a quadratic equation

in w with solution

w = α2	
(
1 + 1

α

)
(

d2	(z)
dz2

∣∣∣
z=1

− γ 2
)

×

⎧⎪⎪⎨
⎪⎪⎩1 ±

√√√√√1 +
2 ln y

(
d2	(z)

dz2

∣∣∣
z=1

− γ 2
)

α2	2
(
1 + 1

α

)
⎫⎪⎪⎬
⎪⎪⎭.

After expanding the square root and choosing the minus
sign, as the only possible physically realistic case, the above
simplifies, for large α, to

w = − ln y

	
(
1 + 1

α

) + 1

2

(
d2	(z)

dz2

∣∣∣
z=1

− γ 2
)

ln2 y

α2	3
(
1 + 1

α

) + O

(
1

α3

)
.

The logarithm of Weierstrass’s infinite product for the Gamma
function7

1

	(z + 1)
= eγ z

∞∏
n=1

(
1 + z

n

)
e−z/n

is

log 	(z + 1) = −γ z +
∞∑

k=2

(−1)k ζ (k)

k
zk, (A16)

where ζ (z) is the Riemann-Zeta function [35] and γ =
0.557216 . . . is the Euler constant. By differentiation of
the Taylor expansion Eq. (A16), we find d2	(z)

dz2 |
z=1

− γ 2 =
ζ (2) = π2

6 = 1.64493 and arrive at the solution of ϕT (w) = y
for large α,

w = ϕ−1
T (y; α) = − ln y

	
(
1+ 1

α

)+ 1

12

π2 ln2 y

α2	3
(
1 + 1

α

) + O

(
1

α3

)
.

(A17)
The general inversion of ϕT (w; α) = y for all α is presented
in Eq. (A 5).

5. Lagrange series for the pgf ϕT (w; α)

The equation ϕT (w; α) = y is formally solved as w =
ϕ−1

T (y; α), where f −1(.) is the inverse function of f (.) obeying
f −1[ f (w)] = w.

Since we possess the Taylor series Eq. (A10) in w and
Eq. (A11) in 1

wα of ϕT (w; α), we can directly apply our
characteristic coefficients to compute the Lagrange series
for the inverse function ϕ−1

T (y; α). Since |ϕT (w; α)| � 1 for
Re (w) � 0, a solution for positive Re (w) is only possible
provided |y| � 1.

The Lagrange series around z0 for the inverse function
f −1(z) of a general function f (z) is given [31] in terms of
the Taylor coefficients fk (z0) of the Taylor series of f (z) =

7The monumental treatise of Nielsen [34] contains the deeper,
beautiful analysis of the Gamma function.
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∑∞
k=0 fk (z0)(z − z0)k around z0 as

f −1(z) = z0 + z − f0(z0)

f1(z0)
+

∞∑
n=2

[
n−1∑
k=1

(−1)k
(n+k−1

k−1

)
k f k

1 (z0)
s∗

× [k, n − 1](z0)]

(
z − f0(z0)

f1(z0)

)n

, (A18)

where s∗[k, n](z0) = s[k, n](z0)|∀m : fm (z0 )→ fm+1(z0 ) and the
characteristic coefficient s[k, m] is defined as

s[k, m] =
∑

∑k
i=1 ji=m; ji>0

k∏
i=1

f ji (A19)

and obeys the recursion

s[1, m] = fm,

s[k, m] =
m−k+1∑

j=1

f j s[k − 1, m − j] (k > 1).

Applying Eq. (A18) to the Taylor series Eq. (A10) for

α � 1 around z0 = 0 with fk (z0) = (−1)k	( k
α
+1)

k! yields the
Langrange series

ϕ−1
T (y; α) =

∞∑
n=1

cn

(
1

α

)[
1 − y

	
(

1
α

+ 1
)
]n

, (A20)

where the coefficients are defined as c1(α) = 1
	(α+1) and, for

n > 1,

cn(α) =
n−1∑
k=1

(n+k−1
k−1

)
k 	k (α + 1)

s∗
α[k, n − 1]. (A21)

The Langrange series Eq. (A20) converges fast if y is close
to 1, but slowly for small y. In fact, the pgf ϕT (z) =
E [e−zT ] is ϕT (0; α) = 1 and ϕT (∞; α) = 0, thus ϕ−1

T (0; α) =
∞. All coefficients cn( 1

α
) of the series in Eq. (A20) are

positive and smaller than 1. If α = 1, then ϕ−1
T (y; 1) =

1
y − 1. In the case where α → ∞, then ϕ−1

T (y; ∞) =

FIG. 5. The function H (α, y) = ϕ−1
T (y; α) versus α for various

values of y ∈ [0.1, 0.9]. For α < 1, H (α, y) varies widely, whereas
for α > 1, all curves lie in a considerably smaller range.

− ln (y). Since 1
y − 1 = 1

1−(1−y) − 1 =∑∞
n=1 (1 − y)n and

− ln (y) = − ln [1 + (y − 1)] =∑∞
n=1

1
n (1 − y)n, we deduce

that cn(1) = 1 and cn(∞) = 1
n . All other cases of α ∈ (1,∞)

lie in between those two extremes, thus cn(1) = 1 > cn(α) >
1
n = cn(∞), because ϕ−1

T (y; α) is monotonously decreasing
with α ∈ (1,∞) (see also Fig. 5).

When we apply Eq. (A18) to the Taylor series Eq. (A11)
for α � 1 around z0 = 0, written with v = 1

wα as

g(v) = ϕT
(
v− 1

a ; α
) =

∞∑
k=1

(−1)k−1

k!
	(αk + 1)vk .

The solution of g(v) = y equals v = g−1(y) and, since w =
v− 1

a , we arrive at w = [g−1(y)]−
1
α and the Langrange series

ϕ−1
T (y; α) =

[ ∞∑
n=1

cn(α)

(
y

	(α + 1)

)n
]− 1

α

. (A22)

We list the first coefficients cn(α) in the Lagrange series
Eq. (A22), up to n = 7,

c1(α) = 1

	(a + 1)
, c2(α) = 	(2a + 1)

2	(a + 1)
= 22α−1	

(
a + 1

2

)
√

π
,

c3(α) = 	2(2a + 1)

2	2(a + 1)
− 	(3a + 1)

6	(a + 1)
,

c4(α) = 5	3(2a + 1)

8	3(a + 1)
− 5	(3a + 1)	(2a + 1)

12	2(a + 1)
+ 	(4a + 1)

24	(a + 1)
,

c5(α) = 7	4(2a + 1)

8	4(a + 1)
− 7	(3a + 1)	2(2a + 1)

8	3(a + 1)
+ 2	2(3a + 1) + 3	(2a + 1)	(4a + 1)

24	2(a + 1)
− 	(5a + 1)

120	(a + 1)
,

c6(α) = 21	5(2a + 1)

16	5(a + 1)
− 7	(3a + 1)	3(2a + 1)

4	4(a + 1)
+ 7{3	(4a + 1)	2(2a + 1) + 4	2(3a + 1)	(2a + 1)}

72	3(a + 1)

− 7{3	(5a + 1)	(2a + 1) + 5	(3a + 1)	(4a + 1)}
720	2(a + 1)

+ 	(6a + 1)

720	(a + 1)
,
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c7(α) = 33	6(2a + 1)

16	6(a + 1)
− 55	(3a + 1)	4(2a + 1)

16	5(a + 1)
+ 5{	(4a + 1)	3(2a + 1) + 2	2(3a + 1)	2(2a + 1)}

8	4(a + 1)

− {27	(5a + 1)	2(2a + 1) + 90	(3a + 1)	(4a + 1)	(2a + 1) + 20	3(3a + 1)}
360	3(a + 1)

+ {4	(6a + 1)	(2a + 1) + 5	2(4a + 1) + 8	(3a + 1)	(5a + 1)}
720	2(a + 1)

− 	(7a + 1)

5040	(a + 1)
.

Both Langrange series Eqs. (A20) and (A22) can be
transformed into each other after α → 1

α
and (1 − y) → y

and indicate that the coefficients cn(α) are only needed for
α ∈ [0, 1]. Alternatively, the functional equation (A5) indi-
cates that y = ϕT (w; α) or w = ϕ−1

T (y; α) as well as 1 − y =
ϕT ( 1

wa ; 1
α

) or w = [ϕ−1
T (1 − y; 1

α
)]

− 1
α . Hence, for all α � 0,

we find the functional equation for the inverse pgf of a Weibull
random variable T ,

ϕ−1
T (y; α) =

[
ϕ−1

T

(
1 − y;

1

α

)]− 1
α

. (A23)

The upper and lower bound in Eq. (A7) are the first terms in
the Langrange series Eqs. (A20) and (A22), respectively, and
can be deduced from those Lagrange series [because cn(α) is
positive].

We know already that ϕ−1
T (y; 1) = 1

y − 1 and that

ϕ−1
T (y; ∞) = − ln (y). Figure 5 depicts the inverse function

ϕ−1
T (y; α) versus α for various real values of y > 0 and il-

lustrates the immense variations in ϕ−1
T (y; α) when α → 0.

We now determine ϕ−1
T (y; 0). Taking the logarithm of the

functional equation (A23),

ln
(
ϕ−1

T (y; α)
) = − 1

α
ln

[
ϕ−1

T

(
1 − y;

1

α

)]
,

and the limit α → 0

ln
[
ϕ−1

T (y; 0)
] = − lim

α→0

ln
[
ϕ−1

T

(
1 − y; 1

α

)]
α

= lim
α→0

− ln[− ln (1 − y)]

α

either tends to −∞ or +∞, depending on the sign of
− ln [− ln (1 − y)]. If − ln (1 − y) > 1, which occurs for y >

1 − e−1, then ϕ−1
T (y; 0) = 0, otherwise if y < 1 − e−1, then

ϕ−1
T (y; 0) = ∞. If y = 1 − e−1 = 0.632121 . . ., then with

Eq. (A17), we have that

ln
(
ϕ−1

T (1 − e−1; 0)
)

= lim
α→0

− ln
[

1
	(1+α) + α2π2

12	3(1+α) + O(α3)
]

α
= −γ ,

where the results follows from the de l’Hospital’s rule or from
(A16). Hence, ϕ−1

T (1 − e−1; 0) = e−γ = 0.561459.

APPENDIX B: FINDING ξ AS A FUNCTION OF α SUCH
THAT τ

(1)
c;W (α) = τ

(1)
c;�(ξ)

First, let x = yq in Eq. (9), then

fTGamma (yq; ξ ) = 1

b		(ξ )

(
y

b1/q
	

)qξ−q

e
−
(

y

b
1/q
	

)q
,

and comparison with the Weibull pdf Eq. (1) shows that
fTGamma (yq; ξ ) = fTWeibull (y; α) provided q = α, b = b1/q

	 , qξ −
q = α − 1 and 1

b		(ξ ) = α
b . Thus, qξ − q = α − 1 implies

that ξ = α
q + 1 − 1

q and, with q = α, we have ξ = 2 − 1
α

.

The requirement 1
b		(ξ ) = α

b leads to b	 = [α	(2 − 1
α

)]
α

1−α . In

summary, if b	 = [α	(2 − 1
α

)]
α

1−α , then

fTGamma

(
yα; 2 − 1

α

)
= fTWeibull (y; α),

which illustrates that both pdfs can be mapped into one
another by a “power law” transform x = yα .

Next, we rewrite the Gamma epidemic threshold in
Eq. (11) as

1

τ
(1)
c;	 (ξ )

= ξ

[(
1 − λ1

1 + λ1

)− 1
ξ

− 1

]
.

Invoking the binomial series (1 + x)q =∑∞
n=0(q

n)xn, conver-
gent for all q provided |x| < 1, shows that

1

τ
(1)
c;	 (ξ )

= ξ

∞∑
n=1

	
(
1 − 1

ξ

)
(−1)n

n!	
(
1 − 1

ξ
− n
)( λ1

1 + λ1

)n

.

Using the reflection formula [25, 6.1.17] of the Gamma func-
tion, leading to 	(1−s)

	(1−s−n) = (−1)n 	(s+n)
	(s) , indicates that

1

τ
(1)
c;	 (ξ )

=
∞∑

n=1

	
(

1
ξ

+ n
)

n!	
(

1
ξ

+ 1
)( λ1

1 + λ1

)n

, (B1)

which is the analogon of the Lagrange series Eq. (19) for the
Weibull case. Assuming that τ

(1)
c;	 (ξ ) = τ

(1)
c;W (α) and equating

corresponding powers in λ1
1+λ1

in the series Eq. (B1) and the
Lagrange series Eq. (19) yields

	
(

1
ξ

+ n
)

n!	
(

1
ξ

+ 1
) = cn

(
1
α

)
	n−1
(

1
α

+ 1
) .

Invoking Eq. (A21) for n = 2, we find

ξ = 	2
(

1
α

+ 1
)

	
(

2
α

+ 1
)− 	2

(
1
α

+ 1
) = (E [TWeibull])2

Var[TWeibull]
≈ αw, (B2)
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FIG. 6. The Gamma and Weibull mean-field epidemic threshold
can approximate each other by a “power-law” axis scaling.

where the power-law exponent w ∈ [1.6, 1.83] depending on
the range of α ∈ [1, αmax] with αmax � 100. If the transform
Eq. (B2) were the exact transform, then

	
[

	( 2
α
+1)

	2( 1
α
+1) + n − 1

]
n!	
[

	( 2
α
+1)

	2( 1
α
+1)

] = cn
(

1
α

)
	n−1
(

1
α

+ 1
)

should holds for all n > 2, which is, unfortunately, not the
case. However, the transform Eq. (B2) with w = 1.83 seems
quite accurate in the sense that τ

(1)
c;	 (ξ ) ≈ τ

(1)
c;W (α) (in the range

α ∈ [1, 10]) and the difference between right- and left-hand
side of the higher-order coefficient is positive and smaller than
0.035 for 2 < n < 10 and α = 1, 2, . . . 10. Figure 6 illustrates
the correspondence for αmax = 100 with w = 1.64 in Eq. (B2)
on the same graphs considered in Figs. 2–4. The goodness of
an approximate ξ -axis scaling is not so surprising, because (a)
τ

(1)
c;	 (ξ ) = τ

(1)
c;W (α) for precisely three points: both end-points

0 and ∞ and α = ξ = 1, and (b) we impose that the two
distributions have the same mean and variance.
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