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Phase transition creates the geometry of the continuum from discrete space
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Models of discrete space and space-time that exhibit continuum-like behavior at large lengths could have
profound implications for physics. They may help tame the infinities arising from quantizing gravity, and remove
the need for the machinery of the real numbers; a construct with no direct observational support. However,
despite many attempts to build discrete space, researchers have failed to produce even the simplest geometries.
Here we investigate graphs as the most elementary discrete models of two-dimensional space. We show that if
space is discrete, it must be disordered, by proving that all planar lattice graphs exhibit a taxicab metric similar
to square grids. We then give an explicit recipe for growing disordered discrete space by sampling a Boltzmann
distribution of graphs at low temperature. Finally, we propose three conditions which any discrete model of
Euclid’s plane must meet: have a Hausdorff dimension of 2, support unique straight lines, and obey Pythagoras’
theorem. Our model satisfies all three, resulting in a discrete model in which continuum-like behavior emerges
at large lengths.
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I. INTRODUCTION

The small-scale structure of space has puzzled scientists
and philosophers throughout history. Zeno of Elea [1] claimed
that geometry itself is impossible because there is no con-
sistent form this small-scale structure can take. He argued
that a line segment, which can be halved repeatedly, cannot
ultimately be composed of pieces of nonzero length, else it
would be infinitely long. However, it also cannot be composed
of pieces of zero length, for no matter how many are added
together, the resulting line will never be longer than zero.

It is a lasting tribute to the optimism of researchers that
work on geometry nevertheless carried on. It was not until
the 19th century—nearly two and a half millennia later—that
Cantor finally resolved the paradox by defining the contin-
uum. He showed that the line must be composed not just of
an infinite number of points, but of an uncountably infinite
number, so that the second half of Zeno’s argument (a proof by
induction) fails. This uncountable infinity is described by the
mathematical machinery of the real numbers. The continuum
is the basis for all descriptions of space and space-time, and
therefore all of theoretical physics.

In the 20th century, Weyl [2] further claimed that the
continuum is the only possible model of space. He constructed
a tiling argument, purporting to show that if space is dis-
crete, Pythagoras’ theorem—or, equivalently, the Euclidean
metric—is false. Weyl’s proof, however, contains an unstated
assumption which turns out to be the key to its resolution.

Despite this long belief in the necessity of the continuum,
researchers are actively pursuing discrete [3–5], or at least
piecewise flat [6–10], models of space and space-time, as they
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offer the possibility to remove nonrenormalizable infinities
which arise in simple versions of quantum gravity. All these
models can be thought of as graphs, where just the graph
itself matters, not its embedding into another space. The only
natural [11] metric in this case is graph geodesic distance: the
distance between two nodes is the smallest number of edges
joining them.

In two dimensions, toy models of “quantum graphity”
[12] aim to define Hamiltonians over all graphs with a fixed
number of nodes, from which an approximation to a smooth
manifold might emerge at low temperature. Recent attempts
have aimed to produce planar graphs made up of triangles, but,
so far [13,14], the low-temperature phases contain defects,
conical singularities and multiply connected topologies, so
are unlike simple, smooth manifolds. A basic feature of such
graphs is their Hausdorff dimension, which in this context
is the power with which the number of nodes in a ball
of radius r grows with r. If one deliberately restricts the
ensemble of graphs under consideration to triangulations of
the plane, a further problem encountered with graph models
of two-dimensional space is encountered: Completely random
triangulations (i.e., typical graphs chosen at random from this
ensemble, and termed “Brownian maps”) do not even have
Hausdorff dimension 2. They are so crumpled that the number
of nodes in a disk of radius r scales as r4, not r2 [15].

In light of these difficulties, the prospects for building a
consistent discrete model of even the Euclidean plane seem
poor. In this article, we show that it is in fact possible to
discretize space. We do three things. First, we prove that any
discrete model of two-dimensional space must be disordered,
by showing that all planar lattice graphs have a taxicab-like
metric [16]. Order is the hidden assumption in Weyl’s proof of
the impossibility of discrete space. Second, we describe a lo-
cal, statistical process, with an associated temperature, which
provides an explicit recipe for growing disordered graphs.
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FIG. 1. The geometry of the square grid graph. Two nodes A and
B on the square grid graph are separated by 19 edges. There are many
possible shortest paths (geodesics) of length 19 edges between the
nodes, of which two are shown in black. The resemblance to the
possible routes followed by yellow cabs in New York city inspired
the term “taxicab metric” for the measure of distance on this graph
[16].

Third, we propose three tests which any model of Euclidean
space must pass. We find that graphs grown by our thermal
process, at low temperature, achieve the required properties:
they have a Hausdorff dimension of 2, support the existence
of unique straight lines, and satisfy Pythagoras’ theorem.

II. LATTICE GRAPHS ARE TAXICAB GRAPHS

The natural way to measure the distance between two
nodes on a graph is to count the edges in the shortest path
which separates them. A shortest path of this kind is called a
geodesic. It is well known that with this measure of distance,
the square grid graph has a taxicab geometry [16], where
the distance between two nodes is the sum of the magnitude
of the differences of their Cartesian coordinates (Fig. 1).
On this graph there are typically many geodesics between
two nodes a distance λ apart, each resembling an irregular
staircase. Together these form a geodesic bundle comprising
Ngeo ∝ λ2 nodes. More complex lattice graphs show a similar
phenomenon [Fig. 2(a)].

In general, any doubly periodic planar graph must belong
to one of the wallpaper groups, familiar from crystallography,
and be composed of unit cells containing one or more nodes.
We prove that all doubly periodic planar graphs have the
taxicab metric, regardless of the complexity of the unit cell.
That is to say, geodesics in all but a finite number of directions
form broad, parallelogram bundles (the number of exceptional
directions may, however, be large for sufficiently complex
unit cells [17]). Such graphs therefore do not satisfy Euclid’s
axiom of a unique straight line between two points, nor
Pythagoras’ theorem. Our proof is in two parts, which we call
geodesic composition and geodesic rearrangement. We sketch
the proof here, and give full details in the Methods section.

Sketch of the proof

If we have a geodesic on a graph between two nodes, it is
clear that cutting it in two yields two paths, each of which is a
geodesic between its respective end nodes (were that not so, it
would be possible to create a shorter path between the original

FIG. 2. Geodesic confinement is not found in planar lattice
graphs but is in planar disordered graphs. (a) In a doubly-periodic
triangulation (a modified snub square tiling), two nodes marked as
circles are 22 edges apart. We call the set of all geodesics between
them (shown in black) the geodesic bundle, containing a number
of nodes proportional to the square of the geodesic length. (b) In
a random triangulation, the geodesic bundle between two nodes 22
edges apart is confined to a narrow region. We call this phenomenon
geodesic confinement. (c) A nonplanar doubly periodic graph (all
nodes shown as circles) has neither a taxicab nor Euclidean metric.

two nodes). Even in classical geometry, however, putting two
geodesics (straight lines) end to end does not always give a
geodesic: they need to be parallel. The situation with graphs
is more interesting still.

Equivalent nodes in different unit cells are said to be of the
same type. We first construct a geodesic between two nodes
of the same type, which are separated by a vector distance of
(m, n) unit cells. If we choose the node type so that this is
the shortest of all such geodesics (or one of the shortest, if
the choice is not unique), then we are able to prove that many
copies of this path can be concatenated end to end, and the
result is still a geodesic between the now widely separated
endpoints. We call this the geodesic composition property. It
is not trivial, since it relies on the assumption of planarity; a
nonplanar counterexample is shown in Fig. 2(c).

Next, we show that a long concatenation of this single type
of geodesic can, apart from short tails at the ends, be broken
down into many alternating copies of two different geodesics.
The proof uses Dedekind’s pigeonhole principle [18], applied
to the number of nodes in the unit cell. If m and n are relatively
prime, these two geodesics are not parallel. They therefore
perform the role of the coordinate directions in the square
grid graph and, in the same way, can be rearranged in any
order to produce many irregular staircase-like geodesics, all
of the same length. The set of these geodesics forms the broad
geodesic bundle, with an area proportional to the square of its
length—a complete contrast to the narrow lines required by
Euclidean geometry.

III. GROWING DISORDERED GRAPHS

In light of the impossibility of generating Euclidean ge-
ometry from planar lattice graphs, we turn to disordered
graphs which triangulate the 2-sphere. Triangulations here are
graphs composed of triangles which, when embedded in the
2-sphere, are planar [19]. We also require that they contain
no tetrahedra, so that we only need to keep track of nodes
and edges, not faces. As a seed graph, we start from the
octahedron (Fig. 4 ), a simple triangulation of the 2-sphere. All
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FIG. 3. Steinitz moves on a portion of a triangulation. The push
move (left to right) consists of choosing a node A and two opposite
neighbors P and Q (or nearly opposite, if the degree of A is odd).
Node A is divided into nodes A′ and B. The pop move (right to left)
consists of choosing a node A′, and then one of its neighbors B, which
are then merged to a single node A. In contrast to Ref. [20], which
keeps track of triangular faces, we avoid tetrahedra and bottlenecks
smaller than four edges, so faces can be assigned unambiguously, if
desired. To ensure no tetrahedra are formed during a pop move, we
make an additional check before the merger of A′ and B: we require
that no neighbor of A′ that is not P, Q, or B is connected to a neighbor
of B that is not P, Q, or A′.

triangulations of the 2-sphere are known to be transformable
into one another by Steinitz moves [20], illustrated in Fig. 3,
which are local, and add (“push”) or remove (“pop”) nodes
while preserving the property of being a triangulation.

We grow the seed graph to a size of N nodes through push
moves, and then apply 8N alternating push and pop moves
to ensure equilibration. This equilibration stage is necessary,
since some graph properties (such as mean node eccentricity;
see Sec. IV) change slightly, converging (presumably to ther-
mal equilibrium values) after around 4N alternating push-pop
moves.

Let Zi be the degree of node i, and 〈Z〉 the mean degree
of all nodes in the triangulation. Because every triangular

face has three edges, and every edge belongs to two triangles,
Euler’s polyhedron theorem [21] implies that

〈Z〉 = 6 − 12/N. (1)

Since the integrated Gaussian curvature over a smooth,
closed surface is 4π [22], we see that κi ≡ 6 − Zi is a natural
measure of the local, discrete equivalent of Gaussian curvature
for the triangulation, up to a constant factor. If we consider
a patch of the graph consisting of Npat nodes, with e exiting
edges, and with a simple closed-path perimeter of length p �
3 edges, then we find that the Euler characteristic implies the
average discrete curvature over all nodes in the patch, which is

〈κ〉pat = (6 + 2p − e)/Npat. (2)

This can be shown by considering a new triangulation, formed
from two copies of the patch, and identifying nodes and edges
on the perimeters, then correcting for the exiting edges. Thus
a Steinitz push move locally decreases |〈κ〉pat|, and a pop
move increases it.

To create an ensemble of graphs, we first define an energy
E for every graph. We then repeatedly select a random node
as a candidate for a push or pop move, and calculate the
energy change �E that would result. We perform the move
with a probability given by the Metropolis algorithm [23]
with an associated temperature T . Thus, the move is always
accepted if �E is negative, and accepted with probability
exp(−�E/T ) if �E is positive.

A. Curvature model

The most obvious choice of energy to reduce curvature
fluctuations at low temperature is Ecurv = ∑

i κ
2
i , where the

sum is over all nodes i. As shown in Fig. 4 and 5 and also
considered in [24], this does indeed drive the local curvature
to zero almost everywhere at low temperature, but it does so

FIG. 4. Growing graphs at high and low temperatures; the third column shows the main result of this article: a discrete model of Euclidean
space. A small octahedral triangulation, with N = 6 can be grown and equilibrated into larger graphs with N = 28, 210, and 212 nodes at
(a) high temperature, (b) T = 0.5 in the curvature model, or (c) low temperature in the walker model. The illustrative embedding into space
shown here is irrelevant to our results; we are only interested in the graph.
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FIG. 5. Stereograms of graphs with 6144 nodes. Top two images:
high temperature graph. Middle two images: curvature model at
T = 0.5. Bottom two images: walker model at low temperature. The
nodes are coloured according to degree, as shown in the legend at the
top of the figure. To view as stereograms, the figure should be held
approximately 30 cm away, while looking through the page until the
two images fuse.

by creating a branched polymer phase consisting of thin tubes
with curvature trapped at their ends and junctions [Fig. 4(b)].
The result of this “curvature model” is far from flat. We
attribute this to the energy functional failing to sufficiently
penalize small curvatures spread over large areas.

B. Walker model

To address the deficiency of the curvature model, we
introduce a second statistical process by putting walkers on
the graph. Walker models have previously been used to create
both local-cluster structure [25–27] as well as scale-free [28]
graphs from local rules [29,30]; but here we are interested in
Euclidean behavior. At each time step, we add κ walkers of
type +1 to every node with curvature κ > 0, and |κ| walkers
of type −1 to every node with κ < 0. Additionally, 12 walkers
of type −1 are added to random nodes to maintain the mean
walker number [this requirement can be seen from Eq. (1)].
The walkers then diffuse by moving to a random neighboring
node. Whenever a +1 and a −1 walker occupy the same
node, both walkers annihilate. Walker moves alternate with
push-pop moves. To define the dynamics, we replace Ecurv

with a new energy Ewalk for the graph under push-pop moves:

Ewalk = −
∑

i

wi|wi|, (3)

where wi is the net number of walkers on node i. At low
temperatures, this energy tends to shrink regions of positive
curvature and grow regions of negative curvature. We call
this new evolution scheme, which biases the graph towards
flatness on long length scales, the “walker model.”

The walker model generates a triangulation which, at low
temperature and long lengths, appears qualitatively to have
minimal curvature [Fig. 4(c)] . To establish that these graphs
satisfy Euclidean geometry at long length scales, we subject
them to three tests: a Hausdorff dimension of 2 geodesic
confinement and the Pythagorean theorem.

IV. TESTING OUR GRAPHS

Euclidean geometry is defined through five axioms. These
are neither as logically primitive as they first appear, nor do
they readily translate into conditions for discrete models of
space. We therefore propose three conditions for any dis-
crete model, including ours, purporting to capture Euclid’s
geometry at large lengths. The first, Hausdorff dimension, sits
outside the original axioms, since they concerned the plane.
The second condition is the appearance of straight lines in
the large length limit, which we call geodesic confinement.
The third is the Euclidean metric itself, commonly known as
Pythagoras’ theorem, which is a synthesis of all the axioms.

A. Hausdorff dimension

If the number of nodes in a ball of radius r scales as
N ∝ rdH , then dH is the Hausdorff dimension of the graph.
As we noted earlier, planarity is not indicative of dimension:
random triangulations of the 2-sphere have dH = 4 as they
converge, in the large node limit, to “Brownian maps” [15].
To calculate the dimension of our graphs, we define the half-
circumference H of a graph as the average over all nodes of
the node eccentricity, where the eccentricity of a node is the
greatest geodesic distance between it and any other node in the
graph. If nodes are a measure of area, then we would expect
a graph which approximates a smooth spherical surface with
dH = 2 to satisfy the scaling H ∝ N1/2. This is not the case
for the curvature model Fig. 6(a), but is true for the walker
model in the low temperature limit for a large number of nodes
[Fig. 6(b)]. The upwards curvature of the solid gray lines in
Fig. 6(b) shows evidence that this dH = 2 phase survives to
temperatures above zero.

B. Geodesic confinement

In a doubly periodic graph, the total number of nodes Ngeo

in the geodesic bundle between two nodes a distance λ apart
scales as Ngeo ∝ λ2. From Figs. 6(c) and 6(d), we see that the
scaling of Ngeo with N also approximates a power law for the
low-temperature walker model, but with a different exponent:

Ngeo ∝ Nγ with γ ≈ 1.1. (4)

An exponent γ < 2 implies qualitatively different behavior
to the doublyperiodic lattice case, and, in the limit N → ∞,
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FIG. 6. Statistical tests for Euclidean behavior of our graphs.
Top row: The mean node eccentricity H and standard deviation
for example points, divided by N1/2, where N is the number of
nodes. (a) The curvature model with T = 0.5 (black), 20, 22, 24,
26 (gray), and 105 (dashed). (b) The walker model, with T = 2−3

(black), 22, 23, 24,..., 28 (gray), and 105 (dashed). Middle row: (c) The
number of nodes Ngeo in geodesic bundles of different lengths λ on a
low-temperature walker model graph with N = 215 nodes. (d) Fitted
values for γ , where Ngeo ∝ Nγ for graphs of different N . Bottom
row: R is the ratio of the perpendicular length to the edge side of
an equilateral triangle drawn on a low-temperature walker model
with N = 215 nodes. Rsph is the exact equivalent on a smooth sphere
[Eq. (5)]. (e) R plotted against Rsph − √

3 (we show a random sample
of 250 from the full set of 6078 points). The line is a linear regression
and we extract the intercept as a graph-theoretic estimate of

√
3. (f)

Estimates of
√

3 by this method for graphs of different size N . The
dashed gray horizontal line is the exact value.

it is consistent with the narrow geodesics (“straight lines”)
familiar from Euclidean geometry. We call the collapse of the
broad, Ngeo ∝ λ2 geodesic bundles “geodesic confinement”
[Fig. 2(b)], by analogy to the flux tubes and color confinement
seen in strong-force interactions [31].

C. Pythagoras’ theorem

Finally, we consider the validity of Pythagoras’ theorem on
graphs generated by the walker model. Although this can be
proved in general for Euclidean geometry, on graphs we test
it empirically by calculating the length of the perpendicular of
an equilateral triangle. If Pythagoras’ theorem holds, this will
be

√
3 times half the side length.

Because we are generating approximations to a spherical
surface, rather than a plane, we want to make use of as much

FIG. 7. Equilateral triangles on the plane and on a graph. (a) An
equilateral triangle drawn on the Euclidean plane with straightedge
and compass, where M is halfway between A and B, and MC/AM =√

3. (b) The same construction using geodesics on a low-temperature
“walker model” graph (which approximates a smooth sphere) with
N = 216 nodes and triangle side length of 32.

of the graph as possible, rather than a small patch on which
statistics will be poor. We therefore perform the analogous
calculation using spherical, rather than plane trigonometry.
If we draw an equilateral spherical triangle on a smooth 2-
sphere, with side length � times the half-circumference, the
ratio of the length of the perpendicular of the triangle to half
its side length will be

Rsph(�) ≡ 2

π�
arccos

[
cos(π�)

cos(π�/2)

]
=

√
3 + O(�2). (5)

The same ratio R can be calculated for a graph formed by
the low-temperature walker model [Figs. 6(e), 6(f), and 7],
and although the fluctuations are significant, they appear to
be unbiased, so that performing linear regression of R against
Rsph gives an estimate for

√
3 which is only one standard

deviation from the traditional value:
√

3est = 1.726 ± 0.005. (6)

We believe this is a nontrivial result, unlikely to emerge acci-
dentally, and so we take it as strong evidence that Pythagoras’
theorem is satisfied in general for the low-temperature walker
model. Since the straightedge and compass operations of
drawing circles of any radius, and drawing and measuring
(but not extending) lines are simple operations on graphs,
many other constructions of classical geometry may readily
be tested.

V. METHODS

Our proof that all planar lattice graphs satisfy the taxicab
metric is in two parts, which we call geodesic composition
and geodesic rearrangement.

A. Proof of geodesic composition

Consider a doubly periodic planar graph made up of iden-
tical unit cells, each of which comprises ω distinct nodes.
Equivalent nodes in different unit cells are said to be of the
same type. Let Gpp(v) denote a particular geodesic between
two p-type nodes separated by v = (m, n) unit cells.

We first prove that for any displacement v, for at least one
node type p, the concatenation Gpp(kv) of k copies of Gpp(v) is
also a geodesic [Figs. 8(a)–8(d)]. Let p be the node type which
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FIG. 8. All doubly periodic planar graphs have a taxicab metric
on long length scales. (a)–(d) A grid of unit cells forms a doubly
periodic planar graph; nodes within the unit cells not shown. For
some node type p, if p0 p1 is a shortest path between nodes separated
by v = (m, n) unit cells, then p0 p1 . . . pk is the shortest path between
nodes separated by kv unit cells. (e),(f) For m and n relatively prime,
the geodesic Gpp(kv) is the concatenation of k − 1 copies of both
Gqq(u) and Gqq(u′), with tails at either end. See the text for details.

minimizes Gpp(v). Call this the optimal node assumption. Let
p0 p1 of length |p0 p1| = λ be a geodesic between p0 and p1,
which are both of type p, but displaced v units cells from one
another [Fig. 8(a)]. Call this the v-geodesic assumption. Let
p0 p1 p2 be two copies of p0 p1 placed end-to-end.

Now suppose there is a path p0abp2 with length
|p0abp2| < |p0 p1 p2| = 2λ [Fig. 8(b)]; because the graph is
planar, nodes a and b exist. Then |ab| < λ or |p0a| + |bp2| <

λ. If the former, then we contradict the optimal node assump-
tion. If the latter, we contradict the v-geodesic assumption.
Therefore p0 p1 p2 is a geodesic between p0 and p2. That is
to say, Gpp(2v), which is the concatenation of two copies of
Gpp(v), is a geodesic. Call this the 2v-geodesic property.

We now show that the (k − 1)v-geodesic property implies
the kv-geodesic property [Fig. 8(c) for k = 3]. Suppose there
is a path p0abpk with length |p0abpk| < |p0 p1 . . . pk| = kλ.
Then |ab| < λ or |p0a| + |b pk| < (k − 1)λ [Fig. 8(d) for k =
3]. If the former, then we contradict the optimal node assump-
tion. If the latter, then we contradict the (k − 1)v-geodesic
property. Therefore p0 p1 . . . pk is a geodesic between p0 and
pk . This completes the first part of the proof.

B. Proof of geodesic rearrangement

We next prove that for most displacements v, for at least
one node type p, the geodesic Gpp(kv) consists of three
parts: a tail at each end, which joins the nodes p0 and pk

to copies of some other type of node q, and, between the

tails, k − 1 alternating copies of Gqq(u) and Gqq(u′) for some
displacement vectors u and u′ [Figs. 8(e) and 8(f)]. We now
only consider displacement vectors v = (m, n) such that m
and n are relatively prime (which occurs [32] for random
m and n with probability 6/π2 � 0.61) and large enough
so that λ > 2ω, where ω is the number of distinct nodes in
the unit cell. By Dedekind’s pigeonhole principle [18], since
λ/ω > 2, Gpp(v) must pass through at least two nodes of some
other type q different from type p [Fig. 8(e)]. Therefore we
can define a subgeodesic Gqq(u) within Gpp(v), and a second
geodesic Gqq(u′) between the node q in adjacent copies of
Gpp(v) [Fig. 8(f)].

Because m and n are relatively prime, u and u′ can-
not be parallel. To see why, let the displacement u be
(i, j) and the displacement u′ be (i′, j′) and assume i′ � i.
Since u ‖ u′ implies i/ j = i′/ j′, (m, n) = (i + i′, j + j′) =
(1 + i′/i)(i, j), where i′/i is an integer, contradicting (m, n)
being relatively prime.

The k − 1 alternating geodesics can be rearranged in any
order, forming a set of staircases between the end q nodes
[Fig. 8(f)]. Therefore the geodesic bundle occupies an area of
m n(k − 1)2 unit cells. This completes the proof.

C. Computer code

See Supplemental Material [33] for the computer code (in
the C programming language) used to generate the data in
Fig. 6, as well as the pictures in Figs. 4, 5, and 7. There is also
a video showing the different network models’ dynamics.

VI. DISCUSSION

We have shown that discrete space and Euclidean space,
thought by many to be at odds, are indeed compatible. We
avoid Zeno’s paradox because we do not require our model
to be infinitely divisible. We avoid Weyl’s tiling argument
because our model is disordered. Weyl’s argument is in fact an
observation that certain nonplanar lattices display the taxicab
metric, which is unsurprising given our proof that all planar
lattice graphs do.

Our model shows the emergence of Euclidean space on
long length scales, from a local statistical process that em-
ploys only the intrinsic geometry of a graph. Beyond pro-
viding a discrete model of the Euclidean plane, we believe
our results draw together several disparate fields of physics,
and prompt many intriguing questions that merit further
investigation.

A. No embedding space

Smooth surfaces which are discrete at an atomic scale
frequently arise in nature, such as liquid menisci or crys-
tal surfaces [34]. These atomic systems are embedded in
a background manifold, consisting of ordinary, flat, three-
dimensional space. This embedding manifold allows distance
on the surface to be defined in the usual Euclidean manner,
and also means that normals to the surface exist. The system
energy can then depend on extrinsic curvature (the spatial
gradient of these normals), as well as intrinsic (Gaussian)
curvature. Our graphs, by contrast, do not live in a background
space. Instead, our measures of distance and curvature are
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only intrinsic, defined in terms of edges (distance) and node
degree (curvature) that are properties of the graph itself. No
normal vectors to our graph manifolds exist, nor can they be
defined. Our graphs are themselves the space, and their edges
are the quantum of distance.

We note that because our graphs approximate boundaryless
two-dimensional manifolds, we can approximate the plane
only by forming a very large 2-sphere (since a large, smooth 2-
sphere is locally close to a plane), or by forming a topological
2-torus. Our model in its current form is not able to grow any
manifold with a boundary, such as a disk.

B. Phase transition

Phase transitions which create or destroy smoothness are
well known in physics. A roughening transition [34] can turn
flat crystal facets into smooth, curved surfaces, as measured
with the metric of the embedding space. However, this embed-
ding space is needed to define what smooth curvature means
in this case.

More strikingly, the crumpling transition of membranes
[35] turns flat crystalline membranes into crumpled objects,
confined in a small region of space. However, the irregular,
jagged curvature of the crumpled phase is entirely extrinsic:
a function of its embedding in three-dimensional space. The
intrinsic, ordered, taxicab geometry of the membrane itself is
unchanged through the crumpling transition.

In contrast, the phase transition we find at low temperature
in the walker model changes the intrinsic metric of the graph
from a crumpled, non-Euclidean “Brownian map” [15] into
smooth, Euclidean space. It is unclear, at present, whether
the phase transition occurs at finite or infinite temperature. A
renormalization group analysis of the model may shed light
on this question.

C. Walker model

The phase transition which creates continuum geome-
try is driven by a statistical walker process. The motiva-
tion for this comes from the naïve curvature model, which
minimizes the sum of the squares of the local discrete
curvature κ , but disappointingly gives rise to a “Medusa”
phase [Fig. 4(b)]. This pathological behavior is consistent
with previous investigations of triangulations, which lead to
branched polymer phases and other exotic geometries rather
than smooth, homogenous space [24,36]. The pathologies are
due to concentrations of discrete curvature in confined re-
gions; in other words, large, local curvature fluctuations. Our
walker process—which solves a discrete version of Poisson’s
equation, with the charge being the curvature κ—is sensitive
to small curvatures on large length scales, and so, through
the energy functional Ewalk, ultimately acts to spread these
fluctuations over the whole graph.

D. A background for simulations

A practical application of our Euclidean graphs is as a
background for simulations. Lattices, such as the square grid,
are intrinsically anisotropic, so special care is often needed
when designing simulations to run on them. The rotational
symmetry of our graphs therefore make them suitable spaces

on which to perform algorithms such as lattice gas cellular
automata [37].

E. Higher dimensions

We have built a discrete, graph model that behaves like
two-dimensional Euclidean space at large lengths. Can the
same be done for higher dimensions? While more com-
putationally intensive, our walker model should generalize
naturally to dimensions greater than 2. In three dimensions,
the key step is extending the Steinitz moves in Fig. 3 to
add and subtract tetrahedra, rather than triangles, as nodes
divide and fuse. Whether the resulting graph will be Euclidean
is, however, unknown. Our tests for geodesic confinement
and the applicability of Pythagoras’ theorem are benchmarks
for this and any other discrete models attempting to capture
Euclidean geometry at large lengths.

We conjecture that the absence of geodesic confinement
carries over to higher dimensional lattices, as it clearly does
for the three-dimensional regular cubic grid. Unfortunately,
the proof does not readily follow from our theorem in
two dimensions, which relies on planarity, since all three-
dimensional lattices are non-planar. Figure 2(c) gives an indi-
cation of the subtlety. It shows a nonplanar, two-dimensional
lattice not satisfying geodesic composition, a key step in our
proof (see Methods).

Closely related results have been proved for more general
cases. It is known that for asymptotically large radii, balls
around a node in a lattice graph of any dimension can never be
ellipsoids, but are rational polytopes [17]. Isotropic behavior
of geodesics is therefore impossible, and if these polytopes
were exact, rather than having finite length whiskers in cer-
tain directions [the eventuality of Fig. 2(c)], broad geodesic
bundles would follow from the partial incidence of the faces
of polytopes of radius r around two points separated by 2r.

F. The Minkowski metric

We have shown how to grow graphs with a Euclidean
metric, that is, that satisfy Pythagoras’ theorem, d2 = x2 + y2,
where d is distance and x and y orthogonal directions. What
about other metrics? The most important is the Minkowski
metric of special relativity, the two-dimensional analog of
which is d2 = t2 − x2, where t is a time direction. How to rep-
resent this as a graph is an open question, because nodes must
be intricately connected at large coordinate displacements.
Taking an approach similar to causal set theory [3,4], but with
neighbors separated by unit proper time, would suggest that
the degree of each node diverges with the logarithm of the
volume of space-time (or worse, as a power, for higher dimen-
sions). Furthermore, unlike Euclidean space, where the square
grid graph at least models a fourfold rotational symmetry, it is
not possible to construct a lattice graph which is symmetric
under even a discrete version of the Lorentz transformation.
Thus, it remains to be seen whether some variant of the walker
process can be defined to probe and engender the fabric of
space-time.
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