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Real-world systems, ranging from social and biological to infrastructural, can be modeled by multilayer net-
works. Promoting spreading dynamics in multilayer networks may significantly facilitate electronic advertising
and predicting popular scientific publications. In this study, we propose a strategy for promoting the spreading
dynamics of the susceptible-infected-susceptible model by adding one interconnecting edge between two isolated
networks. By applying a perturbation method to the discrete Markovian chain approach, we derive an index that
estimates the spreading prevalence in the interconnected network. The index can be interpreted as a variant of
Katz centrality, where the adjacency matrix is replaced by a weighted matrix with weights depending on the
dynamical information of the spreading process. Edges that are less infected at one end and its neighborhood
but highly infected at the other will have larger weights. We verify the effectiveness of the proposed strategy
on small networks by exhaustively examining all latent edges and demonstrate that performance is optimal or
near-optimal. For large synthetic and real-world networks, the proposed method always outperforms other static
strategies such as connecting nodes with the highest degree or eigenvector centrality.
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I. INTRODUCTION

Promoting spreading dynamics in networked systems is
attracting considerable attention in network science, statistical
physics, and computer science [1]. Maximizing spreading
prevalence is of both theoretical and practical importance for
achieving better information spreading and providing vacci-
nation guidance. Strategies for maximizing spreading preva-
lence can be roughly divided into three categories: identifying
vital nodes [2–14], designing effective transmission strate-
gies [15–20], and performing network structural perturbations
[21–24]. For vital node identification, centrality measures,
such as K-core, H-index, betweenness, and degree centrality,
are assigned to network nodes. Nodes with high centrality are
then chosen to be initial seeds for spreading. For effective
transmission, spreading protocols have been designed to avoid
invalid contacts (i.e., contacts among infected nodes). For
performing structural perturbations, networks are modified
slightly to promote spreading [21]. Structural perturbations
are also widely applied to enhance network synchronizability
[25–29].

The effectiveness of strategies for promoting spreading re-
lies on the underlying spreading models. Various models, such
as the susceptible-infected-susceptible (SIS), susceptible-
infected-recovered (SIR), and threshold models, have been
employed to test the effectiveness of such strategies [1]. These
spreading models can be divided into two classes, namely,
simple and complex contagions [30,31]. In simple contagions,
a susceptible individual could be infected by a single contact
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with an infected individual. Simple contagions are usually ap-
plied to model disease spreading [32] and simple information
spreading (e.g., hashtags [33]). In complex contagions, indi-
viduals evaluate the legitimacy of the information and make
a risk assessment; the probability of infection increases with
the cumulated number of contacts with other infected social
peers. This mechanism is called social reinforcement [34–37].
Complex contagions are usually applied to model complex
information spreading (e.g., political information [33]) and
behavior adoption [35,36,38,39]. More complex spreading
mechanisms, such as the coevolution of multiple diseases
and/or information, are discussed in the recent review [40].

The spreading dynamics in multilayer networks can be
fundamentally different from that in single-layer networks
[41–49]. For instance, Granell et al. [43] demonstrated that
epidemic spreading has a metacritical point defined by the
awareness dynamics and the topology of multilayer net-
works. The structure of the interconnections between two
networks significantly affects robustness [50–53], synchro-
nization [25,54], and spreading dynamics [55–57]. Saumell-
Mendiola et al. [58] demonstrated that interlayer degree
correlations might trigger epidemic outbreaks. Wang et al.
[45] considered the coevolution of epidemics and information
spreading in multilayer networks, and it was demonstrated
that the interlayer degree correlations can also suppress epi-
demic outbreaks without altering the outbreak threshold.

A natural question is to determine the optimal interlayer
structure for spreading in multilayer networks. To address this,
Aguirre et al. [21] applied a matrix perturbation approach and
demonstrated that adding a connection between two nodes
with large eigenvector centrality is more likely to promote the
spreading dynamics for two competing networks. Recently
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Pan et al. [59] suggested applying perturbation theory to
the adjacency matrix to obtain the optimal interconnections
between two networks. This method is effective near the
spreading threshold when a small number of edges are added.

In this study, we consider the problem of choosing a single
interlayer edge that maximizes the spreading prevalence of
the SIS model in two-layer networks. The SIS model can be
applied to simple information or disease spreading. Therefore,
understanding the maximization of the spreading prevalence
may facilitate the promotion of information spreading or
provide vaccination guidance [60]. We develop a theoretical
framework that provides the optimal or near-optimal inter-
connecting edge for all parameter regions. Starting with the
discrete Markovian chain approach for the SIS model in
two isolated networks, we propose a perturbation method so
that the spreading prevalence in the interconnected network
may be accurately approximated. The edge with the largest
incremental spreading prevalence is then chosen as the inter-
connecting edge. The incremental spreading prevalence in-
corporates information regarding both network structure and
spreading dynamics. Moreover, it has a simple physical inter-
pretation as a variant of Katz centrality [61], where the adja-
cency matrix is replaced by a matrix with weights depending
on the dynamical information of the spreading process.

The paper is organized as follows. We present the model
in Sec. II and then develop a theory for obtaining the optimal
interconnecting strategy in Sec. III. In Sec. IV we perform
extensive numerical simulations to verify the effectiveness of
the proposed strategy. Section V concludes the paper.

II. MODEL DESCRIPTION

We consider the SIS model in two-layer networks. Let a
and b be the two layers respectively. The number of nodes in a
and b is denoted by Na and Nb, respectively, and the number of
edges by Ma and Mb, respectively. The adjacency matrices of
the two layers are Ga and Gb, and we assume that there are no
interconnecting edges between them. Let N = Na + Nb. Then
the adjacency matrix G0 of the two isolated layers combined
is the following N × N matrix:

G0 =
(

Ga 0
0 Gb

)
. (1)

We note that 0 in the off-diagonal part denotes zero matrices.
There are multiple ways to interconnect the two isolated net-
works, and the dynamics of the interconnected network rely
on the interlayer structure. Our aim is to determine the optimal
interconnecting edge such that the spreading prevalence is
maximized.

By adding the interconnecting edge, the adjacency matrix
becomes

G = G0 + δG, (2)

where

δG =
(

0 Gab

Gba 0

)
(3)

is the adjacency matrix for the interconnection between the
two isolated networks. When (Gab)i j = (Gba) ji = 1 for i ∈

{1, . . . , Na} and j ∈ {1, . . . , Nb}, an undirected edge is added
between nodes i and j.

We adopt the classical SIS model as the spreading model.
Thus, each node can be in either the susceptible or infected
state. Initially, a small fraction of nodes are selected as
infected seeds, and the remaining nodes are susceptible. At
each time step, every infected node in a (b) tries to infect the
susceptible neighbors in the same network with probability λa

(λb) and infect susceptible neighbors in b (a) with probability
λab (λba). Then all the infected nodes return to the susceptible
state with probability γa (γb). We assume λa = λb = λab =
λba = λ and γa = γb. In the limit, the system reaches the
steady state, and the fraction of infected nodes fluctuates
around a stable value. Our aim is to choose an interconnecting
edge such that the infected density of the new steady state in
the interconnected network is maximized.

III. THEORETICAL ANALYSIS

To study the SIS model in networks, we adopt the dis-
crete Markovian chain (DMC) approach [62], which assumes
that there are no dynamical correlations among the states of
neighbors [63]. In this section, we first present the DMC
approach for the SIS model in the network G0 when there
are no interconnections between the networks a and b. Then,
using a perturbation method for DMC, we derive a formula
that approximately provides the spreading prevalence in the
interconnected network. Subsequently, we discuss physical
interpretations of this formula, and finally, we study the prob-
lem of determining the optimal interconnecting edge based on
the obtained formula.

A. Perturbation method for the discrete Markovian chain

Let pi(t ) be the probability that node i is infected at time t .
Then the node is susceptible with probability 1 − pi(t ). If i is
in infected state at t + 1, then either it was infected at t and has
not recovered, or it was susceptible at t and has been infected
by at least one infected neighbor. The former case occurs with
probability (1 − γ )pi(t ) and the latter with probability [1 −
pi(t )][1 − qi(t )]. Here 1 − qi(t ) is the probability that node i
is infected by at least one infected neighbor at time t , which is
given by

qi(t ) =
N∏

j=1

[
1 − λG0

i j p j (t )
]
. (4)

Combining the two cases, the evolution equation of pi(t ) can
be written as

pi(t + 1) = (1 − γ )pi(t ) + [1 − pi(t )][1 − qi(t )]. (5)

In the steady state, we have pi(t ) = pi(t + 1) = p∗
i and

qi(t ) = qi(t + 1) = q∗
i . Writing Eqs. (4) and (5) in terms of

vectors in the steady state yields

p∗ = (1 − γ )p∗ + (1 − p∗) ◦ (1 − q∗) (6)

and

q∗
i =

N∏
j=1

(
1 − λG0

i j p∗
j

)
, (7)
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where p∗, q∗ are vectors of length N with entries
p∗ = (p∗

1, . . . , p∗
N )T, q∗ = (q∗

1, . . . , q∗
N )T, and ◦ denotes

component-wise vector product. The expected number of
infected nodes in the steady state is

P = N−11T p∗. (8)

Previous studies [56,62] demonstrated that a globally spread-
ing outbreak occurs when the effective transmission proba-
bility λ∗ = λ/γ is larger than 1/ω1, where ω1 is the leading
eigenvalue of adjacency matrix G0. That is, the spreading
outbreak threshold is λ∗

c = 1/ω1, whereas if λ∗
c � 1/ω1, then

no outbreaks will be observed.
We now add one interconnecting edge between the two

networks. Clearly, the spreading prevalence will increase after
the edge is added. Subsequently, we develop a perturbation
method to obtain an approximate estimate of the incremental
spreading prevalence in the interconnected network.

When an interconnection is added between the two isolated
networks, the adjacency matrix becomes G = G0 + δG. The
fixed point of p(t ) in the interconnected network deviates
from p∗, and the magnitude of deviation depends on where
the interconnection is added. Nevertheless, as long as the
two isolated networks are large enough, the modification in
network structure can be regarded as small. As a consequence,
the fixed point of p(t ) in the interconnected network should
stay close to p∗. Since we focus on the case of adding one
interconnection, this assumption should be valid for moderate
network size. The actual magnitude of incremental spreading
prevalence by interconnecting the networks can be seen from
numerical results in Sec. IV, for example, in Fig. 1.

We now iterate the DMC equations in the interconnected
network with initial condition p(0) = p∗, and then we use the
decompositions p(t ) = p∗ + δp(t ) and q(t ) = q∗ + δq(t ) for
some small δp(t ) and δq(t ). More explicitly, Eq. (5) in the
interconnected network becomes

p∗ + δp(t + 1) = (1 − γ )[p∗ + δp(t )]

+ [1 − p∗ − δp(t )] ◦ [1 − q∗ − δq(t )].
(9)

Expanding Eq. (9) and substituting Eq. (6) yields

δp(t + 1) = (q∗ − γ )δp(t ) − (1 − p∗) · δq(t ). (10)

We note that as δp(t ) and δq(t ) are assumed small, the
second-order term δp(t ) ◦ δq(t ) is ignored. Similarly, Eq. (4)
(the iteration equation for q(t )) in the interconnected network
becomes

q∗
i + δqi(t ) =

N∏
j=1

{
1 − λ

(
G0

i j + δGi j
)
[p∗

j + δp j (t )]
}
. (11)

As before, by expanding this equation up to first-order terms
in δp(t ), we obtain

δq(t ) = − λq∗ ◦ (G0 + δG)Zδp(t )

+ q∗ ◦ δG log(1 − λp∗), (12)

where log(1 − λp∗) is the vector obtained by taking the loga-
rithm in each entry of 1 − λp∗, and Z is the N × N diagonal

FIG. 1. Incremental spreading prevalence δP by adding each
latent interconnection separately. The vertical and horizontal axes
correspond to node IDs in the networks. Thus, each point in the
plots corresponds to an edge connecting a and b, and its color
represents the value of δP by adding the edge. (a) Approximate
and (b) numerical predictions of δP with λ = 0.3. (c) Approximate
and (d) numerical predictions of δP with λ = 0.5. The nodes are
arranged in identical order for panels (a) and (b), as well as for panels
(c) and (d). Other parameters are set as Na = Nb = 100, αa = 2.3,
αb = 3.0, and γ = 0.5.

matrix with entries

Zi j = δi j
1

1 − λp∗
j

. (13)

The detailed derivation of Eq. (12) is provided in Appendix A.
Substituting Eq. (12) back into Eq. (10) yields the follow-

ing iteration formula for δp(t ):

δp(t + 1) = (q∗ − γ )δp(t ) + (1 − p∗) ◦ λq∗ ◦ (G0 + δG)

× Zδp(t ) − (1 − p∗) ◦ q∗ ◦ δG log(1 − λp∗).
(14)

This equation can be written in terms of matrix multiplication
as follows:

δp(t + 1) = Xδp(t ) + y, (15)

where

X = λdiag(q∗ − p∗ ◦ q∗)(G0 + δG)Z + diag(q∗ − γ ) (16)

and

y = −(1 − p∗) ◦ q∗ ◦ δG log(1 − λp∗). (17)

Here diag(·) denotes the diagonal matrix with the elements of
the input vector as diagonal entries. The stationary solution
δp∗ of the perturbed system satisfies

δp∗ = Xδp∗ + y, (18)

or in the closed form

δp∗ = (I − X )−1y. (19)
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This provides an explicit relation between the interconnection
edge and the stationary infected density increment. Therefore,
it remains to choose δG such that the incremental spreading
prevalence

δP : = N−11Tδp = N−11T(I − X )−1y (20)

is maximized. We note that Eq. (20) holds even when we add
multiple interconnecting edges.

B. Physical interpretations

Before analytically studying the optimization of Eq. (20),
we should intuitively understand which interconnecting edge
will give larger incremental spreading prevalence. We recall
the Katz centrality [61] SKatz, which is defined by

SKatz = 1T(I − βG)−1, (21)

where G is the adjacency matrix and β a tunable parameter.
Then SKatz is a vector with entries representing the centrality
of the corresponding nodes. Katz centrality is defined by
considering the number of weighted walks between nodes,
where β is the attenuation factor of walk length [61]. The
matrix inverse in SKatz has expansion

(I − βG)−1 = I + βG + β2G2 + · · · , (22)

where Gt is the matrix multiplication of G by itself t times.
The entry Gt

i j of Gt then counts the number of walks of length
t between nodes i and j.

We define a row vector

SDyn = 1T(I − X )−1. (23)

Then Eq. (20) can be written as δP = N−1SDyny. The vector
SDyn has the same form as SKatz, with βG in SKatz replaced by
X . We now further explore this connection and interpret SDyn

as a weighted version of SKatz.
By the definition in Eq. (16), the entries of X are given by

Xi j = Gi j
λ(1 − p∗

i )q∗
i

1 − λp∗
j

(24)

for i �= j. We note that Xi j is nonzero only when Gi j is
nonzero; thus, X can be understood as a weighted network
with edge weights defined in terms of the dynamical informa-
tion provided by p∗ and q∗. By Eq. (24), it is straightforward
that the edge weight Xi j is a decreasing function of p∗

i and an
increasing function of q∗

i , p∗
j . That is, the edge connecting i

and j will have a larger weight if it is less infected at i (small
q∗

i ) and a neighborhood of i (large q∗
i ) but highly infected at

j (large p∗
j). More briefly, edges connecting less infected and

highly infected regions will have larger weights.
Accordingly, SDyn is simply the Katz index defined on the

weighted graph. SKatz does not distinguish walks with the
same length, as can be seen from Eq. (22), whereas SDyn

further weights walks using dynamical information. When the
transmission probability is below the spreading threshold, we
have p∗ ≈ 0 and q∗ ≈ 1. Then X ≈ 1 − γ + λG and

(I − X )−1 ≈ γ −1

(
I − λ

γ
G

)−1

. (25)

In this case, SDyn reduces to SKatz with β = λ/γ (up to a
constant factor γ −1).

The incremental spreading prevalence δP = N−1SDyny is
then the weighted average of SDyn, with nodes again weighted
by the vector y. By the definition in Eq. (17), the entries of y
are

yi = −(1 − p∗
i )q∗

i

N∑
j=1

δGi j log(1 − λp∗
j ). (26)

Similarly, yi is a decreasing function of p∗
i and an increasing

function of q∗
i and p∗

j . Thus, yi takes lager values if i and its
neighborhood are less infected and is connected to a highly
infected node by an interconnection in δG.

By combining the discussions on X and y, the optimal
strategy can be understood as selecting an edge such that
the infection is more easily transmitted from highly infected
to less infected regions, which is consistent with intuition.
We will refer to the method proposed in this section as the
dynamical Katz method.

C. Choosing the optimal edge

We now discuss the optimization of Eq. (20). We will
consider only one connecting edge between the two isolated
networks, that is, the optimal edge. We first introduce some
notations. For the vector p∗, let p∗

a be its part corresponding
to network a. Specifically, p∗

a is a vector of length Na with
elements

(p∗
a)i = (p∗)i (27)

for 1 � i � Na. p∗
b, q∗

a , q∗
b , ya, and yb are defined analogously.

We define the Na × Na diagonal matrix Za with entries

(Za)ik = δik
1

1 − λ(p∗
a)i

= Zik, (28)

for 1 � i, k � Na. Zb is defined analogously and corresponds
to b.

We decompose X as X = X 0 + δX , where

X 0 = λdiag(q∗ − p∗ ◦ q∗)G0Z + diag(q∗ − γ ) (29)

depends only on G0, and

δX = λdiag(q∗ − p∗ ◦ q∗)δGZ (30)

depends only on δG. We note that X 0 is a diagonal block
matrix and can be further written as

X 0 =
(

X 0
a 0

0 X 0
b

)
, (31)

where X 0
a is the block diagonal part of X 0 that depends only

on Ga, with

X 0
a = λdiag(q∗

a − p∗
a ◦ q∗

a )GaZa + diag(q∗
a − γ ). (32)

Similarly,

X 0
b = λdiag(q∗

b − p∗
b ◦ q∗

b )GbZb + diag(q∗
b − γ ). (33)

δX is an off-diagonal block matrix

δX =
(

0 δXab

δXba 0

)
, (34)
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with the off-diagonal blocks given by

δXab = λdiag(q∗
a − p∗

a ◦ q∗
a )GabZb,

δXba = λdiag(q∗
b − p∗

b ◦ q∗
b )GbaZa. (35)

Using the properties of block matrices, the matrix inverse in
Eq. (19) can be written as

(I − X )−1 =
(
I − X 0

a −δXab

−δXba I − X 0
b

)−1

=
(

C CδXabB
DδXbaA D

)
, (36)

where

A = (
I − X 0

a

)−1
, B = (

I − X 0
b

)−1
(37)

and

C = (
I − X 0

a − δXabBδXba
)−1

,

D = (
I − X 0

b − δXbaAδXab
)−1

. (38)

We now assume that we add an interconnecting edge
between node i of network a and node j of b. By the Sherman-
Morrison formula, the resulting increment in the spreading
prevalence can be written in the following explicit form:

NδP = ci j + c jixi jB j j

1 − xi jx jiAiiB j j
(1TA)i

+ c ji + ci jx jiAii

1 − xi jx jiAiiB j j
(1TB) j, (39)

where

xi j : = λ[(q∗
a )i − (p∗

a)i(q
∗
a )i][1 − λ(p∗

b) j]
−1,

x ji : = λ[(q∗
b ) j − (p∗

b) j (q
∗
b ) j][1 − λ(p∗

a)i]
−1 (40)

and

ci j = −[(q∗
a )i − (p∗

a)i(q
∗
a )i] log[1 − λ(p∗

b) j],

c ji = −[(q∗
b ) j − (p∗

b) j (q
∗
b ) j] log[1 − λ(p∗

a)i]. (41)

The detailed derivation of Eq. (39) is given in Appendix B.
This provides a simple formula for the spreading preva-

lence in the interconnected network. The optimal strategy is
simply to select the edge with the highest corresponding δP .
This strategy relies not only on the network topology (i.e.,
the adjacency matrices Ga and Gb) but also on the dynamical
information of the spreading process when the two networks
are isolated (i.e., λ, γ , q∗, and p∗).

IV. NUMERICAL SIMULATIONS

In this section, we perform extensive numerical simula-
tions on both synthetic and real-world networks to verify the
performance of the strategy. We note that we do not compare
the DMC predictions with Monte Carlo simulations because
the DMC approach can accurately predict the simulations
[62]. In the following, the numerical value of δP obtained
by iterating the DMC is denoted by δPnum. The optimal
edge predicted by the DMC equations is called the numerical
optimal edge. The approximate δP predicted by Eq. (39) is
denoted by δPapprox.

For two networks with number of nodes Na and Nb, there
are in total Ml = Na × Nb latent interconnections. For small
networks, it is possible to check all the latent connections
exhaustively so that the optimal may be determined. However,
for large N , an exhaustive search is slow and gradually be-
comes impossible. We first use small networks to verify the
accuracy of δPapprox predicted by Eq. (39) and compare the
optimal edge by this strategy with the numerical optimal edge
(the optimal edge predicted by the DMC equations).

To construct synthetic networks, we adopt the uncorrelated
configuration model with power-law degree distributions.
Specifically, we set the degree distributions of networks a
and b to P(k) ∼ k−αa and P(k) ∼ k−αb respectively, where αa

and αb are the degree exponents. The network sizes are set
to Na = Nb = 100. Without loss of generality, we set the
recovery probability of the SIS model to γ = 0.5 and make
the infection probability λ a tunable parameter.

We first compare δPapprox predicted by Eq. (39) with
the predictions by the DMC approach. For each latent edge
connecting node i ∈ {1, . . . , Na} and node j ∈ {1, . . . , Nb},
we compute δPapprox using Eq. (39) for λ = 0.3 [Fig. 1(a)] and
λ = 0.5 [Fig. 1(c)]. Then we add the edge to the network and
iterate the DMC to obtain δPnum, which is shown in Figs. 1(b)
and 1(d) for λ = 0.3 and λ = 0.5, respectively. Nodes are
arranged in identical order in Figs. 1(a) and 1(b), and also
in identical order in Figs. 1(c) and 1(d). The approximate
values usually appear higher than the numerical values, but
intuitively, they are strongly correlated. The maximum rela-
tive error (δPapprox − δPnum )/δPnum for all edges is 0.315 in
Figs. 1(a) and 1(b), and 0.396 in Figs. 1(c) and 1(d). However,
we will demonstrate that they are almost linearly correlated
in order, which suggests the approximate value is sufficient to
obtain the optimal edge.

To see the correlations, we compute the Spearman’s rank
correlation coefficient [45,64] between the approximate and
numerical δP . We score all the latent interconnecting edges by
their δPnum and δPapprox; then two rankings can be obtained.
Let ri j and r′

i j be the rank of the edge connecting node i in
network a and node j in network b scored by δPnum and
δPapprox, respectively. Spearman’s rank correlation coefficient
is defined as

ms = 1 − 6

∑Na
i=1

∑Nb
j=1(ri j − r′

i j )
2

Ml
(
M2

l − 1
) . (42)

We plot ms as a function of λ in Fig. 2(a). It can be observed
that Spearman’s rank correlation coefficients are close to 1 for
all λ. The minimum value of ms for all λ in Fig. 2(a) is 0.9968.
This suggests that the proposed strategy accurately predicts
the overall order of δPnum.

In addition to the strong overall correlations for the ap-
proximate and numerical values of δP , we are particularly
concerned with the top-ranked edge. We further verify the per-
formance of the strategy by comparing the predicted optimal
edge with the numerical optimal edge. For each λ, we select
the edge with the highest δPapprox predicted by the dynamical
Katz method and compute its numerical rank in all the latent
edges. The edge rank versus λ is shown in Fig. 2(b). It can be
seen that the rank is 1 or near 1 for all values of λ. When the
rank is exactly 1, the optimal edge predicted by the dynamical

022316-5



PAN, WANG, CAI, AND ZHOU PHYSICAL REVIEW E 100, 022316 (2019)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 R
an

ks

Dynamical Katz
Degree
Eigen

0.2 0.4 0.6 0.8
0.996

0.997

0.998

0.999

1

m
s

0.2 0.4 0.6 0.8
0

5

10

15

R
an

k

(b)

(c)

(a)

FIG. 2. Performance of different strategies versus transmission
probability. (a) Spearman’s rank correlation coefficient ms between
ranks predicted by the dynamical Katz method and the numerical
ranks. (b) Numerical rank of the optimal edge predicted by the
dynamical Katz method. (c) Normalized numerical rank of the
optimal edge predicted by dynamical Katz (blue dotted line), degree
(orange solid line), and eigenvector centrality (yellow dashed line)
methods. Below the spreading threshold, the prevalence P is zero,
and the rankings are trivial; thus, we consider λ only in the range
starting slightly above the threshold. Other parameters are set as
NA = NB = 100, αa = 3.0, αb = 2.3, and γ = 0.5.

Katz method coincides with the numerical optimal edge, and
this is the case for most values of λ.

As the dynamical Katz strategy incorporates information
regarding both the network structure and spreading dynamics,
it is useful to compare it with simple strategies that consider
only the static network structure to understand the role of
dynamical information. Specifically, we consider the strategy
of connecting the two nodes with the highest degree or
eigenvector centrality. The normalized ranks (ranks divided
by Ml = Na × Nb) by the dynamical Katz and the two static
strategies are shown in Fig. 2(c). All three strategies are
optimal or near-optimal when the transmission probability λ

is slightly above the critical value, but the two static strategies
fail quickly when λ becomes large, whereas the dynamical
Katz method still performs well.

As discussed in Sec. III B, when p∗ ≈ 0, the dynamical
Katz matrix reduces to the Katz matrix. When λ/γ is small,
we have

(I − X )−1 ≈ γ −1I + λG, (43)

and this reduces to degree centrality. For uncorrelated config-
uration models, degree and eigenvector centrality are strongly
correlated. When λ is small, nodes with high centrality val-
ues (i.e., degree and eigenvector centrality) have a larger
probability to be infected. If we connect them with an edge,
then high-centrality nodes together with their neighbors could
form an infected cluster [65] and further transmit the in-
fection to other nodes. Thus, for small λ, the degree and
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FIG. 3. Incremental spreading prevalence δP versus λ in syn-
thetic networks when one interconnecting edge is added. Networks
with power-law degree distributions are considered, where the degree
exponents are (a) αa = 2.3, αb = 3.0, (b) αa = 3.0, αb = 3.0, and
(c) αa = 4.0, αb = 3.0. δP versus λ in semilog plots are shown
in the insets, where δP is on the logarithm scale. Data points
corresponding to the degree and eigenvector centrality strategies are
highly overlapped. We consider λ in the range starting slightly above
the spreading threshold to avoid trivial cases. Other parameters are
set as NA = NB = 5000 and γ = 0.5.

eigenvector strategies perform well. For large values of λ,
globally spreading outbreaks occur, and nodes with small
centrality have a higher probability to be susceptible. In this
case, additional connections to these nodes are required for
promoting the spreading dynamics. Therefore, both the degree
and eigenvector strategies fail, and the dynamical information
should be considered.

For large networks, exhaustive searching becomes impos-
sible. In this case, we compare the performance of the dynam-
ical Katz method with that of the two static methods based
on degree and eigenvector centrality. For the three methods,
we add the predicted optimal edge separately and compare
the resulting δP . We first consider synthetic networks. We
construct three pairs of networks with power-law degree
distributions, with degree exponents (i) αa = 2.3, αb = 3.0,
(ii) αa = 3.0, αb = 3.0, and (iii) αa = 4.0, αb = 3.0. The
graphs of δP versus λ for the three network pairs are shown
in Fig. 3. We further add the semilog plot in the insets for the
first two network pairs for better visualization, with δP on a
logarithm scale. When λ is close to the critical point, all three
strategies exhibit highly similar performance. As in small
networks, this could also be near the maximal possible value
of δP . When λ becomes large, dynamical Katz outperforms
the other two static methods for all network pairs. In this case,
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TABLE I. Basic statistics of six real-world networks: number
of nodes (N), number of edges (M), maximal degree (kmax), first
(〈k〉) and second (〈k2〉) moments of the degree distribution, and the
theoretical spreading threshold predicted by DMC λ∗

c = 1/ω1.

Networks N M kmax 〈k〉 〈k2〉 λ∗
c

Advogato 5042 39227 803 15.56 1284.00 0.014
Facebook 2888 2981 769 2.06 528.13 0.036
OpenFlights 2905 15645 242 10.77 601.45 0.016
Air traffic control 1226 2408 34 3.928 28.90 0.109
Adolescent health 2539 10455 27 8.24 86.41 0.076
Physicians 117 465 26 7.95 79.16 0.099

connecting nodes with large degree or eigenvector centrality
yields almost zero δP , which decays with λ, as can be seen
in, e.g., the insets in Figs. 3(a) and 3(b). Moreover, it is
worth noticing that δP is always maximized slightly above
the spreading threshold, which suggests that the marginal
improvement is maximized near the critical point.

We now test the dynamical Katz method on real-world
networks. Three pairs of networks are considered: (i) Ad-
vogato [66], Facebook [67], (ii) OpenFlights [68], Air traffic
control [68], and (iii) Adolescent health [69], Physicians
[70]. The first pair (Advogato and Facebook) are two online
social networks, the second pair (OpenFlights and Air traffic
control) are infrastructure networks of airports and flights,
and the third pair (Adolescent health and Physicians) are
two offline social networks. The networks were downloaded
from Ref. [68], and details can be found therein. Some basic
statistics are shown in Table I.

δP versus λ for the three network pairs are shown in Fig. 4.
As in the case of the synthetic networks, it can be seen that
the dynamical Katz method performs best for all values of λ.
However, for small values of λ, the three methods are quite
close. For larger λ, the two static methods yield δP very
close to zero, whereas the dynamical Katz method exhibits
significant improvement. The results further confirmed the
effectiveness of the dynamical Katz method on real-world
networks.

For both synthetic and real-world networks, the Degree
and Eigen methods work well near the critical λ and fail
when λ becomes large, while the dynamical Katz method
performs well in all the parameter region. To better understand
the structural properties of the optimal edge predicted by
the dynamical Katz method, we study how the degrees and
eigenvector centralities of the optimal edge’s two end-nodes
change with λ. Let kopt

a and kopt
b be the degrees of the optimal

edge’s two end-nodes in layer a and layer b, respectively. Sim-
ilarly, we define v

opt
a and v

opt
b as the two nodes’ eigenvector

centralities. Let kmax
a and kmax

b be the maximum degree of
a and b, respectively, while vmax

a and vmax
b be the maximum

eigenvector centrality of a and b, respectively. kopt
a /kmax

a ,
kopt

b /kmax
b , v

opt
a /vmax

a , and v
opt
b /vmax

b versus λ are shown in
Figs. 5(a)–5(d), respectively. When λ is near the critical point,
nodes with high degree and eigenvector centrality are chosen
to be connected. Near the critical point, the spreading preva-
lence is small, and connecting nodes with high centrality will
help to maintain the infected cluster and further transmit the
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FIG. 4. Incremental spreading prevalence δP versus λ when one
interconnecting edge is added in real-world networks. The network
pairs are (a) Advogato, Facebook, (b) OpenFlights, Air traffic con-
trol, and (c) Adolescent health, Physicians. Data points for the degree
and the eigenvector centrality strategies are highly overlapped for
some values of λ. δP versus λ in semilog plots are shown in the
insets, where δP is on the logarithm scale. In panel (a), for large
values of λ, δP given by Degree and Eigen are so close to zero such
that numerically we have δP = 0 due to the limitation of numerical
accuracy. Therefore in the inset of panel (a), data points for large
λ cannot be seen on a logarithm scale. Basic statistics of the six
real-world networks can be found in Table I.

infection to other nodes. When λ becomes large, nodes with
high centrality have a very high probability to be infected,
therefore connecting these nodes becomes unnecessary. As
shown in Fig. 5, the degrees and eigenvector centralities of
the optimal edge become small when λ becomes large. The
numerical results have further verified the discussions about
the relations between dynamical Katz and other two static
methods [below Eq. (43)].

V. DISCUSSION

We studied the problem of determining the optimal in-
terconnecting edge for promoting spreading dynamics. By
applying a perturbation method to the DMC equations, we
obtained a Katz-like index for predicting the spreading preva-
lence in the interconnected networks. This index accurately
predicts the optimal interconnecting edge for promoting
spreading over all parameter regions, as demonstrated in small
networks. For large synthetic and real-world networks, the
method outperformed certain static strategies, namely, con-
necting nodes with highest degree or eigenvector centrality.
For small λ, the three strategies had similar performance. For
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FIG. 5. Normalized degrees and eigenvector centralities of the
optimal edge’s two end nodes versus λ for both synthetic and
real-world networks. (a) kopt

a /kmax
a , i.e., normalized degree of the

optimal edge’s end node in layer a, versus λ. (b) kopt
b /kmax

b , i.e.,
normalized degree of the optimal edge’s end node in layer b, versus
λ. (c) vopt

a /vmax
a , i.e., normalized eigenvector centrality of the optimal

edge’s end node in layer a, versus λ. (d) v
opt
b /vmax

b , i.e., normalized
eigenvector centrality of the optimal edge’s end node in layer b, ver-
sus λ. Different lines correspond to different network pairs, among
which the solid lines correspond to synthetic networks and dashed
lines correspond to real-world networks. The values of λ considered
start slightly above the spreading threshold of each pair of networks.

large λ, the two heuristic strategies yielded almost zero in-
cremental spreading prevalence, whereas the dynamical Katz
method performed well. In addition to accurately predicting
the optimal edge, the dynamical Katz method provides a clear
physical interpretation of how the optimal edge is chosen.

We considered the addition of only one interconnecting
edge, but real-world multilayer networks usually have mul-
tiple interconnecting edges. We note that Eq. (20), which
estimates the incremental spreading prevalence in terms of
interconnections, is valid for general interconnecting struc-
tures. This could provide the foundation for further study
in the case of multiple edges. For the single-edge case, the
interconnection matrix C can be written as the outer product
of two vectors. By applying the Sherman-Morrison formula,
δP can take a simple form that is easy to optimize. When
multiple edges are added, the outer product decomposition of
C cannot be used in general.

A simple heuristic method for adding multiple edges is to
add edges one by one using the proposed method. Specifically,
at each step, one edge is added using the dynamical Katz
method, and then the DMC equations are iterated to converge
in this new network. The procedure is repeated until all edges
are added. By adding one edge, the dynamical Katz method is
likely to be optimal or near-optimal; therefore, this heuristic

algorithm can be considered a greedy algorithm. The perfor-
mance of such a greedy algorithm can be further analyzed, and
more sophisticated algorithms could be designed. We leave
this as an open issue for future exploration. Moreover, the
perturbation method developed in this study could also be
extended to other types of networks (e.g., temporal networks)
and spreading models (e.g., social contagions and cascading
failures).
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APPENDIX A: DERIVATION OF THE PERTURBED
EQUATION FOR δq(t )

In this Appendix we detail the derivation of the perturbed
equation for δq(t ) in Eq. (12) starting from Eq. (11). Since
G0 is a diagonal block matrix, while δG is an off-diagonal
block matrix, then G0

i j = 1 and δGi j = 1 cannot be observed
simultaneously. Thus the following equation holds:[

1 − λ
(
G0

i j + δGi j
)]

[p∗
j + δp j (t )]

= {
1 − λG0

i j[p∗
j + δp j (t )]

}{1 − λδGi j[p∗
j + δp j (t )]},

which can be checked by substituting all possible combina-
tions of G0

i j and δGi j . Dividing by q∗
i for both sides and

substituting Eq. (7) gives

1 + δqi(t )

q∗
i

=
N∏

j=1

[
1 − λG0

i jδp j (t )

1 − λG0
i j p∗

j

]

×
N∏

j=1

[
1 − λδGi jδp j (t )

1 − λδGi j p∗
j

]
N∏

j=1

(1 − λδGi j p∗
j ).

(A1)

Note that the following relation holds:

λG0
i jδp j (t )

1 − λG0
i j p∗

j

= G0
i j

λδp j (t )

1 − λp∗
j

, (A2)

since G0
i j ∈ {0, 1} and similarly when replacing G0

i j by δGi j ∈
{0, 1}. Taking the logarithm on both sides of Eq. (A1), ex-
panding to the first orders of δpi(t ), δqi(t ), and applying the
above relation gives

δqi(t )

q∗
i

= −
N∑

j=1

G0
i j

λδp j (t )

1 − λp∗
j

−
N∑

j=1

δGi j
λδp j (t )

1 − λp∗
j

+
N∑

j=1

log(1 − λδGi j p∗
j ). (A3)

Again the terms in the last summation can be checked satisfy-
ing

log(1 − λδGi j p∗
j ) = δGi j log(1 − λp∗

j ). (A4)
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With the above calculations, Eq. (A3) can be written in matrix
form as Eq. (12). This completes the derivation of Eq. (12).

APPENDIX B: DERIVATION OF THE INCREMENTAL
SPREADING PREVALENCE BY ADDING AN EDGE

In this Appendix we give the detailed derivation of
Eq. (39), i.e., the explicit formula for incremental spreading
prevalence when only adding one interconnecting edge.

Since we add only one edge, then the matrix Gab = GT
ba can

be written as an outer product

Gab = uvT, (B1)

where u is a vector of length Na with uk = δk,i for 1 � k � Na,
and v a length Nb vector with vk = δk, j for 1 � k � Nb. Recall
that xi j and x ji defined in Eq. (40), then it is easy to check that

δXab = xi juvT, δXba = x jivuT. (B2)

Thus we have

δXabBδXba = xi jx jiB j juuT. (B3)

In other words, δXabBδXba is a zero matrix expect in the jth
element in the diagonal. The Sherman-Morrison formula says
that

C = (
I − X 0

a − xi jx jiB j juuT)−1

= A + xi jx jiB j jAuuTA

1 − xi jx jiAiiB j j
. (B4)

With this formula we can construct (I − X )−1 easily from C.
Similarly,

D = (
I − X 0

b − xi jx jiAiivvT
)−1

= B + xi jx jiAiiBvvTB

1 − xi jx jiAiiB j j
. (B5)

Again recall the definitions of ci j and ci j in Eq. (41), then
ya, yb can written as

ya = ci ju, yb = c jiv. (B6)

Combining the above computations, we arrive at the formula

NδP = 1TCya + 1TCδXabByb

+ 1TDyb + 1TDδXbaAya. (B7)

The first term on the r.h.s. of Eq. (B7) can be written as

1TCya = 1TAya + xi jx jiB j j

1 − xi jx jiAiiB j j
(1TA)iu

TAya

= ci j

1 − xi jx jiAiiB j j
(1TA)i, (B8)

where the first line is by substituting Eq. (B4), and the second
line is by using definition of ya and u. For the second term of
r.h.s. in Eq. (B7),

1TCδXabByb = c jixi jB j j1TCu

= c jixi jB j j

1 − xi jx jiAiiB j j
(1TA)i. (B9)

With similar computations, we can can obtain the expressions
for the other two terms in the r.h.s. of Eq. (B7):

1TDyb = c ji

1 − xi jx jiAiiB j j
(1TB) j (B10)

and

1TDδXbaAya = ci jx jiAii

1 − xi jx jiAiiB j j
(1TB) j . (B11)

Combining the above computations, we have

NδP = ci j + c jixi jB j j

1 − xi jx jiAiiB j j
(1TA)i

+ c ji + ci jx jiAii

1 − xi jx jiAiiB j j
(1TB) j, (B12)

which is Eq. (39).
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