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The speed and extent of diffusion of behaviors in social networks depends on network structure and individual
preferences. The contribution of the present study is twofold. First, we introduce weighted interactions between
potential adopters that depend on the similarity in their preferences and moderate the strength of social
reinforcement. The reason for the extension is the existence of a confirmation bias in the way agents treat
information by prioritizing evidence conforming to their opinion. As a result, individuals become less likely
to be influenced by peers with relatively different preferences, reducing the overall diffusion rate under clustered
networks. Second, we enrich our analysis by also considering a scale free network topology with a high degree
asymmetry, motivated by its pervasiveness in online social networks. This network performs consistently well
in terms of diffusion for different parameter combinations and clearly outperforms clustered networks under
weighted interactions. Our results show that more realistic assumptions regarding agents’ interactions shift the
focus from clustering to degree distribution in the study of network structures allowing for fast and widespread
behavior adoption.
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I. INTRODUCTION

Individual decision making is sensitive to conspicuous
peer behavior. This has been confirmed, among others, for
energy consumption choices [1,2], adoption of solar panels
[3], and greenhouse gas mitigation practices (including usage
of public transport and recycling; see [4]). Social influence is
often the result of descriptive norms, i.e., a regularity in the
behavioral pattern of peers that signals a socially “correct”
behavior [5]. The adoption of such behaviors is triggered by
the percolation process—only those agents can adopt that are
exposed to peers that already adopted the behavior—and by
the social reinforcement process—every further peer increases
the likelihood of adoption.

Many studies have modeled the diffusion of a behavior at
the individual level in an explicit social network searching
for a topology ensuring fast and widespread adoption [6,7].
The main topological features investigated are the average
path length (average number of edges along the shortest path
between any two nodes) and the clustering (the extent to
which peers of any node tend to be also peers with each other)
of the network [8]. Shorter average path length allows for
a faster spreading of information. High clustering enhances
a local diffusion via the social reinforcement process. The
role of clustering has been demonstrated in an experiment by
Centola [7], where participants faced the decision to join a
health forum. Every time a participant registered to the forum,
a message was sent to her social neighborhood inviting the
recipients to join as well. This study found that participants
were more likely to join as the number of invitations they
received grew, demonstrating the role of social reinforcement.
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Furthermore, exploring different network topologies Centola
concluded that behaviors subject to social reinforcement dif-
fuse at a higher rate in clustered networks. Several modeling
studies reproduced this finding. Reference [9] builds a sim-
ple model of information diffusion where the likelihood of
accepting and transmitting the information increases with the
number of signals received. Reference [10] uses a threshold
model, in which agents adopt a behavior depending on peer
pressure and individual preferences are defined as intrinsic
cost to adopt a new behavior.

We introduce two differences to the model by [10]. First,
we consider that the peer pressure between two agents de-
pends on the similarity in their preferences. Second, we
include the scale free network topology in our analysis. Both
differences are motivated by extensive empirical evidence
documenting relevance of these assumptions. In particular, as
demonstrated by [11], agents put a higher weight on opinions
that conform to their existing beliefs, pointing out an impor-
tant confirmation bias in the way agents treat information.
Later the confirmation bias was demonstrated in different
contexts [12–14], with experiments showing that agents are
more likely to comply with a norm communicated by a peer
with similar preferences [15]. To model the confirmation bias,
we introduce weighted edges based on the distance in agents’
preferences. In other words, the social influence one agent
exerts on another is not binary (signal the behavior or not), but
mediated by their similarity in preference towards adopting
that behavior. Our conjecture is that this bias can affect the
performance of the studied networks in terms of diffusion
rates. Including the scale free network is motivated by the
increasing empirical evidence that online networks exhibit
the power law degree distribution [16,17], while interactions
occur with ever greater extent online [18]. This particular
topology is the result of the preferential attachment process
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where few nodes have a very large number of connections and
the majority of nodes have very few peers only [19]. While
simple diffusion in the scale free network has been studied
in [20,21], this paper is addressing the scale free topology
for complex diffusion with social reinforcement and weighted
interactions.

We demonstrate that, first, the addition of insights from
behavioral science on how agents asymmetrically treat infor-
mation undermines the performance of clustered networks.
This is because the long average paths between nodes in the
network allow individuals to resist social pressure from peers
with very different preferences precluding further spreading
of the behavior. Second, we show that the scale free network
is robust to the weighting of interactions. It best ensures fast
and widespread diffusion under social reinforcement and con-
firmation bias when the majority of the population has a high
resistance against adopting the behavior. These two results
are important for the literature in understanding the complex
processes of social diffusion shifting the focus from network
clustering to network degree distribution as the critical factor
for behavior spreading. They also suggest that the diffusion of
a behavior is more effective on digital social platforms than on
spatial offline networks where high degree asymmetry is less
likely.

The remainder of this paper is organized as follows.
Section II describes our model of diffusion with social re-
inforcement under confirmation bias. There we introduce
weighted interactions and the scale free network topology
not considered in this context earlier. Section III presents
simulation results. Section IV concludes.

II. MODEL

A. Percolation with social reinforcement

We describe a simple model of behavior adoption with
social reinforcement and confirmation bias, in which the
decision to adopt is based on personal preferences, awareness
about certain behavior (percolation model), and peer pressure.
Following [10], we consider agents interacting in a fixed undi-
rected social network N , where the set of agent i’s neighbors
is denoted by Ni and its degree by ni.1 The agent decides to
adopt the behavior if and only if

Q � mi,t , (1)

where Q ∈ [0, 1] is the quality of the behavior and mi,t is the
minimum quality requirement (or MQR) of agent i.2 A zero
quality means a completely unattractive behavior that no one
is willing to adopt, while a quality of one means a behavior

1Uppercase letters denote sets and the corresponding lowercase
letters the cardinality of the respective sets.

2Quality is an abstract aggregate term. Referring to the examples
from the Introduction, quality captures the effectiveness of measures
mitigating greenhouse gas emissions or technical quality of solar
panels. Instead of quality, one can also operate with prices: Q
as a market price and MQR as a reservation price of the agent
[22]. Considering the more expensive electricity from the renewable
energy sources as a new behavior, social reinforcement raises the
agent’s willingness to pay and adopt the new behavior.

FIG. 1. Different distributions of switching costs (πi).

that everybody wants to adopt from the moment they are
informed about it. The minimum quality requirement without
confirmation bias is a decreasing function of the number of
adopting peers:

mi,t = πi(gi,t )
−γ , (2)

with γ ∈ [0, 1] capturing the intensity of social reinforcement
in the decision making, Gi,t ⊆ Ni being the subset of adopters
among agent i’s peers at time t , gi,t � ni being the number
of adopters among agent i’s peers at time t , and πi ∈ [0, 1]
being the intrinsic switching cost of agent i towards a given
behavior. The switching costs are inversely related to intrinsic
preferences in adopting the new behavior. An agent with high
switching cost may adopt only if several peers influence her
to do so. An agent with low switching costs will adopt as
soon as one peer signals her the behavior. In the following,
we will interchangeably refer to preferences and switching
costs that both capture the individual resistance in adopting
a certain behavior (MQR). Heterogeneous switching costs
between agents can be explained by differences in income,
education, environmental concern, available infrastructure,
and even amount of free time to adopt the new behavior.3

In line with [10], we assume that switching costs between
neighbors are independent. This means that the generating
process of the network is unrelated to the particular behav-
ior in question. The preferences follow a Beta distribution:
πi ∼ B(β1, β2). This distribution family is flexible, allowing
us to study several settings (Fig. 1) as follows.

(i) A uniform distribution with β1 = 1, β2 = 1.
(ii) A pseudonormal distribution with β1 = 4, β2 = 4.
(iii) A right skewed distribution (the majority of agents

have strong preference for the behavior) with β1 = 1, β2 = 4.
(iv) A left skewed distribution (the majority of agents have

strong preference against the behavior) with β1 = 4, β2 = 1.
In the rest of the paper, we will focus on the results for

the latter specification of the Beta distribution [πi drawn for
the B(4, 1) with the majority of people having high switching
costs]. This setting corresponds best to the case where social

3Consider, for example, the choice to adopt waste sorting behavior
where the above-mentioned characteristics can serve as arguments in
favor of or against adopting the new norm.
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reinforcement makes a difference with many agents adopting
because of social pressure [10].4

While network position (and the resulting number of
adopters in the neighborhood) and switching costs are hetero-
geneous across agents, other parameters, like the intensity of
social reinforcement and behavior quality, act uniformly for
all agents.

B. Weighted interactions and confirmation bias

The first difference of our approach is to differentiate the
influence of peers on the agent’s decision to adopt depending
on the distance in their preferences. In doing so, we follow
the literature on the confirmation bias showing that opinion
dynamics between two agents depends on their opinion prox-
imity [23–25]. The bias arises due to often unconscious se-
lectivity in searching, interpreting, and remembering evidence
supporting one’s own opinion. In this framework, agents
assign more weight to opinions that already conform to their
beliefs, while “neglecting to gather, or discounting, evidence
that would tell against it” [13, p. 175]. While [26] captures
this bias by allowing agents to regard only those peers who are
sufficiently close in their opinion, we follow [27] by allowing
agents being both close and far in their intrinsic preference
to affect their peers’ decision but with different weights.
For instance, observing someone having the same preference
adopting certain behavior is more persuasive than observing
someone with a very distant preference. By doing this, we
introduce heterogeneity in terms of peer pressure the agent
can experience from different neighbors. Also, we extend the
social interaction process underlying our model. While in [10]
it was only about sharing information about adoption decision
(“showing”), here we assume agents know and differentiate
between preferences of their peers (i.e., “telling” information
about the reasons behind their adoption) [28].

We proceed by extending MQR with the confirmation bias
as follows:

mi,t = πi

(∑
j∈Gi,t

e−ρ|πi−π j |∑
k∈Ni

e−ρ|πi−πk | ni

)−γ

, (3)

with ρ ∈ [0,+∞) being the strength of confirmation bias, Ni

being the set of peers of agent i, Gi,t ⊆ Ni being its subset that
adopted the behavior at time t , and ni being the degree of agent
i. The strength of the signal flowing from agent j to agent i is
e−ρ|πi−π j |. The ratio in Eq. (3) represents the relative weight of
the signal from the adopting peers. We multiply this ratio by
the agent’s degree ni so that Eq. (2) without confirmation bias
proposed by [10] can be seen as a special case of our Eq. (3)
with ρ = 0. Furthermore, MQR of agent i would be the same
in both models if agent i is surrounded by agents with the same
preference [Eq. (4)]:

mi,t = πi

(
gi,t

ni
ni

)−γ

= πi(gi,t )
−γ if ∀πk = πi (4)

or if all peers of agent i adopted the behavior [Eq. (5)]

mi,t = πi(1×gi,t )
−γ if gi,t = ni. (5)

4The results for other distributions can be found in Appendix C.

TABLE I. Network characteristics for 10 000 nodes and 20 000
undirected links. (Note. Average clustering is measured as an average
probability for every node that any two of her neighbors are con-
nected. Average path length measures the average number of links
required to connect two nodes. Degree asymmetry of a network is
measured by the skewness of its degree distribution.)

Average Average Degree
clustering path length asymmetry

Regular lattice 50.00% 1250.00 0.00
Small world 35.62% 12.50 0.12
Random 0.04% 6.76 0.50
Scale free 0.15% 4.27 36.30

Thus, introducing the confirmation bias, we effectively trans-
form our network from an unweighted to a weighted one.

Note that MQR with confirmation bias from Eq. (3) being a
function f (πi, gi,t , γ ) can exceed the original switching cost
πi if the distance in switching costs to the adopters in agent
i’s neighborhood is larger than the average distance to all his
neighbors:

∑
j∈Gi,t

e−ρ|πi−π j | �
∑

k∈Ni
e−ρ|πi−πk |

ni
. (6)

That means f (πi, 1, γ ) = πi does not always hold anymore
(unlike in [10]), but f can be larger or smaller than πi depend-
ing on the distance in preference to the first adopting peer.5

One should, however, not mix it with a possible deterring
effect in our model since πi is only an ingredient of MQR.
In line with the fundamental principle of a percolation model,
f (πi, 0, γ ) = ∞ (an agent cannot adopt a behavior if she is
not aware of it), and f (πi, gi,t , γ ) is strictly decreasing in gi,t

for γ > 0.
For very large ρ, the agents only consider the decision of

their most similar neighbors. Let us consider the case when
agent l is the most similar (in terms of preference) peer of
agent i, i.e., |πi − πl | < |πi − πk| ∀k �= l ∈ Ni. Then:

lim
ρ→∞ e−ρ|πi−π j | = 0 ∀ j ∈ Ni (7)

and

lim
ρ→∞

(
e−ρ|πi−πl | + e−ρ|πi−πk |) = e−ρ|πi−πl |. (8)

Therefore, for the strength of the confirmation bias approach-
ing infinity, we have agents simplifying the behavior of their
whole ego network to the behavior of their closest peer:

mi,t =
{
πi(ni )−γ if l ∈ Gi,t ,

0 else. (9)

C. Network topology

Our second difference is that we extend the set of networks
considered with the scale free network. The reason is that
many empirical networks present a very high degree asymme-
try. This holds particularly true for digital social networks due

5The inequality in Eq. (6) can hold even for two or more adopting
peers.
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FIG. 2. Example of a diffusion process for Q = 0.6, γ = 1, and B(4, 1) in (a) a regular lattice without confirmation bias, (b) a regular
lattice with confirmation bias, ρ = 1, and (c) a network with high degree asymmetry with and without confirmation bias. Note. Scalars in
parentheses are the switching costs of each agent. Black nodes represent agents having adopted the behavior, while gray nodes are agents that
are subject to adopt; red links represent the signal flowing from the adopting agent to its neighbors.

to the lower time constraint associated with maintaining on-
line communication allowing agents to have a very large num-
ber of connections [17]. As a result, few star agents can have
a high number of peers, whereas the majority of agents have
a few connections only. We generate the network using the
preferential attachment algorithm [19]. The probability that an
agent has k connections in the network decays as a power law:
P(k) ∼ k−α . The algorithm generates degree distribution with
α = 3 following empirical estimations [16,29,30]. Comparing
our results with Tur et al. [10], we use the Watts-Strogatz
algorithm [31] that starts with generating a network in which
agents are connected to a few nearest neighbors (regular
lattice), and rewires every link with a probability μ. As the
probability goes to 1, the topology resembles the random
network. The so-called small world network topology with
still high clustering (similar to regular lattice) but already low
enough average path length (similar to random network) is
observed for μ ∈ [0.001, 0.1] (see Table I). In the following
we adopt μ = 0.05.6 The networks created with the small
world algorithm all have a relatively small degree asymmetry
and have been studied without confirmation bias [10].

While the regular lattice and random network are math-
ematically convenient graphs with little empirical evidence,
small world and scale free topologies represent structural
properties of networks resulting from physical and digital
interactions in the real world. In particular, small world

6Reference [10] tested alternative specifications of the parameter
but did not find any qualitative difference. We also checked different
μ for the small world network in our model with confirmation bias
and came to the same conclusion.

property is typical for professional networks (movie actors
and scientific collaborations [29]) and frequently used to
describe interactions leading to the adoption of home-specific
goods such as solar PV in [32], while scale free networks are
more suited to study information diffusion in online social
networks, such as in [17,33]. We also deliberately set the
density of the synthetic networks very low (approximately
0.0004), which is in line with empirical estimates by [34].

Figure 2 is meant to illustrate our model of diffusion
with social reinforcement with and without the confirmation
bias. The top two panels in Fig. 2 exemplify the diffusion
processes with and without confirmation bias in a regular
lattice with Q = 0.6 and γ = 1. The early adopter E activates
her four neighbors NE = {C, D, F, G}. Without confirmation
bias [Eq. (2)] agent G has minimal quality requirement of
mG,1 = 0.60( 1

1 )
1 � Q and will therefore adopt. Once two

connected agents have adopted in a regular lattice, it is an
immediate property of Eq. (2) that for γ = 1 the diffusion will
reach 100% for all Q greater than 0.5.

With confirmation bias and ρ = 2 [Eq. (3)] the same
agent has, in contrast, a minimal quality requirement of

mG,1 = 0.60( e−2×0.23

e−2×0.23+e−2×0.34+e−2×0.14+e−2×0.21 × 4)
−1 	 0.609�Q

and therefore will not adopt, which prevents the further
diffusion process.7 This illustrates how under confirmation
bias agents become less likely to be influenced by peers with
very different preferences.

7For ρ = 1 further diffusion would also be prevented as mG,1 =
0.602, while for ρ = 3 its value would have been even larger and
equal to 0.618.
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FIG. 3. Relative influence of neighbors on agent G, with different
strength of confirmation bias given the distance in preferences (d).

The lower panel in Fig. 2, in contrast, demonstrates that
in a network with high degree asymmetry the behavior can
spread equally well with and without confirmation bias. This
is because applying Eqs. (2) and (3) leads in this example
to the same diffusion path with two, three, and four more
adopters in subsequent periods.

Figure 3 shows how the relative influence of the neighbors
of agent G changes when a confirmation bias is introduced
in the model. As noted in Eqs. (7)–(9), when the strength
of confirmation bias increases, the most similar (in terms
of preferences) neighbor, agent H in this example, has an
overarching influence on the decision making of agent G.

To have a more systematic comparison of the four networks
for a larger number of adopters and different scenarios of early
adopters, as well as alternative distributions of preferences, we
proceed with the numerical experiment in the next section.

III. RESULTS

Consistent with [10], we simulate the diffusion process in
undirected networks with 10 000 agents with mean degree of
4. The process starts with 10 random early adopters and runs
until a steady state is reached, i.e., no new adopter is generated
in any subsequent period. As the model can generate different
outcomes depending on the initial conditions,8 we report
average results over 50 restarts for each combination of pa-
rameters: quality Q, intensity of social reinforcement γ , distri-
bution of preferences B(β1, β2), and strength of confirmation
bias ρ. In Appendix B we also report the period in which the
diffusion stops to make the potential trade-off between the rate
of adoption (i.e., the share of adopters in the population) and
the duration of the diffusion process explicit. We compare the
four networks with the two specifications of MQR presented

8Three features subject to random number initialization influence
the outcome: the draw of individual switching costs, the choice of
early adopters, and the topology of the network.

in Sec. II: without confirmation bias described in Eq. (2) and
with confirmation bias from Eq. (3) with ρ = 2. This value of
ρ corresponds to a moderate confirmation bias (see Fig. 3). In
this setting, agents with relatively dissimilar preferences have
a lower but still substantial influence on each other. Simulation
results for other values of ρ can be found in Appendix A.

In line with the description of our model, the higher quality
Q and the intensity of social reinforcement γ consistently
contribute to the rising rate of diffusion of behavior all else
being equal. While higher Q—capturing higher attractiveness
of behavior—simply increases the chance to adopt under the
threshold rule in Eq. (1), the higher γ does the same by in-
creasing the role of social reinforcement on potential adopters.

From Fig. 4 we see that without any confirmation bias
when the majority of the population has strong preferences
against adopting the behavior, the scale free network performs
well, reaching a diffusion rate higher or equal to other net-
works for the majority of combinations of quality and strength
of social reinforcement without confirmation bias. The only
exception is the intermediate level of quality (0.6–0.8) com-
bined with the high intensity of social interaction (γ � 0.6).
Note that in line with our illustration in Fig. 2, 100% diffusion
rate in the regular lattice is assured for certain combinations
of Q and γ . This result is trivial considering the perfectly
structured topology of the regular lattice where any two peers
share two more peers in common. According to Eqs. (1) and
(2), if 1

2γ � Q, then the presence of two connected adopters
is a sufficient condition to reach 100% diffusion. One can
compare this with the domino chain reaction, where agents
cannot resist social pressure from a certain point. In particular,
having two connected adopters guarantees a full diffusion for
γ = 1 under Q � 0.5, for γ = 0.8 under Q � 0.575, γ = 0.6
under Q � 0.66, γ = 0.4 under Q � 0.758, etc.

Once we introduce the confirmation bias in Fig. 5, we
observe a deterioration of the rate of diffusion in the regular
lattice while performance of all other networks, particularly
the scale free one, remains remarkably robust. This is made
clear by Fig. 6, which shows the change in adoption rate when
confirmation bias is introduced. This deterioration happens
because the bias raises the propensity of agents to resist so-
cial pressure from peers with relatively different preferences.
Hence the “domino effect” described in the regular lattice
under no confirmation bias arises only for much higher values
of Q. For larger ρ, there is no threshold quality such that 100%
diffusion rate in the regular lattice is guaranteed (see Figs. 8
and 9 in Appendix A). Combined with the fact that a few
resisting agents are sufficient to isolate a large share of the
network from early adopters (Fig. 2), we observe the very high
“fragility” of the performance of the highly clustered network
towards the presence of the confirmation bias. It is worth
mentioning that already a few short path links present in the
small world network solve the problem and make the network
robust to the bias. Thanks to those links, agents bypass the
resisting nodes and effectively prevent them from stopping
further diffusion. Increasing further the number of adopters
later can convert the resisting agent into an adopter anyway.

To check the robustness of this result, we explore al-
ternative values of the confirmation bias strength ρ (see
Appendix A). We find that the performance of the regu-
lar lattice deteriorates even further when the similarity in
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Adoption rate without confirmation bias, ρ = 0, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

(a) (b) (c)

(d) (e) (f)

FIG. 5. Adoption rate with confirmation bias, ρ = 2, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b)

(c) (d)

FIG. 6. Difference in percentage points between the adoption rate with confirmation bias, ρ = 2, and without confirmation bias, ρ = 0,
for π ∼ B(4, 1) (a) regular, (b) small world, (c) random, and (d) scale free. Note. Negative values mean that the adoption rate is lower under
confirmation bias. The results are generated for different combinations of quality and intensity of social reinforcement (γ ).

preferences plays a stronger role in the diffusion process.
For higher value of ρ, we find that the adoption rate in the
regular lattice is close to zero for virtually all combinations
of parameters. This confirms that the diffusion process in
clustered networks is highly contingent on the weight agents
assigned to similar peers.

Another important consequence of the introduction of the
confirmation bias is the fact that the scale free network be-
comes the best performing graph in terms of diffusion for vir-
tually all combinations of quality and strength of social inter-
action (Fig. 5). Thus, unlike previous studies, we find that high
clustering is not necessary to reach high diffusion rates when
the majority of agents originally resists the adoption. The most
connected agents in the scale free network act like “influence
hubs”: they are more likely to have early adopters among
neighbors (hence adopt the behavior themselves), and subse-
quently distribute the signal to their numerous peers quickly
increasing the strength of social pressure on other agents. Un-
like clustering, this structural property is not sensitive to the
introduction of weighted interactions. Although describing
the important role of “influence hubs” is not novel in the case
of simple diffusion, the presence of high degree asymmetry al-
lows for a broad and fast diffusion under social reinforcement
even with a low clustering and confirmation bias.

Comparing diffusion across networks in terms of speed
(number of periods until diffusion stops) supports the advan-
tage of the scale free network. Thus it does not only reach
highest diffusion rates, but does so in the shortest number of
periods (see Appendix B). The latter is important if one is
concerned not just with the final outcome but also the speed
of its realization. A good example can again be environmental
behavior: a quick diffusion would help to reduce CO2 emis-
sions early enough to prevent global warming of 1.5 ◦C above
preindustrial levels [35]. Other network topologies, whenever

they reach relatively high diffusion rates, take much more
time. This is particular true for the regular lattice. Taking its
very long average path length (Table I), however, this is not
surprising.9

We also test the model under alternative distributions of
preferences like the uniform distribution or majority of agents
having low switching costs (see Appendix C). In those cases
the scale free network does not always rank first, but is only
slightly inferior to the best performing network.

IV. CONCLUSION

The mounting empirical evidence on the role of social
interaction in affecting individual decision making and behav-
ior spreading has drawn attention to the search of network
topology that best promotes the diffusion process, both in
terms of adoption rate and the amount of time needed. Earlier,
the literature demonstrated that clustered networks best foster
diffusion if a majority of agents is resistant to adopt. This is
because the seemingly redundant ties reinforce the probability
of adoption of the most resisting agents. If, in contrast, agents
are open to adopting new behavior, networks with shortest
paths are good enough to reach high diffusion rates within a
short amount of time.

9Note that the curves of diffusion times for different Q resemble an
inverted U shape. This is because for greater Q agents are more likely
to adopt without any social reinforcement. In fact, for Q → 1 any
agent adopts once he has one peer among adopters. Hence the speed
of diffusion for Q → 1 is increasing. Low diffusion time for Q → 0,
in turn, is due to the low diffusion rates where behavior spreading
stops early in time.
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The present paper makes the setting studied by [10] more
realistic by differentiating the influence of peers on the agent’s
decision to adopt depending on the distance in their pref-
erences. In doing so, we follow the experimental evidence
that people put a higher weight on opinions that conform to
their beliefs—the so-called confirmation bias. Furthermore,
accepting the growing role of online social networks and their
highly asymmetric degree distribution exhibiting power law,
we add the scale free topology in our network comparison.

We demonstrate that the introduction of the bias changes
the ranking of networks in terms of the diffusion rates they
achieve. In particular, while the regular lattice was performing
best when the majority of agents have a strong preference
against adopting the behavior, it becomes last once agents
start differentiating their neighbors based on the distance in
their preferences and, consequently, resist the adoption. Such
a fragility is due to the absence of short paths between agents
allowing one to bypass the resisting nodes. In contrast, other
studied networks, and particularly the scale free one, are
robust to the introduction of this assumption to the model. The
scale free network becomes the best performing one under
such a setting in terms of diffusion for different intensities
of social reinforcement. Unlike the existing literature, we find

that high clustering is not necessary to explain high diffusion
rates when the majority of agents is reluctant to adopt. This is
because high degree nodes serve as influence hubs collecting
and redistributing the signal of a new behavior raising social
pressure in the network. Thus our results shift the focus
from network clustering to network degree distribution as the
key factor for diffusion. As highly asymmetric networks are
pervasive in digital social platforms, our results suggest that
a diffusion will be more effective in those platforms than in
spatial offline networks characterized by higher clustering and
lower degree asymmetry.
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APPENDIX A: RESULTS WITH DIFFERENT CONFIRMATION BIAS PARAMETERS

As the confirmation bias plays a stronger role in the diffusion process, the performance of the regular network decreases (see
Figs. 7–9). The introduction of a strong confirmation bias (ρ = 10) has a larger negative impact on the diffusion in the more
clustered networks, namely the regular lattice and small world networks (see Fig. 10).

(a) (b) (c)

(d) (e) (f)

FIG. 7. Adoption rate with confirmation bias, ρ = 1, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Adoption rate with confirmation bias, ρ = 3, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

(a) (b) (c)

(d) (e) (f)

FIG. 9. Adoption rate with confirmation bias, ρ = 10, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b)

(c) (d)

FIG. 10. Difference in percentage points between the adoption rate with confirmation bias, ρ = 10, and without confirmation bias, ρ = 0,
for π ∼ B(4, 1) (a) regular, (b) small world, (c) random, and (d) scale free. Note. Negative values mean that the adoption rate is lower under
confirmation bias. The results are generated for different combinations of quality and intensity of social reinforcement (γ ).

APPENDIX B: TIME OF DIFFUSION

The scale free network consistently reaches a maximum diffusion with the shortest number of periods (see Figs. 11 and 12).
In the cases for which the regular lattice outperforms the scale free network (ρ = 0 and γ � 0.8), the diffusion time necessary
is higher by several orders of magnitude (see Fig. 11).

(a) (b) (c)

(d) (e) (f)

FIG. 11. Diffusion time without confirmation bias, ρ = 0, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b) (c)

(d) (e) (f)

FIG. 12. Diffusion time with confirmation bias, ρ = 2, and for π ∼ B(4, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

APPENDIX C: DIFFERENT SWITCHING COSTS DISTRIBUTIONS

Under alternative distributions of switching costs, the scale free network ranks first for a vast majority of social reinforcement
intensity and confirmation bias combinations (see Figs. 13–18).

(a) (b) (c)

(d) (e) (f)

FIG. 13. Adoption rate with confirmation bias, ρ = 0, and for π ∼ B(1, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b) (c)

(d) (e) (f)

FIG. 14. Adoption rate with confirmation bias, ρ = 2, and for π ∼ B(1, 1) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

(a) (b) (c)

(d) (e) (f)

FIG. 15. Adoption rate without confirmation bias, ρ = 0, and for π ∼ B(4, 4) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

022305-12



SOCIAL REINFORCEMENT WITH WEIGHTED … PHYSICAL REVIEW E 100, 022305 (2019)

(a) (b) (c)

(d) (e) (f)

FIG. 16. Adoption rate with confirmation bias, ρ = 2, and for π ∼ B(4, 4) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.

(a) (b) (c)

(d) (e) (f)

FIG. 17. Adoption rate with confirmation bias, ρ = 0, and for π ∼ B(1, 4) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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(a) (b) (c)

(d) (e) (f)

FIG. 18. Adoption rate with confirmation bias, ρ = 2, and for π ∼ B(1, 4) with social reinforcement intensity (a) γ = 0, (b) γ = 0.2,
(c) γ = 0.4, (d) γ = 0.6, (e) γ = 0.8, and (f) γ = 1. Note. The dashed lines represent two standard deviations around the average.
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