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In this paper we develop an alternative topological data analysis (TDA) approach for studying graph
representations of time series of dynamical systems. Specifically, we show how persistent homology, a tool from
TDA, can be used to yield a compressed, multi-scale representation of the graph that can distinguish between
dynamic states such as periodic and chaotic behavior. We show the approach for two graph constructions obtained
from the time series. In the first approach the time series is embedded into a point cloud which is then used to
construct an undirected k-nearest-neighbor graph. The second construct relies on the recently developed ordinal
partition framework. In either case, a pairwise distance matrix is then calculated using the shortest path between
the graph’s nodes, and this matrix is utilized to define a filtration of a simplicial complex that enables tracking
the changes in homology classes over the course of the filtration. These changes are summarized in a persistence
diagram’s two-dimensional summary of changes in the topological features. We then extract existing as well as
new geometric and entropy point summaries from the persistence diagram and compare to other commonly used
network characteristics. Our results show that persistence-based point summaries yield a clearer distinction of
the dynamic behavior and are more robust to noise than existing graph-based scores, especially when combined
with ordinal graphs.
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I. INTRODUCTION

There has been extensive work on understanding the be-
havior of the underlying dynamical system given only a time
series [1,2]. The revolutionary work of Takens [3] extended by
Sauer et al. [4] showed that, given most choices of parameters,
the state space of the dynamical system can be reconstructed
through the Takens embedding. Computationally, this arises
as the following procedure. Given a time series [x1, . . . , xn], a
choice of dimension d and time lag τ give rise to a point cloud
χ = {xi := (xi, xi+τ , . . . , (xi+(d−1)τ )} ⊂ Rd . Then the goal is
to analyze this point cloud, which really is a sampling of the
full state space, in a way that the dynamics can be understood.
Of course, for practical purposes, not all parameter choices
are equally desirable. While some effort has gone into math-
ematical justification of “best” choices [5], we are largely left
with heuristics that work quite well in practice [6,7].

A first method for analyzing this point cloud arose in the
form of a recurrence plot [8,9]. Fixing ε, this is a binary,
symmetric matrix R = R(ε) where Ri j is 1 if ‖xi − x j‖ � ε,
and 0 otherwise. Of course, this can be equivalently viewed
as the adjacency matrix of a network [10], often called the
ε-recurrence network in this literature [11–14]. From this
observation, a large literature grew on methods to convert time
series into networks; see Donner et al. [15] for an extensive
survey.

In this paper, we focus on two of these options. First,
given the point cloud χ , we can construct the (undirected)
k-nearest-neighbor graph, commonly called the k-NN graph.
This is built by adding a vertex to represent each xi ∈ χ , and
for each xi, adding an edge to the k closest points x j ∈ χ .
This construction, and in particular the investigation of motifs
in the resulting graph, has been extensively studied [16–18].

The second network construction method we work with
is the recently developed ordinal partition network [19,20].
It can be viewed as a special case of the class of transition
networks built from time series data, where vertices represent
subsets of the state space, and edges are included based on
temporal succession. This construction arose as a generaliza-
tion of the concept of permutation entropy [21]. The basic
idea of the construction is to replace each x = (x1, . . . , xd ) ∈
χ ⊂ Rd with a permutation π of the set {1, . . . , d} so that
π (i) = j if x j is the ith entry in the sorted order of the coordi-
nates. That is, π satisfies xπ (1) � xπ (2) � · · · � xπ (d ). Then we
build a graph with vertex set equal to the set of encountered
permutations, and an edge is included if the ordered point
cloud passes from one permutation to the other [22]. Utilizing
the transition network vantage point, each permutation π

represents a subspace of Rd given by the intersection of
(d

2

)
inequalities, and an edge is included based on passing from
one of these subspaces to the other in one time step. What
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FIG. 1. Comparison between ordinal partition networks gener-
ated from x solution of the Rössler system for both (a) periodic and
(b) chaotic time series.

makes this construction particularly useful is its robustness to
noise [23]. See Ref. [24] for a more extensive introduction.

Many have observed qualitatively that these networks en-
code the structure of the underlying system [15]. In particular,
periodic time series tend to create networks with overarching
circular structure, while those arising from chaotic systems
have more in common with a hairball (see, e.g., Fig. 1). How-
ever, quantification of this behavior is lacking. Much of the
literature to date has focused on using standard quantification
methods from network theory such as local measures like
degree, closeness, and betweenness centrality, or the local
clustering coefficient. Global measures are also used, e.g.,
the global clustering coefficient, transitivity, and average path
length. However, these measures can only do so much to
measure the overarching structure of the graph.

It was for this reason that topological data analysis (TDA)
[25–29] has proven to be quite useful for time series analysis.
TDA is a collection of methods arising from the mathematical
field of algebraic topology [30,31], which provide concise,
quantifiable, comparable, and robust summaries of the shape
of data. The main observation is that we can encode higher-
dimensional structure than the one-dimensional information
of a network by passing to simplicial complexes. Like graphs,
simplicial complexes are combinatorial objects with vertices
and edges, but they also allow for higher-dimensional analogs
like triangles, tetrahedra, etc. To date, the interaction of time
series analysis with TDA has focused on a generalization
of the ε-recurrence network called a Rips complex and its
approximation, the witness complex. The Rips complex for
parameter ε includes a simplex σ = {y0, . . . , yk} if and only
if ‖yi − y j‖ � ε for all i, j. That is, it is the largest simplicial
complex which has the ε-recurrence graph as its 1-skeleton.

Unlike the time series analysis literature, where one works
hard to find the perfect ε to construct a single network, TDA
likes to work with the Rips complex over all scales in a
construction called a filtration. Then, one can analyze the
structure of the overall shape by looking at how long fea-
tures of interest persist over the course of this filtration. One
particularly useful tool for this analysis is one-dimensional
(1D) persistent homology [32,33], which encodes how cir-
cular structures persist over the course of a filtration in a
topological signature called a persistence diagram. This and
its variants have been quite successful in applications, partic-
ularly for the analysis of periodicity [34–41], including for
parameter selection [42,43], data clustering [44], machining
dynamics [45–49], gene regulatory systems [50,51], financial

data [52–54], wheeze detection [55], sonar classification [56],
video analysis [57–59], and annotation of song structure
[60,61].

Unfortunately, while persistence diagrams are powerful
tools for summarizing structure, their geometry is not particu-
larly amenable to the direct application of standard statistical
or machine learning techniques [62–64]. To circumvent the
problem, a common trick to deal with persistence diagrams
particularly when we are interested in classification tasks is
to choose a method for featurizing the diagrams, that is,
constructing a map from persistence diagrams into Euclidean
space Rd via some method that preserves enough of the struc-
ture of the persistence diagrams to be reasonably useful. Many
of these exist in the literature [65–76]; however, in this work,
we focus on the simplest of these realizations, namely, point
summaries of persistence diagrams which extract a single
number for each diagram to be used as its representative. One
summary which we use in this paper is persistent entropy.
This was defined by Chintakunta et al. [77], and later Rucco
et al. [78,79] proved that the construction is continuous. This
construction, a modification of Shannon entropy, has found
use in several applications [80–82].

In this paper we move away from the standard application
of TDA to time series analysis (namely, the combination
of the Rips complex with 1D persistence) to implement the
following new pipeline and use it to differentiate between
chaotic and periodic systems (see Fig. 2). Given a time series,
determine a good choice of embedding parameters, and use
these to build an embedding of the time series. Then, obtain
a graph either by constructing the k-nearest-neighbor graph
for the points of the embedding, or by building the ordinal
partition network. Construct a filtration of a simplicial com-
plex using this information, compute its persistence diagram,
then return one of several point summaries of the diagram.
We show experimentally on both synthetic and real data that
this pipeline, particularly using persistent entropy, is quite
good at differentiating between chaotic and periodic time
series. Further, the resulting simplicial complexes used are
considerably smaller than those utilized in the Rips complex
setting, providing the potential for faster running times.

II. BACKGROUND

A. Graphs

A graph G = (V, E ) is a collection of vertices V with edges
E = {uv} ⊆ V × V . In this paper, we assume all graphs are
simple (no loops or multiedges) and undirected. The complete
graph on the vertex set V is the graph with all edges included,
i.e., E = {uv | u �= v ∈ V }.

We reference a few special graphs. The cycle graph on n
vertices is the graph G = (V, E ) with V = {v1, . . . , vn}, and
E = {vivi+1 | 1 � i < n} ∪ {vnv1}; i.e., it forms a closed path
(cycle) where no repetition occurs except for the starting and
ending vertex. The complete graph on n vertices is the graph
G = (V, E ) with V = {v1, . . . , vn}, and E = {viv j | i �= j}.
That is, it is the graph with n vertices and all possible edges
are included.

We also work with weighted graphs, G = (V, E , ω), where
ω : E → R gives a weight for each edge in the graph. In this
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FIG. 2. Outline of method: (a) a time series (b) is embedded into either Rn space using Takens’s embedding or segmenting into a set of
permutations. From these two representations, (c) an undirected, unweighted network is formed by either applying a kth-nearest-neighbor
algorithm or by setting each permutation state as a node. (d) The distance matrix is calculated using the shortest path between all nodes. (e)
The persistence diagram is generated by applying persistent homology to the distance matrix. (f) Finally, one of several point summaries is
used to extract information from the persistence diagram.

paper, we assume all weights are non-negative, ω : E → R�0.
Given an ordering of the vertices V = {v1, . . . , vn}, a graph
can be stored in an adjacency matrix A where entry Ai j = 1 if
there is an edge viv j ∈ E and 0 otherwise. This can be edited
to store the weighting information by setting Ai j = ω(viv j ) if
viv j ∈ E and 0 otherwise.

A path γ in a graph is an ordered collection of nonrepeated
vertices γ = u0u1 · · · uk where uiui+1 ∈ E for every i. The
length of the path is the number of edges used, namely,
len(γ ) = k in the above notation. The distance between two
vertices u and v is the minimum length of all paths from u to
v and is denoted d (u, v). Given an ordering of the vertices,
this information can be stored in a distance matrix D where
Di j = d (vi, v j ). Thus an unweighted graph G = (V, E ) gives
rise to a weighted complete graph on the vertex set V by
setting the weight ω(uv) = d (u, v).

B. k-nearest-neighbor graph

Given a collection of points in Rd , the k-nearest-neighbor
graph, or k-NN graph, is a commonly used method to build a
graph. Fix k ∈ Z�0. The (undirected) k-NN graph has a vertex
set in one-to-one correspondence with the point cloud, so we
abuse notation and write vi for both the point vi ∈ Rd , and for
the vertex vi ∈ V . An edge viv j is included if vi is among the
kth nearest neighbors of v j .

C. Embedding of time series

Takens’s theorem forms one of the theoretical foundations
for the analysis of time series corresponding to nonlinear,
deterministic dynamical systems [3]. It basically states that in
general it is possible to obtain an embedding of the attractor of
a deterministic dynamical system from one-dimensional mea-
surements of the system’s evolution in time. An embedding is
a smooth map 	 : M → N between the manifolds M and N
that diffeomorphically maps M to N .

Specifically, assume that the state of a system is described
for any time t ∈ R by a point x on an m-dimensional manifold
M ⊆ Rd . The flow for this system is given by a map φt (x) :
M × R → M which describes the evolution of the state x for
any time t . In reality, we typically do not have access to x, but
rather have measurements of x via an observation function
β(x) : M → R. The observation function has a time evolu-

tion β(φt (x)), and in practice it is often a one-dimensional,
discrete and equispaced time series of the form {βn}n∈N .

Although the state x can lie in a higher dimension, the
time series {βn} is one dimensional. Nevertheless, Takens’s
theorem states that by fixing an embedding dimension d �
2m + 1, where m is the dimension of a compact manifold M,
and a time lag τ > 0, then the map �φ,β : M → Rd , given by

�φ,β = (β(x), β(φ(x)), . . . , β(φd−1(x)))

= (β(xt ), β(xt+τ ), β(xt+2τ ), . . . , β(xt+(d−1)τ )),

is an embedding of M, where φd−1 is the composition of
φ d − 1 times and xt is the value of x at time t .

Theoretically, any time lag τ can be used if the noise-free
data are of infinite precision; however, in practice, the choice
of τ is important in the delay reconstruction. In this paper we
use the first minimum of the mutual information function Iε (τ )
for determining a proper value for τ [6]. Figure 3 shows picto-
rially the quantities needed to compute the mutual information
function for a fixed τ . Specifically, the range of the data values
is divided into equispaced bins with resolution ε and a specific
delay value τ is chosen and fixed. The joint probability pi j

of finding point x(t ) in the ith bin and point x(t + τ ) in the
jth bin is then computed by counting the number of points
lying in the cell indexed by i j in Fig. 3 and dividing this count
by the total number of transitions. In this example, we see
that, for instance, p2→5 = 2/13 ≈ 15%, while the marginal
probability density pi for i = 5 is given by pi=5 = 3/13 ≈
23%. Using the probabilities described in Fig. 3, the mutual

FIG. 3. The computation of the mutual information function.
Each box on the right represents the count of the transitions from
the ith strip on the left graph to the jth strip as the gray points on the
time series are traversed from left to right.
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FIG. 4. Process for developing ordinal network from times series with permutation dimension n = 3 and delay τ = 3: (a) permutations
from sliding set si = [xi, xi+τ , xi+2τ , . . . , xi+(n−1)τ ], (b) array of ordered permutations S = [π2, π3, π6, . . .], and (c) directed path in ordinal
partition network from S.

information function can be obtained according to

Iε (τ ) =
∑
i, j

pi j (τ ) ln pi j (τ ) − 2
∑

i

pi ln pi,

where ln(·) is the natural logarithm function. By plotting Iε (τ )
for a range of delays τ , an embedding delay can be chosen by
observing the first minimum in Iε (τ ). This minimum indicates
the first value of τ at which minimum information is shared
between β(x(t )) and β(x(t + τ )). We note that the implemen-
tation that we describe here is the original implementation
described in Ref. [7]; however, an adaptive implementation
can be found in Ref. [83] while an entropy-based approach
can be found in Ref. [84].

The other component in Takens’s embedding is the embed-
ding dimension d , which must be large enough to unfold the
attractor. If this dimension in not sufficient, then some points
can falsely appear to be neighbors at a smaller dimension
due to the projection of the attractor onto a lower dimension.
One of the classical time series analysis tools for finding a
proper embedding dimension is the method of false nearest
neighbors [7]. In this method, it is assumed that an appropriate
embedding dimension is given by d0. Any embedding dimen-
sion d < d0 is therefore a projection from d0 into a lower-
dimensional space. Consequently, some of the coordinates are
lost in this projection and points that are not neighbors in d0

appear to be neighbors in d . The idea is therefore to embed the
time series in spaces with increasingly larger dimension while
keeping track of false neighbors in successive embeddings,
i.e., points that appear to be neighbors due to insufficient
embedding dimension. If the ratio of the false neighbors falls
below a certain threshold at some embedding dimension d ,
then we set d0 ≈ d .

D. Ordinal partition graph

The ordinal partition graph [19,20] is another method
for constructing a graph from a time series. Using a suffi-
ciently sampled time series, an ordered list of permutations
is collected by first finding a set of d-dimensional embedded
vectors vi using a similar algorithm to Takens’s embedding.
More specifically, the set of d-dimensional vectors vi =
[xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ ] uses an embedding delay τ and
motif dimension d . An example of this embedding is shown

in Fig. 4(a) with τ = 3 and d = 3. These parameters were
chosen as they simplify the demonstration and visualization of
the method. However, to automate the method, we suggest that
both τ and d are selected by using permutation entropy (PE)
as defined by Bandt and Pompe [21]. The specific method for
selecting τ and d is explained in Sec. III. By applying vi over
the entire length of the time series, a sequence of vectors V is
generated.

For each vector vi = (x1, . . . , xd ), the associated permu-
tation π is the permutation of the set {1, . . . , d} that satisfies
xπ (1) � xπ (2) � · · · � xπ (d ). Each vector in V is translated into
its associated permutation symbol π j to generate a sequence
of permutations P, where j ∈ Z ∩ [1, n!]. An example of this
process is shown for the first three vectors in Fig. 4(b). Finally,
using the array of permutations P, a directional network is
formed by transitioning from one permutation, represented by
the graph in Fig. 4(c), to another in the sequential order. If we
want to build an unweighted version of this graph, we include
the edge ππ ′ if there is a transition from one permutation to
the next. If we want this graph to be weighted, we set ω(ππ ′)
to be the number of times this transition occurs.

E. Simplicial complexes

A simplicial complex can be thought of as a generalization
of the concept of a graph to higher dimensions. Given a vertex
set V , a simplex σ ⊆ V is simply a collection of vertices. The
dimension of a simplex σ is dim(σ ) = |σ | − 1. The simplex σ

is a face of τ , denoted σ � τ if σ ⊆ τ . A simplicial complex
K is a collection of simplices σ ⊆ V such that if σ ∈ K and
τ � σ , then τ ∈ K . Equivalently stated, K is a collection
of simplices which is closed under the face relation. The
dimension of a simplicial complex is the largest dimension
of its simplices, dim(K ) = maxσ∈K dim(σ ). The d-skeleton
of a simplicial complex is all simplices of K with dimension
at most d , K (d ) = {σ ∈ K | dim(σ ) � d}.

Given a graph G = (V, E ), we can construct the clique
complex

K (G) = {σ ⊆ V | uv ∈ E for all u �= v ∈ σ }.
This is sometimes called the flag complex. The clique com-
plex of the complete graph on n vertices is called the complete
simplicial complex on n vertices.
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FIG. 5. An example of the method used for turning a graph (top left) with pairwise distance information (top middle) into a filtration
(bottom row, shown with thresholded values 0 through 5), and then computing the resulting persistence diagram (top right).

A filtration is a collection of nested simplicial complexes

K1 ⊆ K2 ⊆ · · · ⊆ KN .

See the bottom row of Fig. 5 for an example of a filtration. A
weighted graph gives rise to a filtration that we make use of
extensively. Given a weighted graph G = (V, E , ω) and a ∈
R, we set

Ka = {σ ∈ K (G) | ω(uv) � a for all u �= v ∈ σ }.
Since Ka ⊆ Kb for a � b, this can be viewed as a filtration

Ka1 ⊆ Ka2 ⊆ · · · ⊆ KaN

for any collection a1 � a2 � · · · � aN .
In particular, for this paper, we build a filtration from an

unweighted graph G by the following procedure. First, we
construct the pairwise distance matrix for the vertices of G
using shortest paths. This can be viewed as a weighting on the
complete graph with the same vertex set as G. Thus, it induces
a filtration on the complete simplicial complex K where the
1-skeleton of Ka includes edges between any pair of vertices
u and v for which d (u, v) � a. See Fig. 5 for an example.

F. Homology

Traditional homology [30,31] counts the number of struc-
tures of a particular dimension in a given topological space,
which in our context is a simplicial complex. In this context,
the structures measured can be connected components (zero-
dimensional structure), loops (one-dimensional structure),
voids (two-dimensional structure), and higher-dimensional
analogs as needed.

For the purposes of this paper, we only ever need zero-
and one-dimensional persistent homology so we provide the
background necessary in these contexts. Further, as a note for
the expert, we always assume homology with Z2 coefficients
which removes the need to be careful about orientation.

We start by describing homology. Assume we are given
a simplicial complex K . Say the d-dimensional simplices
in K are denoted σ1, . . . , σ. A d-dimensional chain is a
formal sum of the d-dimensional simplices α = ∑

i=1 aiσi.
We assume the coefficients ai ∈ Z2 = {0, 1} and addition is
performed mod 2. For two chains α = ∑

i=1 aiσi and β =∑
i=1 biσi, α + β = ∑

i=1(ai + bi )σi. The collection of all d-
dimensional chains forms a vector space denoted Cd (K ). The

boundary of a given d-simplex is

∂d (σ ) =
∑

τ≺σ,dim(τ )=d−1

τ.

That is, it is the formal sum of the simplices of exactly one
lower dimension. If dim(σ ) = 0, that is, if σ is a vertex,
then we set ∂d (σ ) = 0. The boundary operator ∂d : Cd (K ) →
Cd−1(K ) is given by

∂d (α) = ∂d

(
∑

i=1

aiσi

)
=

∑
ai∂d (σi ).

A d-chain α ∈ Cd (K ) is a cycle if ∂d (α) = 0; it is a
boundary if there is a (d + 1)-chain β such that ∂d+1(β ) = α.
The group of d-dimensional cycles is denoted Zd (K ); the
boundaries are denoted Bd (K ).

In particular, any 0-chain is a 0-cycle since ∂0(α) = 0 for
any α. A 1-chain is a 1-cycle if and only if the 1-simplices
(i.e., edges) with a coefficient of 1 form a closed loop. It is a
fundamental exercise in homology to see that ∂d∂d+1 = 0 and
therefore that Bd (K ) ⊆ Zd (K ). The d-dimensional homology
group is Hd (K ) = Zd (K )/Bd (K ). An element of Hd (K ) is
called a homology class and is denoted [α] for α ∈ Zd (K )
where [α] = {α + ∂ (β ) | β ∈ Cd+1(K )}. We say that the class
is represented by α, but note that any element of [α] can be
used as a representative so this choice is by no means unique.

In the particular case of zero-dimensional homology, there
is a unique class in H0(K ) for each connected component of K .
For one-dimensional homology, we have one homology class
for each “hole” in the complex.

G. Persistent homology

Persistent homology is a tool from topological data anal-
ysis which can be used to quantify the shape of data. The
main idea behind persistent homology is to watch how the
homology changes over the course of a given filtration.

Fix a dimension d . First, note that if we have an inclusion
of one simplicial complex to another i : K1 ⊆ K2, we have an
obvious inclusion map on the d-chains i : Cd (K1) → Cd (K2)
by simply viewing any chain in the small complex as one in
the larger. Less obviously, this extends to a map on homology
i∗ : Hd (K1) → Hd (K2) by sending [α] ∈ Hd (K1) to the class
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in Hd (K2) with the same representative. That this is well
defined is a nontrivial exercise in the definitions [32].

Given a filtration

K1 ⊆ K2 ⊆ · · · ⊆ KN

we have a sequence of maps on the homology

Hd (K1) → Hd (K2) → · · · → Hd (KN ).

A class [α] ∈ Hd (Ki ) is said to be born at i if it is not in the
image of the map Hd (Ki−1) → Hd (Ki ). The same class dies at
j if [α] �= 0 in Hd (Kj−1) but [α] = 0 in Hd (Kj ).

Given all this information, we construct a persistence di-
agram as follows. For each class that is born at i and dies at
j, we add a point in R2 at (i, j). For this reason, we often
write a persistence diagram by its collection of off-diagonal
points, D = {(b1, d1), . . . , (bk, dk )}. See the top right of Fig. 5
for an example. Note that the farther a point is from the
diagonal, the longer that class persisted in the filtration, which
signifies large scale structure. The lifetime or persistence of
a point x = (b, d ) in a persistence diagram D is given by
pers(x) = |b − d|.

Note that it is possible to have multiple points in a single
diagram of the same form (b, d ) if there are multiple classes
that are born at b and die at d . In this case, we sometimes
employ histograms or annotations to emphasize that a single
point seen in a diagram is actually multiple points overlaid.

Further, any filtration has a persistence diagram for each
dimension d . In this paper, when we wish to emphasize
dimension, we write the diagram as Dd ; here we only use the
one-dimensional diagram.

H. A first example

Here, we begin to construct the pipeline we use via an
example shown in Fig. 5. We start with a graph with |V | =
n = 20 as shown in the top left. We can construct a distance
between each pair of vertices using the path length. Then, a fil-
tration on the full simplicial complex K with n = 20 vertices
is constructed using the clique complex method described at
the end of Sec. II E. Finally, the one-dimensional persistence
diagram is given at the top right. The existence of two points
in the persistence diagram means that two circular structures
existed over the course of the filtration. The first is the large
left loop that can be seen in K1 and persists until it gets filled
in at K4. This is represented by the point (1,4) in the diagram.
The other smaller loop is the right loop that appears in K1, but
is filled in before K5. This is represented by the point (1,5) in
the diagram.

I. Point summaries of persistence diagrams

A common issue with persistence diagrams is that they are
notoriously difficult to work with as a summary of data. While
they are quantitative in nature, determining differences in
structure such as “has a point far from the diagonal” is often a
qualitative procedure. Metrics for persistence diagrams exist,
namely, the bottleneck and p-Wasserstein [85] distances;
however, these objects are not particularly easy to work with
in a statistical or machine learning context. Thus, we pass

FIG. 6. Table of examples showing the lifetime Ln of the single
class (rB, rD ) in the persistence diagram for the pipeline applied to a
cycle with n nodes.

to working with the simplest of featurizations, namely, point
summaries of a given diagram, which we also call scores.

1. Maximum persistence

The first very simple but extremely useful point summary
is maximum persistence. Given a persistence diagram D, the
maximum persistence is simply

maxpers(D) = max
x∈D

pers(x).

In the example of Fig. 5 with D = {(1, 4), (1, 5)}, we have
maxpers(D) = 4. While this is obviously a very lossy point
summary for a persistence diagram, it is quite useful in that,
particularly for applications where the existence of a large
circle is of interest, it often does what we need. See, e.g.,
Refs. [45,86].

2. Periodicity score

Next, we set out to build a point summary which we can
use to measure the similarity of our weighted graph to a cycle
graph which is independent of the number of nodes. If G′ is
an unweighted cycle graph with n vertices, then following the
procedure of Sec. II H using the shortest path metric, we have
that there is exactly one cycle which is born at 1, and fills in
at � n

3�. See the examples of Fig. 6. This means the persistence
diagram D′ has exactly one point (1, � n

3�), and so we denote
the maximum persistence of this diagram as

Ln = maxpers(D′) =
⌈n

3

⌉
− 1.

Then, assume we are given another unweighted graph G with
|V | = n and persistence diagram D. We define the network
periodicity score

P(D) = 1 − maxpers(D)

Ln
. (1)

This score is an extension of the periodicity score in Ref. [51]
to unweighted networks, and it has the property that P(D) ∈
[0, 1], with P(D) = 0 if and only if the input graph G is a
cycle graph. In the example of Fig. 5, we have L20 = 6, so
P(D) = 1 − 4/6 = 1/3.
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3. The ratio of the number of homology classes to the graph order

The next point summary we define is

M(D) = |D|
|V | , (2)

which is the reciprocal of the ratio between the number of
vertices in the network |V |, i.e., the order of the graph, and
the number of classes in the persistence diagram |D|. In the
example of Fig. 5, this is M(D) = 2/20 = 0.1.

We can think of this number as an approximation of the
reciprocal of the number of vertices in each class; however,
this is only an approximation because some classes in 1D
persistence diagrams may share vertices in the network. Note
that for a network with n nodes, the zero-dimensional per-
sistence diagram will always have n − 1 points, and so this
metric is not particularly useful. In this paper, we only use
this summary for one-dimensional persistence diagrams.

The logic behind this heuristic is that for a periodic signal
we would expect to see a small number of 1D homology
classes in comparison to a chaotic time series. Therefore,
for two networks of similar order but with different dynamic
behavior, i.e., one is chaotic and one is periodic, the ratio
M(D) for the periodic time series will be smaller than its
chaotic counterpart.

4. Normalized persistent entropy

Persistent entropy is a method for calculating the entropy
from the lifetimes of the points in a persistence diagram,
inspired by Shannon entropy. This summary function, first
given by Chintakunta et al. [77], is defined as

E (D) = −
∑
x∈D

pers(x)

L (D)
log2

(
pers(x)

L (D)

)
, (3)

where L (D) = ∑
x∈D pers(x) is the sum of lifetimes of points

in the diagram. In the example of Fig. 5 and Sec. II H, D =
{(1, 4), (1, 5)}, so L (D) = 3 + 4 = 7. Thus for this example,
E (D) = 0.985.

However, we cannot easily compare this value across dif-
ferent diagrams with different numbers of points. To deal with
this issue, we provide the following normalization heuristic.
Specifically, we normalize E as

E ′(D) = E (D)

log2(L (D))
. (4)

This normalization allows for an accurate measurement of
the entropy even when there are few significant lifetimes.
Returning to the example of Fig. 5, E ′(D) = 0.351.

III. METHOD

In this section, we discuss the specifics of the method
studied for turning a time series into a persistence diagram
following Fig. 2.

We have two initial choices for how to turn a time series
into a network. In the case of the Takens embedding, we
determine the embedding dimension using false nearest neigh-
bors [7], and determine the lag using the mutual information
function [6]. We then construct the k-NN graph for these
points. Following Khor and Small [17], we use k = 4.

The second method for constructing a network is the
ordinal partition network. As mentioned in Sec. II D, this
also requires a decision of dimension and lag, which we
determine following Reidl et al. [87]. Specifically, we ini-
tially fix d = 3, and plot the permutation entropy H (d ) =
−∑

p(πi ) log2 p(πi ), where p(πi ) is the probability of a
permutation πi, for a range of τ values. In the resulting τ

versus H curve we choose the value of τ at the location of
the first prominent peak as the lag parameter. The dimension
d = 3 is used because it was shown in Ref. [87] that the first
peak of H (d ) occurs at approximately the same value of τ

independent of the dimension d for d ∈ [3, 4, . . . , 8] [87].
The logic behind this approach is that when the time series
points are strongly correlated due to the insufficient unfolding
of the trajectories, only a few regions of the state space are
visited resulting in low values for H . As τ is increased,
H increases and it reaches a maximum when the trajectory
unfolding leads to the appearance of a large subset of the
possible d! motifs. We only include vertices in the graph for
permutations which have been visited, which keeps us from
needing to work with the full set of d! which quickly becomes
computationally intractable.

Using the identified delay τ at the first maximum of
H (d = 3), we then define the permutation entropy per symbol

h′(d ) = 1

d − 1
H (d ), (5)

where we make d a free parameter that we are seeking to
determine. The dimension for the ordinal partition network is
obtained by plotting h′(d ) for d ∈ [3, 4, . . . , 8] and choosing
the value of d that maximizes h′(d ).

Once the graph is constructed, we compute shortest
paths using all_pairs_shortest_path_length from the
PYTHON NetworkX package. Finally, we compute the persis-
tence diagram using the PYTHON wrapper Scikit-TDA [88] for
the software package RIPSER [89].

Rössler system example

We demonstrate the method on the Rössler system and the
ordinal partition network representation. The Rössler system
is defined as

dx

dt
= −y − x,

dy

dt
= x + ay,

dz

dt
= b + z(x − c). (6)

Equations (6) were solved at a rate of 20 Hz for 1000 s
with parameters a = 0.41, b = 2.0, and c = 4.0, which results
in a three-period, periodic response. Only the last 200 s
[see Fig. 7(a)] are used to avoid the transients.

We form a permutation sequence from the time series
using a time delay τ = 40 and dimension d = 6, which
were found using Multi-scale Permutation Entropy (MPE) as
described in Sec. III. The resulting permutation sequence is
shown in Fig. 7(b). Next, we form the unweighted ordinal
partition network shown in Fig. 7(c). Note that this graph
is drawn using the electrical-spring layout function provided
by NetworkX since the permutations do not have a natural
embedding into Euclidean space. Using the network, we
build the distance matrix in Fig. 7(d). Finally, by applying
persistent homology to the distance matrix, we obtain the
persistence diagram in Fig. 7(e). However, Fig. 7(e) does not
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FIG. 7. Periodic Rössler system example: (a) periodic
(three-period) time series, (b) resulting permutation sequence
from embedded time series, (c) ordinal partition network drawn with
a spring layout, (d) pairwise distance matrix using the shortest path
metric, and (e) the resulting persistence diagram with (f) a histogram
showing multiplicities of points in the diagram at left.

show the possibility of point multiplicity in the persistence
diagram. To demonstrate this occurrence we utilize a his-
togram of the number of classes at each lifetime as shown
in Fig. 7(f). This shows there are actually two points in the
persistence diagram with lifetime 1. The point summaries de-
scribed in Sec. II I are calculated as M(D1) = 0.06, P(D1) =
0.33, and E ′(D1) = 0.32.

IV. RESULTS

This section compares the persistence-based point sum-
maries and the standard network scores, and illustrates the
ability of these scores to detect dynamic state changes. Specif-
ically, we compare the point summaries M(D1), P(D1), and
E ′(D1) to some commonly used network quantitative charac-
teristics such as the mean out degree 〈k〉, the out degree vari-
ance σ 2, and the number of vertices, N . These comparisons
are shown in Sec. IV A for a family of trajectories from the
Rössler system, while Sec. IV B tabulates the different scores
for a variety of dynamical systems. In Sec. IV C we contrast

the noise robustness of our approach to the standard network
scores for ordinal partition networks.

A. Dynamic state change detection on the Rössler system

Letting the parameter a in Eqs. (6) vary in the range
0.37 < a < 0.43 in steps of �a = 0.001 and setting β = 2
and γ = 4, we obtain 1201 time series of length 1000 s for the
state x. We only retain the last 400 s of the simulation to allow
the trajectory to settle on an attractor. For the construction of
the corresponding k-NN networks, we sample the time series
at 2 Hz in order to capture a sufficient number of oscillations
while avoiding overly large point clouds for computing per-
sistence. For the Takens embedding we use the mutual infor-
mation function approach and the nearest-neighbor method,
respectively, to choose the parameters τ = 4 and d = 7.

For constructing the ordinal partition networks we use the
higher sampling frequency of 20 Hz, and we use MPE to
select τ = 40 and d = 6. We found that a higher sampling
rate for ordinal partition networks and the resulting longer
time series are not an issue due to the maximum number
of vertices not being dependent on the length of the time
series, but rather on the motif dimension d and time series
complexity. Furthermore, a higher sampling rate tends to
improve the detection of periodic and chaotic time series for
ordinal partition networks.

The resulting point summaries were found for both ordinal
partition networks (left column plots of Fig. 8) and k-NN of
the Takens embedding networks (right column plots of Fig. 8).
The top two graphs in Fig. 8 show the bifurcation diagram
depicting the local extrema of x and the Lyapunov exponent
[90], respectively. The periodic regions (shown as the regions
between vertical, dashed green lines with a solid green line be-
low) were identified by investigating the bifurcation diagram
and the Lyapunov exponent plots.

For the ordinal networks, the left column plots of Fig. 8
show a significant drop in all six scores for the large periodic
window corresponding to approximately 0.409 � a � 0.412.
There are also less pronounced drops in these scores for the
other shorter periodic windows. These drops are especially
evident for 〈k〉, E ′(D1), and P(D1), where the scores sig-
nificantly decrease in comparison to their surrounding val-
ues. However, some scores such as 〈k〉 are not normalized,
e.g., so that 0 � 〈k〉 � 1. Given one time series, and not a
parametrized set of series, this makes it difficult or even im-
possible to distinguish between chaotic and periodic regions.
On the other hand, the normalized scores that we introduce in
this paper, E ′(D1) and P(D1), suggest periodic regions when
E ′(D1) < 0.5 and P(D1) < 0.75. It should be noted that the
difference between chaotic and periodic regions, as shown in
Sec. IV C, starts degrading as noise levels are increased.

For the k-NN Takens embedding networks, the right col-
umn plots of Fig. 8 show a significant drop in P(D1), M(D1),
and E ′(D1) during periodic windows. However, for the tra-
ditional graph scores 〈k〉 and σ 2 this drop does not clearly
correspond to the beginning and end of the periodic window.
Further, for the smaller periodic windows interspersed with
the chaotic regions we found that 〈k〉, σ 2, and M ′(D1) are too
noisy to identity the dynamic state changes in these areas. In
contrast, our scores P(D1) and E ′(D1) retain the ability to
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FIG. 8. Rössler system bifurcation for 0.37 < a < 0.43 with steps of 0.001 solved using parameters provided in Eqs. (6). Left column
plots include point summaries calculated from ordinal partition networks with parameters τ = 40 and d = 6; right column plots show the
same results for the k-NN networks generated from the Takens embedding with parameters τ = 4 and d = 7. The figure compares point
summaries P(D1), M(D1), and E ′(D1) with the Lyapunov exponent λ [90] and some common network parameters including the number of
vertices, N , mean out degree 〈k〉, and out degree variance σ 2.
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TABLE I. A comparison between persistence diagram point summaries M(D1), P(D1), and E ′(D1) for detecting differences in the networks
generated from periodic (Per.) and chaotic (Ch.) time series using both k-NN graphs and ordinal partition graphs. NA, not available.

k-NN graph from Takens’s embedding Ordinal partition graph

E ′(D1) M(D1) P(D1) E ′(D1) M(D1) P(D1)

System or Data Ref. Per. Ch. Per. Ch. Per. Ch. Per. Ch. Per. Ch. Per. Ch.

Chua circuit Sec. A 1 0.00 0.80 0.001 0.19 0.54 0.89 0.21 0.72 0.051 0.19 0.42 0.88
Lorenz Sec. A 2 0.04 0.84 0.005 0.16 0.64 0.93 0.18 0.95 0.026 0.36 0.28 0.96
Rössler Eqs. (6) 0.00 0.85 0.001 0.18 0.50 0.94 0.00 0.89 0.036 0.28 0.33 0.85
Coupled Lorenz-Rössler Sec. A 3 0.00 0.82 0.003 0.16 0.46 0.94 0.00 0.87 0.033 0.35 0.56 0.92
Bidirectional Rössler Sec. A 4 0.00 0.76 0.004 0.13 0.55 0.87 0.25 0.91 0.064 0.29 0.40 0.92
Mackey-Glass Sec. A 5 0.00 0.67 0.001 0.07 0.56 0.93 0.30 0.96 0.077 0.37 0.25 0.93
Logistic map Sec. A 8 NA NA NA NA NA NA 0.00 0.93 0.125 0.70 0.00 0.91
Henon map Sec. A 9 NA NA NA NA NA NA 0.00 0.88 0.111 0.48 0.00 0.96
ECG Sec. A 7 0.95 0.86 0.282 0.14 0.97 0.97 0.82 0.89 0.268 0.45 0.92 0.97
EEG Sec. A 6 0.96 0.94 0.627 0.33 0.99 0.98 0.89 0.84 0.513 0.31 0.97 0.93

distinguish between dynamics regimes, and for k-NN net-
works of Takens embedding we suggest tagging the time
series as periodic when E ′(D1) < 0.5 and P(D1) < 0.7.

B. Tabulated results

This section uses a variety of dynamical systems to validate
the observations we made for the Rössler system in Sec. IV A
related to the point summaries E ′(D1), M(D1), and P(D1) that
we introduced in Sec. II I. The results for each system when
using ordinal partition networks and the k-NN network from
Takens’s embedding are provided side by side in Table I. The
model and time series information for all of these systems are
provided in the Appendix. The table can be categorized into
three types of dynamical systems: (1) systems of differential
equations (Chua circuit, Lorenz, Rössler, coupled Lorenz-
Rössler, bidirectional Rössler, and Mackey-Glass equations),
(2) discrete-time dynamical systems (logistic map and Hénon
map), and (3) electrocardiogram (ECG) and electroencephalo-
gram (EEG) signals. The paragraphs below discuss the results
for each one of these systems.

1. Systems of differential equations

As shown in Table I, our point summaries from both net-
works yield distinguishable differences between periodic and
chaotic time series. The k-NN graph results in Table I show
that periodic time series have E ′(D1) < 0.5, M(D1) < 0.15,
and P(D1) < 0.7. Similarly, the ordinal partition graph scores
in Table I show that periodic time series have E ′(D1) < 0.5,
M(D1) < 0.07, and P(D1) < 0.75.

2. Discrete dynamical systems

The results for the discrete dynamical equations in Table I
show distinguishable differences between periodic maps in
comparison to chaotic maps when using ordinal partition
networks. Takens’s embedding was not applied to the discrete
dynamical systems, and only the ordinal partition network
results are reported here because working with these networks
is more natural for maps.

3. EEG and ECG results

The point summary results from real world data sets (ECG
and EEG) shown in Table I have inherent noise, which
causes the differences between the compared states to be
less significant as shown in Fig. 9. The k-NN graph results
in Table I do not show a significant difference between the
two groups for either ECG or EEG data. This is most likely
due to the sensitivity of Takens’s embedding to noise and
perturbations. However, we did find a difference between
epileptic and healthy patients through the networks formed
by ordinal partitions for ECG [91] and EEG [92] data. IV C
discusses the effect of additive noise on the point summaries
in more detail. As a note, there have been other methods for
characterizing EEG data using TDA and persistent entropy
[82], but our method is different from prior works because
we apply persistent homology to the generated networks.

C. Effects of additive noise

In this section we investigate the noise robustness of the
point summaries in comparison to some common network
parameters—mean out degree 〈k〉, out degree variance σ 2,
and the number of vertices, N . The ordinal partition networks
are based on time series from the Rössler system defined
in Eqs. (6) with b = 2.0, c = 4.0, and either a = 0.41 or
a = 0.43 for a periodic or chaotic response, respectively.

To make comparisons on the noise robustness we add
Gaussian noise to the signal and calculate the point sum-
maries and network parameters at various signal-to-noise
ratios (SNR) for both periodic and chaotic Rössler systems.
The chosen SNR values were all the integers from 1 to 50, and
at each SNR value we obtain 25 realizations of noisy signals.

To determine the 68% confidence interval at each SNR,
we repeat the calculation of the point summaries and network
parameters for all noise realizations at each SNR level, and
we set our confidence interval to x(SNR) ± s(SNR) where
x(SNR) and s(SNR) are the sample average and sample stan-
dard deviation, respectively, at a specific SNR value. Figure 9
shows the mean values and confidence intervals for each SNR.
To assess the ability of point summaries to assign a distin-
guishing score to a periodic versus a chaotic system in the
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FIG. 9. Average point summaries and network parameters for
varying signal-to-noise ratios (SNRs) from Gaussian noise added to
time series generated from periodic and chaotic Rössler systems. For
each SNR, 25 separate samples are taken to provide mean values and
standard deviations, which are shown as the error bars.

presence of noise, we check for an overlap in the confidence
intervals for the periodic and chaotic results at each SNR. If
for a particular point summary there is an overlap between
the scores for periodic and chaotic time series, then that point
summary is not effective in distinguishing the dynamics at
that specific SNR. Table II summarizes the noise robustness
by providing the lowest SNR at which each point summary

TABLE II. Noise robustness comparison for persistence diagram
point summaries and network parameters using ordinal partition
network.

Point summary or network
parameter Lowest distinguishing SNR

E ′(D1) 14
M(D1) 19
P(D1) 20
〈k〉 29
σ 2 29
N 8

and network parameter no longer has an overlap between the
periodic and chaotic confidence intervals. This result shows a
lower capable SNR for the persistence-based point summaries
than the mean out degree 〈k〉 and variance σ 2. Another trend
that should be noted is the reduction in difference between
periodic and chaotic time series for high levels of noise.
This should be taken into account when applying the point
summaries to real world data with intrinsic noise.

V. CONCLUSIONS

In this paper we develop an alternative framework for
time series analysis using TDA. We investigate two methods
for embedding a time series into an unweighted graph: (1)
utilizing standard Takens theorem techniques, then building
a k-NN graph; and (2) using ordinal partition networks to turn
(visited) parts of the state space into symbols, and obtaining
a graph by tracking sequential transitions between these sub-
spaces. We then describe how to obtain the 1D persistence
diagram corresponding to the graph by defining a filtration
on the full simplicial complex using the pairwise distances
between the graph vertices. The obtained persistence diagram
then allows the application of tools from TDA to gain insights
into the system’s underlying dynamics. Specifically, a graph
embedding of a periodic time series has long connected net-
work loops, while a chaotic time series has many short loops.
These characteristics allow persistent homology to accurately
distinguish periodic and chaotic time series by measuring the
shape of the networks.

In addition to describing this approach for time series
analysis, another contribution of this work is the introduction
of new point summaries for extracting information about the
dynamic state (periodic or chaotic) from time series measure-
ments. Specifically, we extend the periodicity score P(D1),
which was defined on Rn in Ref. [51], to abstract graph
spaces. We also define a heuristic M(D1) which represents an
approximation of the ratio of the number of homology classes
to the graph order. The last point summary we define is a
normalized version of the persistence entropy E ′(D1) [77].

We found that these point summaries outperform standard
graph scores (see Fig. 8). Specifically, our point summaries
are more capable of distinguishing shifts in the dynamic
behavior than their traditional graph scores counterpart. Fur-
ther, our point summaries, especially the two normalized
scores P(D1) and E ′(D1), enable making inferences about
the dynamic behavior from isolated time series, as opposed
to tracking changes in the scores of parametrized time series
some of which belong to a known dynamic regime. For
example, applying our point summaries to ordinal partition
networks from a variety of dynamical systems in Table I,
we observed that that periodic time series typically have
E ′(D1) < 0.5, M(D1) < 0.15, and P(D1) < 0.7. Similarly,
using the networks obtained from k-NN embedding shows
that periodic time series have E ′(D1) < 0.5, M(D1) < 0.07,
and P(D1) < 0.75 (see Table I). However, for both discrete
dynamical systems as well as ECG and EEG data, only the
persistent homology of the ordinal partition network was able
to distinguish between the two data sets. Additionally, we
showed in Fig. 9 that the point summaries of the ordinal
partition networks are noise robust down to an SNR of ap-
proximately 15 with additive Gaussian noise. In future work,
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to develop more precise ranges for periodic point summary
scores and to improve the dynamic state detection, it would
be beneficial to investigate the statistical significance of these
point summaries as well as the correlation between the point
summaries for the k-NN and ordinal partition networks.
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APPENDIX: DYNAMICAL SYSTEM EXAMPLES

1. Chua circuit

The Chua circuit used is defined as
dx

dt
= α(y − x − f (x)),

dy

dt
= γ (x − y + z), (A1)

dz

dt
= −βy,

where f (x) is defined as f (x)=m1x+ 1
2 (m0+m1)(|x+1|−

|x − 1|), with m0 = −8/7 and m1 = −5/7. Additionally, the
Chua circuit had a sampling rate of 50 Hz with parameters
α = 15.6, γ = 1.0, and β = 33.80 for a periodic response or
β = 33.55 for a chaotic response. This system was solved for
500 s and the last 100 s were used. The generated time series
were down-sampled to 7 Hz for k-NN networks.

2. Lorenz system

The Lorenz system used is defined as

dx

dt
=σ (y−x),

dy

dt
=x(ρ−z)−y,

dz

dt
=xy−βz. (A2)

The Lorenz system had a sampling rate of 100 Hz with param-
eters σ = 10.0, β = 8.0/3.0, and ρ = 180.1 for a periodic
response or ρ = 181.0 for a chaotic response. This system
was solved for 100 s and the last 24 s were used. The generated
time series were down-sampled to 35 Hz for k-NN networks.

3. Coupled Lorenz-Rössler system

The coupled Lorenz-Rössler system used is defined as

dx1

dt
= −y1 − z1 + k1(x2 − x1),

dy1

dt
= x1 + a2y1 + k2(y2 − y1),

dz1

dt
= b2 + z1(x1 − c2) + k3(z2 − z1),

dx2

dt
= σ (y2 − x2),

dy2

dt
= λx2 − y2 − x2z2,

dz2

dt
= x2y2 − b1z2, (A3)

with σ = 10, b1 = 8/3, b2 = 0.2, c2 = 10, k1 = 1, k2 = 10,
k3 = 0, λ = 28, and a2 = 0.25 for a periodic response or
a2 = 0.51 for a chaotic response. This was solved for 400 s
with a sampling rate of 50 Hz. Only the last 200 s of the x
solution were used in the analysis. The generated time series
were down-sampled to 2 Hz for k-NN networks.

4. Bidirectional coupled Rössler system

The bidirectional Rössler system is defined as

dx1

dt
= −w1y1 − z1 + k(x2 − x1),

dy1

dt
= w1x1 + 0.165y1,

dz1

dt
= 0.2 + z1(x1 − 10),

dx2

dt
= −w2y2 − z2 + k(x1 − x2),

dy2

dt
= w2x2 + 0.165y2,

dz2

dt
= 0.2 + z2(x2 − 10), (A4)

with w1 = 0.99, w2 = 0.95, and k = 0.0544 for a periodic
response or k = 0.0558 for a chaotic response. This was
solved over 4000 s with a sampling rate of 10 Hz. Only the
last 400 s of the x solution were used in the analysis. The
generated time series were down-sampled to 1 Hz for k-NN
networks. The generated time series were down-sampled to
2 Hz for k-NN networks.

5. Mackey-Glass delayed differential equation

The Mackey-Glass delayed differential equation is defined
as

x(t ) = −γ x(t ) + β
x(t − τ )

1 + x(t − τ )n (A5)

with τ = 2, β = 2, γ = 1, and n = 7.00 for a periodic re-
sponse or n = 9.65 for a chaotic response. This was solved
for 400 s with a sampling rate of 100 Hz. Only the last 300 s
of the x solution were used in the analysis. The generated time
series were down-sampled to 2.5 Hz for k-NN networks and
25 Hz for ordinal partition networks.

6. EEG data

The EEG signal was taken from Andrzejak et al. [92]. More
specifically, the first 2000 data points from the EEG data of a
healthy patient from set A, file Z-093, was used as the periodic
series, and the first 2000 data points from the EEG data of a
patient during active seizures from set E, file S-056, was used
as the chaotic series. The generated time series were down-
sampled to 80 Hz for k-NN networks.

7. ECG data

The electrocardiogram (ECG) data were taken from
SCIPY’s misc.electrocardiogram data set. These ECG data
were originally provided by the MIT-BIH Arrhythmia
Database [91]. We used data points 3000 to 4500 during
normal sinus rhythm as the periodic time series and data

022314-12



PERSISTENT HOMOLOGY OF COMPLEX NETWORKS FOR … PHYSICAL REVIEW E 100, 022314 (2019)

points 8500 to 10 000 during ventricular contractions as the
chaotic time series.

8. Logistic map

The logistic map was generated as

xn+1 = rxn(1 − xn), (A6)

with x0 = 0.5 and r = 3.50 for periodic results or r = 3.95
for chaotic results. Equation (A6) was solved for the first 500
data points.

9. Hénon map

The Hénon map was solved as

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn, (A7)

where b = 0.3, x0 = 0.1, y0 = 0.3, and a = 1.05 for a peri-
odic response and a = 1.4 for a chaotic response. This system
was solved for the first 500 data points of the x solution.
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