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Aging in transport processes on networks with stochastic cumulative damage
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In this paper we explore the evolution of transport capacity on networks with stochastic incidence of damage
and accumulation of faults in their connections. For each damaged configuration of the network, we analyze
a Markovian random walker that hops over weighted links that quantify the capacity of transport of each
connection. The weights of the links in the network evolve due to randomly occurring damage effects that reduce
gradually the transport capacity of the structure. We introduce a global measure to determine the functionality
of each configuration and how the system ages due to the accumulation of damage that cannot be repaired
completely. Then, by assuming a minimum value of the functionality required for the system to be “alive,” we
explore the statistics of the lifetimes for several realizations of this process in different types of networks. Finally,
we analyze the characteristic longevity of such a system and its relation with the “complexity” of the network
structure. One finding is that systems with greater complexity live longer. Our approach introduces a model of
aging processes relating the reduction of functionality with the accumulation of “misrepairs” and the lifetime of

a complex system.
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I. INTRODUCTION

One of the main features observed in many “complex
systems” such as living organisms [1-5], social systems [6],
corporations, and civilizations [7] is that these systems ex-
hibit aging and a limited lifespan [8]. These systems are
continuously subjected to external damage exposure. In or-
der to “survive,” the system needs continuously respond to
damage impact with “reparation processes” maintaining both
immediate and long-term survival. The reparation process in a
complex system is performed under a time constraint that the
functionality of the entire system during the reparation has to
be maintained. Due to this time constraint of the reparation
process, when the damage impact is “too severe,” the system
is not able to reestablish the original undamaged structure but
generates a repaired structure with altered properties a so-
called “misrepair.” Simply speaking the misrepair mechanism
can be considered as a compromise between two needs: the
reparation as good as possible and the reparation as fast
as necessary. In many cases, the alteration in a misrepaired
structure compared to the initial undamaged structure may be
very “small,” and the misrepair may be even “close” to perfect
reparation [9].

Therefore, the mechanism of misrepair guarantees the
immediate survival as a result of a reparation process that
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takes place sufficiently fast in order to continuously main-
tain functionality and avoiding fatal damage consequences.
However, the price to be paid of this fast reparation process
is a misrepaired altered structure with reduced functionality
compared to the initial undamaged structure.

Now imagine a living being is continuously exposed to
damage impact where as a result continuously misrepairs are
generated. As a consequence gradual accumulation of misre-
pairs is taking place in the organism deteriorating gradually
its functionality [1,9]. The accumulation of misrepairs has
been suggested to explain several aging phenomena in living
beings, and it has been conjectured that these mechanisms
might hold in a wider class of certain complex systems [9-11].
The occurrence of misrepair and as a consequence aging
hence are necessary for immediate survival. Namely, without
aging, there would be no immediate survival upon damage
impact, and blocking the aging process would mean blocking
the reparation responses in the complex system. Therefore,
aging and final death are the inevitable prizes to be paid to
have a certain finite lifespan [9,11].

In this paper, we model the aging process of a complex
system that is governed by an “accumulation of misrepairs”
mechanism. We emphasize that the term “accumulation” is
not to be understood in a linear sense, i.e., as a simple su-
perposition of “misrepaired” structures. We describe the com-
plex system in the present paper as an undirected connected
weighted network. Due to the lack of a precise definition of
the notion of complexity, we compare the aging process in
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different kinds of networks with different topologies allowing
to distinguish their complexities qualitatively. We assume the
complex system to be “alive” when all parts of the network
can communicate with each other in a sufficiently short time.
We describe the ability of communication of the network
by its transport capacity modeled by a random walker that
navigates through the network. We assume that the complex
system is alive when a global quantity that describes the trans-
port capability of the structure is greater than a certain critical
threshold. Then the communication in the system is assumed
to be fast enough to guarantee functionality to operate. In the
initial configuration of the system, we assume the network to
be a “perfect structure” described by an undirected connected
network, and this structure is gradually altered by progressing
accumulation of misrepairs. One main outcome of our model
is that increased complexity increases the lifespan of a system.

II. TRANSPORT ON NETWORKS WITH
CUMULATIVE DAMAGE

In this section, we introduce a phenomenological model
for aging processes in a complex system represented by a
network. The model relies on three characteristics: (1) We
consider a network for which the nodes and connections
contribute collectively to its global functionality, which in-
cludes transport processes [12,13], synchronization [14], and
diffusion [15,16], among others [17]. The capacity of this
structure to perform these functions is measured by a global
quantity in a determined configuration (state) of the system.
(2) The entire system is subjected to stochastic damage that
reduces the functionality of the links affecting the global
activity, and this detriment is cumulative. (3) We compare the
global functionality of the system with the initial state (with
optimal conditions and no damage) and define a threshold
value for the functionality required for the system to operate,
1.€., to be alive.

The three features may exist in different complex systems.
The gradual deterioration of the global functionality resulting
from the accumulation of misrepairs in a complex system is
the subject of the model to be developed and explored in the
present section. The model incorporates the observed phe-
nomena of self-amplification in the occurrence of misrepairs;
i.e., a structure that is already altered by misrepairs is more
likely to “attract” further misrepairs [18]. We also account
for the observation that there are two temporal scales. One
is the “fast” timescale of functional operation; for example,
the temporal evolution of a random walk. The second “slow”
timescale is where the dynamics of accumulation of mis-
repairs and aging take place. These assumptions reflect the
observed fact that functions in a living organism may take
seconds or minutes, whereas aging changes in living beings
may take years.

A. Network structure and cumulative damage

We consider undirected connected networks with N nodes
i=1,...,N. The topology of the network is described by an
adjacency matrix A with elements A;; = Aj;; =1 if there is
an edge between the nodes i and j and A;; = 0 otherwise; in
particular, A; = 0 to avoid lines connecting a node with itself.

The degree of the node i is the number of its neighbor nodes
and given by k; = Zﬁv:l A;;. In this structure, we denote the
set of nodes as V and the set of lines (links, edges) £ with
elements (7, j). For each pair in &£, the corresponding element
of the adjacency matrix is non-null. Due to the symmetry
of the adjacency matrix (i, j) is equivalent to (j, 7). In the
following, we denote as |£| the total number of different lines
in the network.

Additionally to the network structure, the global state of the
system at time 7 =0, 1,2, ... is characterized by a N x N
symmetric matrix $2(7T") with elements 2;;(T) = Q;;(T) > 0
and Q;(T) = 0, which describe weighted connections be-
tween the nodes. The matrix (7") contains information of the
state of the edges. Now, in order to capture in the model the
damage impact affecting the complex system, we introduce
a variable T as a measure of the number of damage hits
in the links of the network. T can also be conceived as a
time measure if we assume constant damage impact rate, i.e.,
successive damage events occur with a constant difference of
times AT = 1. We introduce for each line (i, j) € £ arandom
integer variable h;;(T') where h;;(T) — 1 counts the number
of random faults that exist in this link at time 7. The values
h;j(T ) for all the lines are numbers that evolve randomly, and a
new fault in the link (7, j) appears at time T with a probability
7;;(T), which is given by

h,»j(T - 1)
Z(l,m)es By (T — 1)

for T =1, 2, ... with the initial condition 4;;(0) = 1, i.e., no
faults exist for all the edges at T = 0 (“birth” of the complex
system). The relation (1) indicates the probability for the event
that at time T the number of faults £;;(T) = h;;(T — 1) + 1
are increased by one. For simplicity in our analysis and to
maintain the network undirected, we assume A;;(T') = h;;(T)
and also 7;;(T') = m;;(T). With Eq. (1) at T = 1 is randomly
generated the first hit (fault) for any selected line (i, j) with
equal probability. The occurrence of the second faultat 7 = 2
depends on the previous configuration and so on. An essential
feature of the probabilities in Eq. (1) is that they produce
preferential damage if a link has already suffered damage in
the past. A link has a higher probability to get a fault with
respect to a line never being damaged. Such preferential ran-
dom processes have also been explored in different contexts
in science; see Ref. [19]. In Appendix A we present a detailed
analysis of how Eq. (1) produces a hierarchical distribution of
damage in the lines.

The choice of generating law of faults (1) is based on
the observation of aging changes in living beings. Develop-
ment of aging changes such as age spots is self-amplifying
and inhomogeneous. Age spots develop in this way because
misrepaired structures have increased damage sensitivity and
reduced reparation efficiency [11,18].

We aim to describe how the structure reacts to the damage
hits occurring randomly to the lines. We describe the effects of
the damage by using the information in the matrix of weights
Q(T). In terms of the values h;;(T ), the matrix £(7T") defines
the global state of the network at time 7 through the elements
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where « > 0 is a real valued parameter that quantifies the
effect of the damage in each link. We call « the misrepair
parameter since it describes the capacity of the system to
repair a damage in the links: In the limit « — O the system
responds with perfect reparation with ;;(T) — A;; as in a
perfect undamaged structure, and the effect of the stochasti-
cally generated faults is null. On the other hand, in the limit
o — 00, a hit in a line is equivalent to its removal from
the network. This limit corresponds to a complex system
without repair capacity. The fault accumulation dynamics
described by Eq. (1) together with the “misrepair equation”
(2) is therefore able to mimic the phenomena related to aging
processes observed in living beings [1,9].

B. Transport and global functionality

In the above described system the random walk in the
network with discrete steps at times t = 0, 1, ... takes place
at a significantly smaller timescale as the characteristic time
interval AT of the damage impacts. For each configuration
of the network weights 2(7") the walker eventually visits all
nodes in the structure that changes very slowly with time
T. In a determined configuration at time 7, the transition
probability of the random walker to pass from node i to node
Jj is given by

Q;;(T)
> Que(T)
We assume that the random walker is Markovian and gov-
erned by a master equation that describes the temporal evolu-
tion as well as the exploration of the network in the configu-
ration at time 7 (see Appendix B for details).

In terms of the random walker defined in Eq. (3), we can
measure the global transport capacity of the structure by using
the characteristic time (7' ), which is defined as [20,21]

N

1
o) =+ > (), )

i=1

wi (T) = 3)

with [20-22]

®)

=3 L e
l = 1 =2(T) (i1 (T (1 (T)]i)

where {)»,-(T)}fy: , are the eigenvalues of the transition ma-
trix W(T') with elements given by Eq. (3) [we always de-
note A;(7)=1]. In the same way, we denote as |¢;(T))
and (¢;(T)| its respective right and left eigenvectors (i =
1,2,...,N).

Therefore, for each global configuration at time 7 we
have the transition probability matrix W(T'), and by using its
eigenvalues and eigenvectors we determine the characteristic
time in Eq. (4) that quantifies the capacity of transport of the
system. To indicate explicitly that this characteristic time de-
scribes the transport in the global configuration of the system
at time 7, we denote the quantity in Eq. (4) as (7). This
quantity gives an estimate of the average number of steps the
walker needs to reach any site of the network (see Appendix
B) and is therefore an important measure to characterize the
capacity of a random walker to visit the nodes of a network at
a determined configuration at time 7 [20,22].

In particular, for the initial configuration at 7 = 0, the ele-
ments of the matrix of weights satisfy €;;(0) = A;;; therefore,
in this case, the random walker follows the transition matrix
W(0) for a normal random walk in a network with w;_, ;(0)
given by [22]

) = 2 (6)
Wi = —.
J ki
For this particular random walk strategy, we denote the global
time 7(7) in Eq. (4) as

T = ‘E(O) (7)

Finally, we define the ‘functionality’ /(T) that quantifies the
global transport capacity of the network at time T as

T
o(T)

The functionality F(T) characterizes globally the effect
of the damage suffered by the whole structure and how
evolves the capacity of a random walker to explore the net-
work. The smaller the t(7") (i.e., the higher the transport
capacity), the higher the functionality. Since the time 7(7) >
7o in the damaged structure is greater than in the undamaged
structure, we have F(T) < 1 (equality holds only in the
undamaged state).

An intuitive interpretation of the degradation of transport
capacity in the network is the following. With increasing time
T a large number of very weakly connected edges (u, v)
containing large fault numbers 4, > 1 are generated with
Quu(T) ~ [h,y(T)]* — 0. As a consequence an increasing
number of weakly connected or quasidisconnected regions
emerge with low transition probabilities between these weakly
connected parts. The walker hence remains trapped for many
steps in these regions, which considerably increases the global
characteristic time the walker needs to reach any node of
Eq. (4). This is also reflected by the fact that for each of
these weakly connected regions an eigenvalue A — 1 close to
one emerges in the transition matrix, which generates singular
behavior in the sums of Eq. (5).

In Fig. 1 we illustrate the concepts introduced in this
section for a network with N = 10 nodes. We generate ran-
dom hits in the lines of this network at each time T =
1,2,...,100. The probability to generate a fault at time T
in the line (i, j) is proportional to the previous configuration
given by h;;(T — 1) in Eq. (1). By using Monte Carlo simula-
tions, we recreate the damage in three different realizations.
The values of A;; in the lines are represented with colors
codified in the color bar, whereas the respective widths reflect
their capacity of transport given by €;;(T") in Eq. (2) with the
parameter o = 2. For each configuration of the system, we
calculate the transition probability matrix W(T") in Eq. (3) by
using Eq. (2) to obtain numerically the time 7(7) of Eq. (4).
Finally, the relation between t(0) and t(7') allows us to
establish the global functionality F(7') in Eq. (8), a quantity
that evolves with T'. All this is shown in Fig. 1 for different
realizations, where we depict the configurations and function-
ality at 7 = 0, 25, 50, 100. In the Supplemental Material, we
present videos with the complete simulations [23]. In general,
we observe that the configurations at 7 = 100 differ in each
realization as well as their global functionality.

F(T) =

®)
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FIG. 1. Monte Carlo simulation of the reduction of functionality in networks with random faults in the lines. We generate a random hit
(fault) in the lines at times T =1, 2, ..., and in each line we have a value /;; that depends on T. At the time T, the value h;; — 1 gives the
number of random hits that the line (7, j) has suffered (considering the initial values h;; = 1 at T = 0). The probability to have a new fault
in one of the lines is determined by Eq. (1). By using this algorithm, we implement Monte Carlo simulations to generate random faults in
the network described at time 7 = 0. The values in the color bar indicate 4;; for all the lines, and the widths represent the values €2;;(T') that
describe their capacity of transport reduced with the increment of #;;; in all the realizations we use the misrepair parameter o = 2 in Eq. (2). We
depict the results of three independent realizations of this process, and we present the configurations of the system at times 7 = 0, 25, 50, 100
along with the global value F in Eq. (8) that determines the global functionality of the structure being F = 1.0 for the initial case without
damage [in this initial configuration the value T = 12.1 is calculated by using Eq. (4)]. The functionality F evolves with time and gradually is

reduced with the faults in the lines.

III. GLOBAL FUNCTIONALITY AND LIFESPAN

We defined in Sec. II a model to analyze the effects of
the damage in the global transport capacity of a network; in
the following part, we explore the functionality F(7') in the
context of aging due to cumulative damage and misrepair in
different types of networks. The reduction of this functionality
allows us to define characteristic times associated with the
lifespan and the aging in each structure.

In Fig. 2 we present the results of Monte Carlo simulation
for the algorithm of damage introduced in Egs. (1)-(8) for
different types of networks. Our simulations are similar to
the examples presented in Fig. 1. We analyze the evolution
of the system subjected to stochastic damage in the lines
in a Barabasi-Albert network generated with a preferential
attachment algorithm [24], a Watts-Strogatz network with
rewiring probability p = 0.1 [25], an Erdos-Rényi network at
the percolation limit [26], and a tree. We analyze the values
of F(T) as a function of T for these structures in different

realizations. For the values o = 1, 2, 3, 4, we see that the
measure of the global time 7(7) in Eq. (4) differs slightly from
the previous value (T — 1),1i.e., [t(T) — t(T — 1)|] < 19. In
addition 7(T') — (T — 1) may be positive or negative due to
the fact that in particular states, the reduction of the global
functionality of a line could produce a small increment of the
functionality. However, in general, the most common effect
is the damage of the structure, and therefore, we see for
o > 0 that F(T) starts in F(0) = 1 and gradually is reduced
with the increase of T in each realization. In Fig. 2 we also
present the average over 1000 realizations, and from the small
deviations observed we can infer that the ensemble average
(F(T)) is a good description of the aging in the system, i.e.,
the global reduction of the functionality. It is worthwhile to
mention that due to the normalization term in the transition
probabilities in Eq. (3); once all the lines have suffered at
least one hit, the transition probabilities rescale maintaining
the same proportion of damage but increasing the values of
F(T) [we can see this in some realizations in Fig. 2(b) in the
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FIG. 2. Evolution of the functionality F(7T') in connected networks with random faults in the lines. We implement the algorithm described
in Egs. (1) and (2) to simulate the reduction of the capacity of transport in different types of networks with N = 100 nodes: (a) Barabdasi-Albert
(BA) network, (b) Watts-Strogatz (WS) network with rewiring probability p = 0.1, (c) Erdos-Rényi (ER) network at the percolation limit
p = log(N)/N, and (d) a tree. We depict the numerical results of the functionality F(7T') given by Eq. (8). We simulate 1000 realizations of this
process for the misrepair parameters « = 1, « = 2, « = 3, « = 4 and show with wide dashed lines the results obtained for the average over
realizations (F(t)) for each «. With different thin lines we depict the values of F () obtained in each realization.

variations of F(T) for T > 10* and o = 2]. This effect occurs
at large times 7 for structures with a large number of lines; in
this case, the failures concentrate in particular connections,
leaving intact other links of the system.

The evolution of the systems under damage explored be-
fore opens the question: When the system is unable to per-
form correctly the function assigned? To describe this failure
effect we assume that there exists a minimal functionality F*
required for the system to operate. Once defined this threshold
value, there is a lifetime 7* that satisfies

T* =min{T = 1,2,...|F(T) < F*). 9)

We use this definition to identify the first time for which the
functionality of the system is below the threshold value F™*.
Therefore, for times 7' < T* the system is “alive” since it
can perform the operation assigned. For T > T* the system
“dies.”

For a given value F*, the lifetime 7™ varies in each of
the realizations; however, the ensemble average (T*) is a
characteristic of each network. We can conceive (T*) as life
expectancy of the system. In Fig. 3 we analyze statistically the
times 7™ for the networks with N = 100 nodes in Fig. 2, and
we consider F* = 0.2 and o = 2. In Fig. 3(a) we show how
T* varies in the realizations, and in Fig. 3(b) we explore the
frequencies of the lifetime in the results obtained with 10°

realizations of the system. We see that the Barabdsi-Albert
network is the most resilient structure with the highest values
of lifespan. The Watts-Strogatz network also presents high
values of the lifetime. In comparison with these complex
networks, the most frequent values of T* for the Erdos-Rényi
network at the percolation limit and the tree reveal that the
lifetimes in these two systems are lower, and the tree is
the structure with the lowest values of 7*. This last result
makes sense since in a tree, the complete removal of a line
immediately disconnects the structure. On the other hand,
complex networks like the Barabdsi-Albert network have sev-
eral redundant paths connecting the nodes making them more
resistant to damage. In Fig. 3(c) we represent the lifetimes
T™* as a fraction of the ensemble average (T*) over the realiza-
tions. We analyze the frequencies of the values 7*/(T*) to see
how they distribute around the ensemble average (7). In this
way, we can infer that the ensemble average of T* is a good
measure for the life expectancy since it is close to the most
probable lifetime as shown by the peak around 7*/(T*) = 1.
We see that values with T* > (T*) or T* < (T*) appear with
very low probability. Finally, we also observe similarities in
the frequencies calculated for the Barabdsi-Albert and the
Watts-Strogatz network; the Erdos-Rényi network and the tree
also share similar characteristics.

Furthermore, from the results in Fig. 3 and the model
introduced, we can infer that one important feature in the
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FIG. 3. Statistical analysis of the lifetime of networks under stochastic damage and misrepair. We consider stochastic faults in the lines,
the misrepair parameter @ = 2 in Eq. (2) and the threshold value F* = 0.2 to define the limit of functionality in Eq. (9). (a) Lifetime 7* of

1000 realizations of the process in several types of networks with N =

100 nodes: Barabdsi-Albert (BA), Watts-Strogatz (WS) with rewiring

probability p = 0.1, Erdés-Rényi (ER), and a tree. (b) Frequencies f(7*) of the times T* obtained in 10° realizations. In panel (c) we express
the frequencies of the times 7* in terms of their average over realizations (7).

network topology that influences the value of 7* is the number
of lines |£] in the network. Higher values of |£| could make a
structure more resilient to damage. However, how these lines
are connected is of utmost importance in the lifetime of the
system. For example, when we consider the global transport,
in some configurations, the complete removal of a single
line could disconnect a part of the network making null the
respective functionality independently of the number of lines.
In Table I we present different quantities that characterize the
structure of the networks explored in Figs. 2 and 3. We include
the number of lines |£| = % Zi\,:l k;, the average degree k =
1%, Z?’: | ki, and the average distance d between nodes

d= N(N— D ZZd”’

i=1 j=1

where d;; is the number of lines in the shortest path in the
network connecting the nodes i and j. We also present the
time 7y in Eq. (7) that gives an estimate of the average number
of steps needed by a normal random walker to reach any node
in the network; in this way this is a measure of the capacity
of the structure to connect their nodes with higher values
for networks that are difficult to explore and a minimum
value ip = (N — 1)? /N in fully connected networks [16]. For
each network, we include the ensemble average lifetime (7*)
and the respective standard deviation o7- that measures the
spread of the times T* for the 107 realizations in the Monte

TABLE 1. Description of the networks with N = 100 nodes
explored in Fig. 3 (presented in the first four rows) and Fig. 4 [for
the Watts-Strogatz (WS) networks with rewiring probability p =
0, 0.1,..., 1.0]. |€] is the number of edges, k denotes the average
degree, d is the average distance between nodes, and T is calculated
for the initial structure with no damage and describes a normal
random walker in the network. Also, we obtain the lifetimes T* for
10° realizations of the process with misrepair parameter o = 2 and
JF* = 0.2; we present the ensemble average (7*) with the respective
standard deviation o7«.

Network €] k d T (T*) o7+

Barabdsi-Albert 294 588 251 163.58 24144 4234
Watts-Strogatz 200 4 527 25676 1171.6 186.9
Erdos-Rényi 214 428 333 196.18 878.8  302.1
Tree 99 198 773 758.17 1682  48.0
WS p=0.0 200 4 12.88 70222 10879 184.1
WS p=0.1 200 4 479 24244 11614 186.3
WSp=02 200 4 4.00 187.81 1154.8 198.9
WSp=03 200 4 391 183.19 11303 1983
WSp=04 200 4 362 181.68 977.7 261.8
WS p=05 200 4 356 175.63 1038.6 225.6
WS p=0.6 200 4 356 178.56  981.8 240.7
WS p=0.7 200 4 347 18154 9703 2264
WS p=0.38 200 4 354 18743  904.0 2322
WS p=09 200 4 3.47 185.51 916.5 2312
WSp=1.0 200 4 344 19532  831.7 230.3
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FIG. 4. Ensemble average (7*) of the times 7* in connected
Watts-Strogatz networks with rewiring probability p. The results for
each network were calculated from 10° realizations with misrepair
parameter « = 2 and considering /* = 0.2. The error bars were
obtained from the standard deviation of the data o7«.

Carlo simulations with /* = 0.2 analyzed in Fig. 3. In these
results, we see the connection between d and 7, for which
higher values of the average distance require longer times
of exploration 7y. However, from the different measures, it
is unclear the relation of (7*) with the quantities presented
to describe globally each network. Nevertheless, intuitively,
we can infer that the complexity of the structure plays an
important role since the average times (7*) are higher for
networks of the Barabdasi-Albert and Watts-Strogatz type and
are smaller in networks with a simpler structure like the tree
and the Erdos-Rényi network at the percolation limit.

Now, in order to have more evidence about the relation
between T* and the complexity of the network, we will
analyze random networks conserving the same number of
lines |£]. In Fig. 4 we explore the effects of aging in connected
networks generated with the Watts-Strogatz algorithm for
different values of the rewiring probability 0 < p < 1 [25].
In the Watts-Strogatz algorithm, for p = 0, the network is
regular with degree k = 4 and is a ring with additional links
to connect each node with its four nearest nodes on the ring.
Then the extreme of a p fraction of links is relocated randomly
producing connections with distant nodes [25]. For p small
the complexity of the network increases with respect to the
regular structure with p = 0 due to the rewiring. However, for
values of p close to 1, the high random rewiring produces a
less complex disordered structure that in the limit p — 1 is
equivalent to an Erdos-Rényi network. In Fig. 4 this behavior
is observed for the times (7*) for Watts-Strogatz networks
with rewiring probability p. In particular, for p =0, (T*) =
1087.9 and the values of (T*) are higher for 0 < p < 0.4. For
0.5 < p < 1.0 the values of (T™*) decrease and are lower than
the lifetime of the network with p = 0. The minimum values
of (T*) are found for p = 0.95 and p = 1.0. In Table I we
present the numerical values of the ensemble average of the
lifetime for the networks with p =0,0.1,...,0.9, 1.0 and
some characteristic values that describe each network. With
these results, we reaffirm that, although the number of lines
in the networks is the same, it is hard to establish a global

3501
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FIG. 5. Ensemble average (7*) as a function of N for interacting
cycles with (a) J =1 and (b) J = 2. The results for each network
were calculated from 10* realizations with a misrepair parameter
o = 2 and a functionality threshold /* = 0.2. The error bars were
obtained with the standard deviation of the data or«. Dashed lines
represent the linear fit (T*) =a+ bN. For the ring with J =1,
we obtain the values a = 10.069, b = 1.557 with a correlation
coefficient r = 0.999960, and we have a = 85.654, b = 10.0324,
r =0.999964 for J = 2.

characteristic of the network that could describe the average
value of the system’s lifetime. We suggest that the value (T*)
itself can be used as a new measure that contains important
quantitative information about the complexity of a network
and its resistance to damage in the connections.

To understand the effect of the size of the network, we
analyze a particular class of periodic structures called inter-
acting cycles [16,27,28]. In these structures, initially, N nodes
form a ring. Then each node is connected to its J left and J
right nearest nodes; 2J is the degree of the resulting network.
The value J is the interaction parameter, and all the two nodes
whose distance in the initial ring is smaller than or equal to J
are connected by additional bonds [28]. In interacting cycles
|E] = JN is the total number of lines. In particular, J = 1
defines a ring and J = 2 determines the initial regular network
in the Watts-Strogatz model before rewiring.

In regular networks without damage, the value t(0) can
be deduced analytically and is given by Kemeny’s constant
7(0) = Zf’:z #1(0) [16]. By using the eigenvalues A;(0) of
the transition matrix that defines a normal random walker on
interacting cycles [16,27], we have

N
2J
)=y : ,
sin[¢; (2 +1)]
P BTy

sin ¢

(10)

where ¢,, = t(N —m + 1)/N.
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FIG. 6. Nonisomorphic connected graphs with N = 6 nodes. We sort the structures considering the average of the times T* from 10°
realizations of the cumulative damage process with the misrepair parameter « = 2 and threshold functionality /* = 0.75. The average times
(T™*) and the respective o7~ for each configuration are presented in Fig. 7. The catalog of graphs was obtained from Ref. [29].

The introduction of damage in the links at times 7 =
1,2, ...breaks the symmetry of the structure and gradually re-
duces its functionality. We apply our algorithm for the analysis
of aging to the study of two types of interacting cycles with
J=1and J =2 and sizes N = 100, 110, ..., 190, 200. In
Fig. 5 we show the numerical results for the average lifespan
(T*) obtained with 10* realizations. For the different networks
explored, our findings reveal that (T*) is proportional to the
size of the network N. In general, we can see that the ring
with J = 1 is more vulnerable to damage than the network
with J = 2 for which the existence of more lines makes each
structure redundant and capable of resisting the damage (even
the complete removal of some lines does not disconnect the
whole structure). The linear relation (T*) = a + b N observed
in Fig. 5 reaffirms our previous finding that an important factor
in aging is the complexity of the structure. This example

shows how the variation of J changes the complexity of the
network. We can say that networks with the same J but
different sizes N have the same complexity; thus the life
expectancy (7*) changes for different line numbers |£| = JN.
However, in Fig. 5 the life expectancy turns out to be much
more sensitive to an increase of the complexity J (when N is
constant) as to an increase of N when the complexity J is the
same.

Finally, we present some results that help us to have
a graphical picture of the existing connection between the
average lifetime (7*) and the topology of a network. In
Figs. 6 and 7 we analyze all the different undirected connected
graphs with N = 6 nodes. We study 112 different connected
graphs without considering isomorphic structures; this catalog
of graphs was obtained from Ref. [29]. We observe that,
in some cases, the system is extremely fragile and just one
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FIG. 7. Average lifetime (7*) of nonisomorphic connected net-
works with N = 6 nodes. We analyze the times 7* for the networks
presented in Fig. 6 for 10° Monte Carlo realizations of the cumulative
damage process with @ = 2 and F* = 0.75. The error bars represent
the values of the standard deviation o7« of the times 7*. The different
colors codified in the color bar show the number of edges |£| in each
network.

hit can reduce abruptly the functionality; for this reason, we
analyze T* with a high value of the threshold functionality
JF*. By using the values « = 2 and F* = (.75, we calculate
the ensemble average of the life spans 7* obtained from 10°
realizations of our cumulative damage algorithm. In Fig. 7
we present the numerical values of (T*) and the respective
standard deviation o+ as an error bar, and we sort the graphs
in terms of the value (7*). In Fig. 6 we show all the structures
analyzed from the less stable under damage to the more
resilient structures that live longer. In Figs. 6 and 7, we see
that the structures with the lowest values of (7*) are the trees
with |€] = 5 depicted in the graphs 1 to 6. In trees, the failure
in a single connection compromises the complete graph, and
for « =2 and F* = 0.75 we observe that one or two hits
are sufficient to kill the system. In graphs 7 to 19, we have
|€] = 6, and now all these structures have one cycle (a closed
path with three or more nodes on the network that starts and
end in the same node [30]). With the addition of a new line,
we have the configurations with || = 7 in graphs 20-38, all
these graphs have two cycles (for example, two triangles in
graphs 20-24, 28, 29, and 38). The gradual increase of the
number of lines allows having more cycles of different sizes,
for example, two triangles and one square in configuration
42. In this way, the networks with more connections can
have several cycles making them resilient to the damage of
a particular line since there are many different alternatives
to maintain operational conditions in the transport. The fully
connected graph 112 is the configuration that lives longer;
however, in several applications and real-world systems, each
link in a system has a cost (for instance, consider the increase
of development time in living beings with increasing “com-
plexity”). As a consequence, it is important to know the “best
way” to organize a determined number of links to maximize
the survival probabilities to achieve the maximal longevity
(T*). In addition to these results, the standard deviation or-
reflects different ways that cumulative damage of the system
can be distributed in the lines.

IV. CONCLUSIONS

In this paper, we explore the concept of aging as a
consequence of cumulative random damage and imperfect
reparation (misrepair) in a complex system. We model this
phenomenon as a dynamical process on weighted networks.
The formalism introduced includes three characteristics:
(1) an algorithm to produce preferential random damage on
the connections of the network that evolves with time concen-
trating the damage in particular parts, (2) a collective task that
requires communication between all the elements of the net-
work, and (3) a global measure that quantifies the performance
of the structure in a determined configuration. With these
features, we analyze the evolution of the transport capacity
in networks and how the global capacity of the system is
gradually reduced as a consequence of the accumulation of
faults (misrepairs). This process of gradual deterioration of
the functionality of the structure is conceived as “aging”
of the complex system. Moreover, we define a threshold
value of the functionality that determines when the system
is alive. Through Monte Carlo simulations of this algorithm,
we analyze statistically the process of aging and the lifespan
in different types of networks. We explore how the structure
of the system influences its longevity. The results reveal that
complex structures are more resilient to cumulative damage
and as a consequence live longer. The methods introduced
with this model are general and can be used to analyze
the global effects of cumulative random damage in different
processes modeled by networks. A subject of further interest
could be the analysis of the relationship of the complexity
of systems and the time dependence and evolutions of their
survival probabilities.

APPENDIX A: ASYMPTOTIC FAULT DISTRIBUTION

The goal of this part is to analyze the time evolution of
the fault number distribution defined by Eq. (1) and how this
behavior is related to the size of the structure. To this end
let us first consider the probability per time increment AT
that a fault is generated anywhere in the whole structure. This
probability is with Eq. (1) given by

e (T
Z (T = M =1, (A1)

(e Z(Z,m)ef hum(T)

a relation that reflects our initial assumption that in each time
increment AT a new fault is generated, thus the probability
of occurrence of one fault somewhere in the set £ in the time
increment AT is one. Therefore, the total number of faults
generated in the structure (in the set £) within the time interval
[0, T'] is given by

> Utin(T) = hin (O] =T, (A2)

(I,m)e&

where ) e lim(0) = |E] with /y,(0) = 1. On the other
hand, we have in Eq. (1) the sum

YooM= Y @) +T =[E[+T,  (A3)

(,m)e& (I,m)e€E
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where the number of lines in the structure is |E| =
YN Y Ay =5 3°Y | k. The number of faults /;;(T) —
I in each line is bounded 0 < 4;;(T) — 1 < T by the total
number 7 of faults in the structure. Then Eq. (1) can be written
as

/(T = hij(T —1) _ hy(T'=1)

> tmes him(T = 1) CE4+T -1

Now we introduce the number of lines N (k, T') thathave h — 1
faults at time 7. Then the total number |£] of lines can be
represented as

(A4)

T+1
> N T)= £l (AS)
h=1

and we can write Eq. (A3) in the form

T+1
D> N, T)h= || +T. (A6)
h=1

It is instructive to consider the fraction P(h, T) = ¥ (‘}ng) of

lines that have & — 1 faults at time 7. This quantity can be
identified for |£| > 1 as the probability that a line (i, j) has
h — 1 faults. Then relation (A5) becomes a normalization
condition

T+1

1 T+1
Ph,T)~ — Ph,T)dh=1, A7
;( ) Ahfl (h,T) (A7)

with P(h, T = 0) = dj;. Therefore, from Eq. (A6), we get
,fill P(h,T)h = TrTl‘g', where the initial condition reflects
that at 7 = 0 all lines have no faults, and we have 0 < h —
1<T.
Now let us consider the time evolution of P(h, T). From
Eq. (1) follows the master equation
. 1
ST HIE -1
x[(h—1DPMh—-1,T —1)

x —hP(h, T —1)]. (A8)

P(h,T)—P(h, T —1)

In the following, it is convenient to introduce the continuous
variables & = hé& (66 — 0) and x = Téx (5x — 0) where
& and y are kept constant when §x, 86 — 0. The continuous
variables £ and x can be conceived as continuous fault and
time measures, respectively. In this sense the analysis to fol-
low covers the asymptotic behavior for h = % >landT =
ﬁ > 1. We have to be aware that this asymptotic behavior is
a pure intrinsic property of the dynamics of Eq. (1) where T
may exceed the longevity of the complex system represented
by a network. Let us introduce the probability density p(&€, x)
that for a line the fault variable has value &£, namely,

P&, x)8& = P(h, T); (A9)
thus P(h,T) — P(h,T — 1) = 8§(p§, x) —p&, x —
8x)) ~ 8E6x % p(&, x). The normalization then is expressed

as ZZ;I P(h,T)— [ p(§, x)d§é = 1. From relation (A9)
follows that this approach becomes pertinent especially for
“large” line numbers |£|. Then the master equation (A8) can

be written for the density (A9) as

0 1 1

axPE = T e - D
X [(€ — 86)p(& — 88, x — 83
—&p&, x —8x)1, (A10)

where 8y,86 — 0. Now, by using Sx(T +1|&]—1) =
X+ (& —18x — x and (h — 1)6& =& — 5& — & and with
limss .o 55 [(§ — 86)p(§ — 88, x — 8x) — Ep(5, x — 8x)] =
—%[E p(&, x)], Eq. (A10) takes the representation

a 19
ap(é,x)=———[$l?(€,x)], (ALD)

x 9§
where p(&, x) fulfills the normalization [reflecting Eq. (AS5)]

X
/0 pE, x)ds =1, (Al2)

and the relation corresponding to Egs. (A3) and (A6) writes

Tsx +1E16x)  «x

X

, d& = lim ==, Al3
/0 P&, x5 dg = lim 2| B (A13)
where we assume % = 1. The general solution of Eq. (A11)

can be obtained by the separation ansatz

p&, x) =u@)v(), (Al4)
which leads to
x 0 1 0
_ - = —A. AlS
U(X)axv(x) M(S)BE[EM(S)] (A15)
Thus we get
0 A
8—v(x) =——v(x) (A16)
X X
and
0
—[& u(E)] = ru(8). (A17)

3

These two equations are solved by u(§) = C g landv(T) =
C,x ~*; thus we obtain for Eq. (A14)

ék—l
pE. x) = C>—, (A18)
X
where the two constants C and A are to be determined. From
the normalization condition in Eq. (A12) follows that C = A
thus the normalized density has the representation

AéA_l
pé, x)= T 0<éE<x, x=20 (A19)
Finally, A is determined from condition (A13) to arrive at
X AX7AXA+1 A X
Ax Mlede = = =2, (A20
X/OS S8 =T Tar T WO
which yields
1
A€ = ~—, &> 1. (A21)
IE1—=1 €]
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We observe that 0 < A(|E]) < 1 thus &1 (=1 <A —1 < 0).
So the density (A19) is finally obtained as

1 gma!

E—1 o O(x — &),
where we introduced the Heaviside step function, defined by
®(u) =1 foru > 0 and ®(u) = 0 for u < 0, to indicate that
p(&, x) # 0 is only nonvanishing for 0 <& < x (x = 0).
Equation (A22) represents the asymptotic distribution that
develops by the dynamics of fault evolution in Eq. (1) and
is the main result of this paragraph. As mentioned above the
present analysis is especially pertinent for large networks with
|€] > 1. In these cases we may put A(|E]) ~ |E]7! in the
density of Eq. (A22).

The inverse power-law scaling of the density (A22) as lim-
iting distribution of the preferential fault generation strategy
of Eq. (1) for a fixed finite time x exhibits a large number of
links with small fault numbers and a small number of links
with very large fault numbers. The smaller |£|, the slower
the density (A22) is decaying so that the incidence of high
fault numbers becomes larger. On the other hand, in very
large structures || — o0, the density (A22) becomes concen-
trated around £ = 0 where low fault numbers have extremely
high incidence, whereas high fault numbers extremely low
incidence. To show these size effects more closely a further
instructive quantity is the cumulative probability that the fault
measure does not exceed a certain value & < x at time x.
This cumulative probability which we denote as P(§ < &, x)
yields

P&, x) =

(A22)

& ﬁ
P(sgso,m:fo p<s,x>d§=<—> B <,
(A23)

where for &y — O this quantity is vanishing, which reflects
the initial condition that at x = 0 there are no faults in the
structure and 0 < P(€ < &y, x) < 1. When the number of
lines |£| increases, the exponent I‘ELI — 0, and thus distribution
(A23) for & > 0 “immediately” approaches one. This uni-
versal behavior becomes extremely pronounced in the limit
|E] — oo of infinite networks where we obtain for Eq. (A22)
the distributional relation

. 1 gE!
= lim X—ﬁigﬁ
|E]—> 00 d%'
d
= —0() =48(5), (A24)

d§

where §(£) denotes Dirac’s § function. The cumulative proba-
bility (A23) takes, in the limit of infinitely large structures,
a Heaviside step function shape, namely, limg— o P(§ <
&0, x) = O(&)). In large structures |£| — oo for a fixed time
“almost all edges” exhibit extremely small fault measures.
This size effect is reflected by the fact that p(€, x) becomes
extremely concentrated around § = O [approaching for |£| —
oo a Dirac §(€)-function shape], thus (A23) at small £ imme-
diately jumps to one.

APPENDIX B: RANDOM WALK CHARACTERIZATION

In this Appendix, we derive briefly some basic random
walk quantities utilized. There are two different timescales
relevant in our model. The random walk which we assume
to “simulate” the life-maintaining functions is much faster
than the dynamics of the aging process. Let t =~ 7(T) be the
global time of Eq. (4) that defines a characteristic timescale
of the random walk. Then we have 7(T) < AT, i.., the
characteristic timescale AT where aging changes occur is
much larger than the timescale of motions of the random
walker on the network. In other words, the dynamics of aging
changes are much slower than the motion of the random
walker. We assume that the complex system is “alive” if any
two nodes of the network can exchange information in a
sufficiently short time, i.e., if the global time t(7") does not
exceed a certain critical value [see Egs. (4) and (5) and the
functionality defined in Eq. (8)]. We assume a Markovian time
discrete random walker that performs at any time increment
At a random step from one node to another. This process is
defined by the master equation [12,22,31]

N
Pij(t + At T) =Y Py(t, Twe ;(T),
(=1

(BI)

which is valid for ¢+ <« AT = 1. In this master equation
P;j(t, T) indicates the probability that the walker that starts its
walk at node i at t = 0 occupies node j at the nth time step
t = nAt. The elements w;_, ;(T) of the one-step transition
matrix W(T') represent the probabilities to hop from node i to
Jj in one time increment A¢. Note that in general the transition
probability matrix is not symmetric and given by [see Egs. (2)
and (3)]

(hij(T))™™

wi j(T) =Aj; )

; (B2)
where Q;(T) = lev=1 Ajs[his(T)]™ denotes the weighted de-
gree. The one-step transition matrix in Eq. (B2) is constructed
such [due to w;_,;(T") = 0] that the walker has to change the
node at any step. The canonic representation of the (t = nAt)
of the n-step transition matrix is

P(nAt,T) = W'(T)

N
= DD 16 (T)) (G(T). (B3)

m=1

We use Dirac’s (bra-ket) notation. In Eq. (B3),
|¢m(T)), {(¢m(T)| denote, respectively, the right and left
eigenvectors of the transition matrix with the respective
eigenvalues —1 < A, (T) < 1. The walk which we assume
to take place on an undirected connected and finite network
(N < o0) corresponds to an aperiodic ergodic Markov
chain with the unique eigenvalue A (7T) = 1VT reflecting
row stochasticity (with corresponding right-eigenvector
having identical components) of the transition matrix
21};1 wi»j(T)=1 and |A,,(T)| <1 maintained VT for
m=1,...,N (see Ref. [16] for a detailed analysis). The
stationary distribution P°(T) = lim,_, P,;(t,T), which
gives the probability to find the random walker in the node j
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in the limit f — o0, is given by [13,16,20]
Q;(T)
>L ()

where, since (i|¢;(T)) = constant, the stationary distribution
P (T) does not depend on the initial condition.

Additionally, we have the mean first passage time (7;;) that
gives the average number of time steps (in units of Ar) the
walker needs to travel from node i to node j in the form (see
Refs. [16,20,22,32] for a complete derivation)

PT) = (il (T (1 (T) ) = (B4)

(j1o1(T)) (1 (T)1})

N

+ 3 (J19¢(T)) (be(T)1J) — (ilpe(T)) (e (T)1 )
= [1 = 2e(T)I 11 (TN 1 (T ) '

(Tij) =

(B5)

In this relation for i = j the second term and for j # i the
first term vanishes. For i = j this relation gives the mean first
return time or mean recurrence time [16,33]

1
Gl MNGUT)I)
This is the Kac formula relating the mean recurrence time with

the inverse of the stationary distribution P;OO)(T).
On the other hand, we can define the characteristic time

(T;;) (B6)

rmzi L Gl EL)
T = L0 Gl )l

(B7)

and by considering the relation in Eq. (B5), we have [22]

(Tij) = (Tji) =7 — T B8

This result describes the asymmetry of transport on networks.
The quantity C; = 1/7; is the random walk centrality intro-
duced in Ref. [22]. In contrast with other centrality measures,
defined to describe characteristics associated with the topol-
ogy of the network, C; is a quantity that describes the capacity
of a random walker to reach the node j. The random walker
reaches nodes j with higher centrality C; more easily. On the
other hand, 7; gives a value related with the average number
of steps needed to reach node j from any node in the network
[22].

Now we can define two kinds of global times. The first one
is an estimate of the average time to reach any node different
from the departure node, which yields with Eq. (B7)

1 N
o(T) = Ner(T). (B9)
j=1

Furthermore, the mean recurrence return time in Eq. (B6)
averaged over all nodes defines a further global measure for
the speed of the random walk. This quantity is obtained as

N N

1 1 1
T(T):IVZ(E)ZIVZPVT(T)'

i=1 i=1

(B10)

In our study, we define the functionality of the system in
Eq. (8) by using the global time 7(T) of Eq. (B9) to quantify
the capacity of the random walker to explore a network in
a given configuration of the system at time 7. The value
7(T) includes important information of the process since it
considers the eigenvalues and eigenvectors of the respective
transition matrix. Several studies have been shown that this
global time is a good measure of the capacity of a random
walker to explore a network [16,20,21]. Finally, the time
T(T) has the computational advantage that the eigenvalues
and eigenvectors of the one-step transition matrix in Eq. (B2)
do not need to be determined and can be used to define a
simplified version of the functionality.
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