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Phase transition in a network model of social balance with Glauber dynamics
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We study the evolution of a social network with friendly or enmity connections into a balanced state
by introducing a dynamical model with an intrinsic randomness, similar to Glauber dynamics in statistical
mechanics. We include the possibility of the tension promotion as well as the tension reduction in our model.
Such a more realistic situation enables the system to escape from local minima in its energy landscape and thus
to exit out of frozen imbalanced states, which are unwanted outcomes observed in previous models. On the other
hand, in finite networks the dynamics takes the system into a balanced phase, if the randomness is lower than
a critical value. For large networks, we also find a sharp phase transition at the initial positive link density of
ρ∗

0 = 1/2, where the system transitions from a bipolar state into a paradise. This modifies the gradual phase
transition at a nontrivial value of ρ∗

0 � 0.65, observed in recent studies.
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I. INTRODUCTION

As Mark Buchanan discussed in his book The Social Atom
[1], we can think of people as elementary building blocks (the
atoms) of the social world. The interactions between such in-
terdependent elements lead to the emergence of macroscopic
patterns such as cultures, wars, social classes, political parties,
racial groups, etc. To understand such phenomena, one needs
a new way of thinking which borrows concepts from physics,
in particular thermodynamics and statistical mechanics, to
study the macroscopic aspects of the human dynamics in
social networks. Indeed, the evolution of our world is strongly
ruled by social networks. In general, all political, economical,
social, or military conflicts occur in a social network, which
includes a set of elements like countries, corporations, or
people that interact through different types of connections,
such as friendship, hostility, political treaties, trade, or sharing
ideas [2–11].

Avoiding distress and conflict is a completely natural
phenomenon in societies and interpersonal relationships, and
almost all efforts are in the direction of tension reduction, if
the individual nodes behave rationally [12–14]. In motivation
psychology, Heider proposed a theory for attitude change,
known as the balance theory [12]. By taking into account that
the relationship between three elements includes Person (P)
and Other person (O) with an object (X), known as the POX
pattern, he postulated that only balanced triads are stable. The
POX is “balanced” when P and O are friends and they agree
in their opinion of X. To reduce the stress in an imbalanced
triad, the individuals change their opinions so that the triad
becomes balanced. Empirical examples of Heider’s balance

*manshour@pgu.ac.ir
†montakhab@shirazu.ac.ir

theory have been found in human and other animal societies
[3,15–19]. Cartwright and Harary developed the Heider model
and showed that a complete signed graph with positive (agree)
and negative (disagree) links is balanced, if and only if it
can be decomposed into two fully positive subgraphs that are
joined by negative links, called a bipolar state [13,14].

For many years, authors only considered static signed net-
works. However, an important subject in the field of balance
theory is the understanding of appropriate dynamics that can
more accurately address the evolution of social networks and
explain how such a social balanced state emerges [20–28].
In such models one usually considers a complete network,
i.e., all-to-all connections among nodes with dynamic signed
links. Each link changes its status in order to reduce the local
or global tension, if some conditions are satisfied. In a few
works, continuous-valued links models have been investigated
[22,24] and have shown that the probability of reaching a
balanced state in finite time tends to unity only for infinite sys-
tem sizes. The influence of asymmetry in networks were also
studied [25]. In an interesting work [29] the coupling between
sign evolution and disease spreading has been investigated.
Recently, the effect of memory on the evolution of the links
has also been studied, which leads to a new glassy state in the
networks [30].

In an important work, Antal and colleagues introduced two
dynamical models on complete networks with positive and
negative links: local triad dyanmics (LTD) and constrained
triad dynamics (CTD) [20,21]. A triad in such networks is
balanced if it has odd number of positive links. By definition,
if a triad is of type �k it contains k negative links; then �0

and �2 are balanced while �1 and �3 are imbalanced. Such
conditions for balanced and imbalanced triads assert that a
friend of my friend or an enemy of my enemy is my friend,
and vice versa. In an update step of LTD, a triad is chosen
at random. If this triad is of type �1, it changes to �0 or �2
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with probability p or 1 − p, respectively. If the triad is of type
�3, it changes to �2 with probability 1. No evolution occurs
for balanced triads of type �0 or �2. For LTD, the criterion
for change is determined by the conditions on the “local”
triad without regard to what happens to the system globally.
The authors showed that for this model, a finite network falls
slowly into a socially balanced state, where no imbalanced
triads remain. This slow relaxation time depends significantly
on the probability p. However, for an infinite network, when
p < 1/2 the system remains in an imbalanced stationary state,
and when p � 1/2, it undergoes a dynamical phase transition
to a paradise state, for which all triads are of type �0.

In CTD, another dynamical model proposed in
Refs. [20,21], a global constraint is imposed that the total
number of imbalanced triads cannot increase in an update
event. The update rule for CTD is as follows: A randomly
chosen link is flipped, i.e., changes its sign, if the total
number of imbalanced triads, Nimb, decreases. If Nimb remains
conserved, then the chosen link is flipped with probability
1/2, and if otherwise no changes in the link sign are allowed.
This dynamics always takes the system into a more balanced
situation. The advantage of this dynamics is that the final
outcome is always reached quickly, when compared to LTD.
However, a possible outcome of such a dynamics is a jammed
state. A jammed state is an unwanted outcome in finite
size, where the system is trapped into an imbalanced state
forever. They proved that the number of such jammed states
greatly exceeds the number of balanced states, and that the
probability of reaching them vanishes as the system size
increases. By introducing an energy landscape, the properties
of such jammed states have also been studied extensively
[31,32]. Indeed, Marvel et al. showed that their numerical
simulations of small networks (generally smaller than 210)
turned up an enormous number of jammed states [31].
Another result of CTD dynamics is a nontrivial gradual phase
transition for the difference in sizes of the two final poles at
ρ0 � 0.65, where ρ0 is the initial density of the positive links.
They argued that this observed gradual transition is not in
agreement with analytical calculations.

As mentioned above, one of the fundamental assumptions
in such dynamical models is the tendency to reduce the
tension between elements of a social network, i.e., the update
rules always take the system into a more balanced situation.
But this is not the case when we deal with the real world.
For example, dissatisfaction, discomfort, profit, pride, anger,
or generally speaking social anomalies, as well as random
activity of each agent, are always present in social networks.
In this article, we show, via detailed numerical and analytical
calculations, that one can overcome the difficulties observed
in previous models by introducing a more realistic dynamical
model that takes into account the possibility of reduction as
well as promotion of the tension among the social agents.
Motivated by studies in statistical mechanics, we generalize
the CTD model so that randomness plays a key role in
changing the sign of a link, while providing a bias towards
global reduction of tension. We observe that our dynamics
is never trapped in a jammed state, as the system quickly
approaches a final balanced state, below a critical randomness
value. In addition, the system undergoes a sharp phase tran-
sition from a bipolar state into the paradise at ρ0 = 1/2 for

large networks, which is consistent with previous theoretical
predictions. Therefore, by adding a more realistic ingredient
within our model, we observe more interesting—or perhaps
desired—outcomes.

II. MODEL DEFINITION

In order to investigate how fluctuations in individual be-
haviors affect the balance theory, and also to overcome the
observed shortcomings in previous studies, we introduce a
dynamics as follows: We consider a fully connected network
of size N , and use a symmetric connectivity matrix s, such
that si j = ±1. The positive sign represents friendship, and the
negative one represents hostility between two arbitrary nodes
i and j. For simplicity, one assumes that everyone knows
everyone else, i.e., the dynamics occurs on a complete graph,
which is appropriate for small real-world networks. As in
a CTD model, the total energy of the system is defined as
[21,31]

U = 1

Ntri

∑

i> j>k

ui jk, (1)

where ui jk = −si js jkski, and the normalization factor Ntri =
(N

3 ) is the total number of triads in the network, so we have
−1 � U � 1. By this definition, we have u = −1 and +1 for
a balanced and an imbalanced triad, respectively. Also, U =
−1 is the balance condition for the system, in which all the
triads are balanced. At every time step, we flip a randomly
chosen link with probability p, defined as

p = 1

1 + eβ�U (t )
, (2)

where β is a control parameter and represents the inverse of
the disorder in the system, which may be considered as the
stochasticity in the individual behavior. Also, �U (t ) indicates
the change in the total energy due to the link flipping in every
time step t . Figure 1 shows all possible configurations of
each triad due to an update. This model can be considered
as an Ising system with three-spin interactions, in contact
with a heat bath at temperature T = 1/kβ. Equivalently our
dynamics is similar to that of Glauber dynamics used in simu-
lations of a kinetic Ising model at a given temperature T [33].
Consequently, our model corresponds to a finite temperature
generalization of CTD model, with Glauber dynamics. It is
important to note that such dynamics provides a more realistic
feature of creating or reducing tension at any given time while
on average reducing tension for positive finite β. Furthermore,
since it allows for an increase in the energy of the system,

FIG. 1. Four distinct configurations of elementary units of the
network. Solid lines show friendship links, and dashed lines repre-
sent hostility links. The triads with energy −1 (+1) are balanced
(imbalanced).
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it could provide a natural mechanism to escape out of local
minima, i.e., the jammed states.

We intend to study the dynamics of such a model, i.e., ρ(t )
and U (t ), for various initial configurations ρ0 and randomness
parameter β. We first provide mean-field analytical results
for some special cases and then consider the model in more
general conditions numerically.

III. MEAN-FIELD APPROACH

Due to the large number of degrees of freedom in the
system, finding exact time-dependent equations for our dy-
namics is inaccessible. Thus, we try to find a mean-field
approximation for the rate equations of our dynamics, using
the notations used in Ref. [21]. It is appropriate to work with
quantity ni which is the density of triads of type �i, i.e.,
ni = Ni/Ntri, where Ni is the number of such triads. With
this definition, the number of positive links and the density
of such links become L+ = (3N0 + 2N1 + N2)/(N − 2) and
ρ = L+/L, respectively, where L = (N

2 ) is the total number of
links and L+ is the number of positive links. Thus, the energy,
U , and the density, ρ, can be written as follows:

ρ = n0 + 2n1/3 + n2/3,

U = −n0 + n1 − n2 + n3. (3)

Another useful quantity is the density n+
i (n−

i ) of triads of
type �i that are connected to a positive (negative) link. The
total number of positive links connected to triads of type �i

is (3 − i)Ni, and N+
i = (3 − i)Ni/L+ is the average number of

such triads. Since each link is connected to N − 2 triads of
any types, thus n+

i = N+
i /(N − 2). Similarly, one can obtain

n−
i = N−

i /(N − 2) for a negative link. Finally, we can write

n+
i = (3 − i)ni/(3n0 + 2n1 + n2),

n−
i = ini/(n1 + 2n2 + 3n3). (4)

Taking into account that ρ is the probability of finding a
positive link, the probability of flipping a positive link is π+ =
p+ρ, with

p+ = 1

1 + eβ�U+−
(5)

and of flipping a negative link is π− = p−(1 − ρ), with

p− = 1

1 + eβ�U−+
, (6)

where �U+− and �U−+ are the energy difference due to the
flipping a positive and a negative link, respectively. Thus, for
an each update at step n, we have

L+(n + 1) − L+(n) = −π+ + π−. (7)

Since each time step equals L updates, one can simply find the
rate equation for (average) ρ, as

dρ

dt
= −π+ + π−. (8)

In each update, the energy difference due to the flipping of
a positive link equals 2(N+

0 − N+
1 + N+

2 )/Ntri, and similarly
for the flipping of a negative link we have 2(−N−

1 + N−
2 −

N−
3 )/Ntri. Thus we obtain

U (n + 1) − U (n) = 2π+(N+
0 − N+

1 + N+
2 )/Ntri

+ 2π−(−N−
1 + N−

2 − N−
3 )/Ntri. (9)

Therefore, we find the rate equation of the total energy as

dU

dt
= π+�U+− + π−�U−+, (10)

where �U+− = 6(n+
0 − n+

1 + n+
2 ) and �U−+ = −6(n−

1 −
n−

2 + n−
3 ). In a similar way one can also find the rate equations

for all triad densities, ni, as follows:

dn0

dt
= −3π+n+

0 + 3π−n−
1 ,

dn1

dt
= −3π+n+

1 − 3π−n−
1 + 3π+n+

0 + 3π−n−
2 ,

dn2

dt
= −3π+n+

2 − 3π−n−
2 + 3π+n+

1 + 3π−n−
3 ,

dn3

dt
= −3π−n−

3 + 3π+n+
2 , (11)

where Eqs. (8) and (10) can also be derived from Eqs. (3) and
(11).

For completely random flipping, β → 0, we have p+ =
p− = 1/2. Thus Eq. (8) becomes dρ

dt = 1/2 − ρ. Simply, we
find that

ρ(t ) = 1/2 + (ρ0 − 1/2)e−t , (12)

where ρ∞ = 1/2 independent of ρ0, as expected. Due to the
uncorrelated nature of the dynamics at β = 0, the triad densi-
ties become n0 = ρ3, n1 = 3ρ2(1 − ρ), n2 = 3ρ(1 − ρ)2, and
n3 = (1 − ρ)3. By substituting these densities into �U+− and
�U−+, using relations for n+

i and n−
i , we find

�U+− = +24(ρ − 1/2)2,

�U−+ = −24(ρ − 1/2)2. (13)

Thus, Eq. (10) becomes

dU

dt
= 24(ρ − 1/2)3. (14)

One simply finds

U (t ) = −8(ρ0 − 1/2)3e−3t , (15)

which shows that U∞ → 0, as expected for an uncorrelated
network. Also, we find a relation between U and ρ for an
uncorrelated network as

U = −8(ρ − 1/2)3. (16)

For the case of large β, we first assume that the system
remains uncorrelated during its early stages of the evolution,
as observed from simulations for large networks (see the
next section). Therefore, Eq. (13) holds for initial time steps.
Consequently, p− → 1 and p+ → 0, and thus dρ

dt � (1 − ρ).
We find the time behavior of ρ, as

ρ(t ) = 1 + (ρ0 − 1)e−t (17)

and for U as

U (t ) = −8[1/2 + (ρ0 − 1)e−t ]3. (18)
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This shows that for large t , the dynamics takes the system
into a paradise state, i.e., ρ∞ →1 and U∞ →−1, independent
of ρ0.

On the other hand, one can find stationary solutions of the
rate equations for any arbitrary β. From Eqs. (8), (10), and
(11), we find π+ = π−, n+

0 = n−
1 , n+

1 = n−
2 , n+

2 = n−
3 , and

�U+−∗ = −�U−+∗ = +24(ρ∞ − 1/2)2. With a little alge-
bra, one can obtain U∞ = −8(ρ∞ − 1/2)3 and

ρ∞ = p−∗

p−∗ + p+∗ , (19)

where

p+∗ = 1

1 + e24β[ρ∞−1/2)2]
,

p−∗ = 1

1 + e−24β[ρ∞−1/2)2]
.

(20)

Equation (19) is a self-consistent equation for ρ∞. A nearly
similar approach has been used in Ref. [34] to find the mean-
field solution of Strauss’s model of an exponential random
graph with clustering. As can be seen in Eq. (19), the balanced
(U∞ = −1) stationary solution of the system occurs only for
β → ∞, with ρ∞ = 1. However, as we will demonstrate later,
another balanced solution (ρ∞ = 1/2) also occurs for large β.
We note here that these analytical relations are obtained by
taking into account the mean-field approximation, where we
assume the same dynamics for all triads of type �i, and the
effects of correlations are averaged out. We will further show
that for values of ρ near 1/2, correlation effects cannot be
neglected, and our mean-field results are not able to represent
such regimes. Thus, our analytical results are not exact. In
the next section, we will prove this claim and discuss the
dynamics near this point in more detail.

IV. NUMERICAL RESULTS

In this section, we simulate our proposed model on net-
works with different sizes of N and different initial conditions
of ρ0. Note also that we take each time step as L simulation
updates, so that at every time step, one link is updated, on
average. At first, we focus on the fully random case with
β = 0. In Figs. 2(a) and 2(b), we plot the time evolution of the
energy, and the positive links’ density, ρ, for different initial
conditions of ρ0 = 0.0, 0.2, 0.5, 0.8, and 1.0. The network
size is N = 128 here. For β = 0, and from Eq. (2), we have
p = 1/2, and thus, the updates are fully random. As can be
seen, at large t , the system approaches a completely random
configuration with ρ∞ = 1/2 and U∞ = 0. The network is
imbalanced and has an equal number of positive and negative
links, as expected. Figure 2(c) shows the corresponding trajec-
tory of the dynamics in U -ρ space for two initial conditions
of ρ0 = 0 (with U0 = +1) and ρ0 = 1 (with U0 = −1), both
approaching the final random state of ρ = 1/2. Note that the
dashed lines in panels (a), (b), and (c) show our analytical
findings of Eqs. (12), (15), and (16), respectively, which are
all in complete agreement with our simulations.

To investigate the case of complete order, i.e., β → ∞,
Figs. 3 and 4 show the time evolution of U (t ) and ρ(t ) for
initial conditions of ρ0 � 1/2 and ρ0 > 1/2, respectively. We
see that the network always reaches a final balanced state of
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FIG. 2. The time evolution of (a) the total energy, U , and (b) the
density of positive links, ρ, with different initial conditions for β =
0. (c) The trajectory of this dynamics in U -ρ space, for two initial
conditions of ρ0 = 0 and 1. The network size for all plots is N = 128.
Note that the dashed lines in (a), (b), and (c) show our analytical
solutions of Eqs. (12), (15), and (16), respectively.

U∞ = −1 at large t [see Figs. 3(a) and 4(a)]. As is observed
in Fig. 3(b), the final values of positive links’ density, ρ∞, are
independent of the initial conditions for all ρ0 � 1/2. Indeed,
the network reaches a bipolar state with nearly same-size
poles. However, for ρ0 > 1/2, Fig. 4(b) shows that ρ∞ → 1,
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FIG. 3. The time evolution of (a) the total energy, U , and (b) the
density of positive links, ρ, with different initial conditions of ρ0 �
1/2 for β → ∞. The dashed lines show our analytical solutions,
Eqs. (17) and (18), which are not in agreement with the simulations.
The network size for all plots is N = 128.

and the final state is paradise. To better understand the
evolution of the system, in Fig. 5 we have also plotted U
versus ρ. As can be seen, the system finally approaches one
of its attractors of ρ∞ = 1/2 or ρ∞ = 1, depending on the
corresponding initial conditions. Note here that in early stages
of the dynamics, the evolution of the system coincides on the
trajectory of an uncorrelated dynamics [see Fig. 2(c)]. The
dashed lines in Figs. 3 and 4 show our analytical findings
for large β. We observe that only for ρ0 > 1/2 does a good
agreement between our analytic calculations and our simula-
tions exist, and for ρ0 � 1/2, a large deviation occurs. In fact,
analytic results show that the only balanced state is paradise,
and our simulations do not illustrate such a behavior for ρ0 �
1/2. We can understand this phenomenon qualitatively. First,
we note that as long as ρ0 > 1/2, the conditions �U+− > 0
and �U−+ < 0 hold, and thus Eq. (17) is almost valid, and
the density of positive links increases until it reaches unity
where the stationary condition of dρ/dt = 0 holds. But, for
the case of ρ0 < 1/2, the above conditions also hold until
ρ → 1/2, at which p+ � p−, and thus ρ is trapped into
this value. It is worth mention here that the reason that our
rate equations cannot directly represent such a behavior is
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FIG. 4. The time evolution of (a) the total energy, U , and (b) the
density of positive links, ρ, with different initial conditions of ρ0 >

1/2 for β → ∞. The dashed lines show our analytical solutions,
Eqs. (17) and (18), which are in complete agreement with the
simulations. The network size for all plots is N = 128.
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FIG. 5. The trajectory of the dynamics in U − ρ space, for β →
∞ with five different initial conditions. Note that representative
points with U = −1 illustrate the balanced absorbing states. The
dashed line represents our analytical solution of Eq. (16) for a fully
uncorrelated trajectory. Note that as ρ → 1/2, the deviation from the
random trajectory increases. The network size is N = 128.
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FIG. 6. (a) The β dependency of large time behaviors of the
total energy, U , for ρ0 = 0.6. Different network sizes are shown
with different symbols. For large networks, a nearly sharp transition
occurs at some values of β, which goes to infinity as N → ∞.
(b) The order parameter, δ, defined as the average link value, 〈s〉,
as a function of ρ0, for different network sizes of N = 8, 16, 32, 64,
128, 256, and 512, at β = 3. There is a sharp transition at ρ0 = 1/2
for large networks.

due to the deviation of the dynamics from its uncorrelated
trajectory near ρ = 1/2, which is observed in simulations.
As depicted in Fig. 5, for ρ → 1/2, the deviation from the
uncorrelated trajectory (dashed line) increases, which indi-
cates that the mean-field approximation is not applicable here,
and thus our analytical results are not able to cover the case
of ρ0 � 1/2.

Up to now, we have discussed only the limiting cases
of β = 0 and ∞. Clearly, a finite value of randomness β

is of more interest. For example, considering the fact that
β = 1/kT and the fact that the dynamics of the links can
be mapped to the spin dynamics in ferromagnetic (Ising)
models, one can look for a possible phase transition at finite
β. To study the intermediate randomness level, we calculate
the behavior of final values of energy, U∞ for various β.
Figure 6(a) shows plots of U∞ versus β for ρ0 = 0.6 for
different network sizes. Interestingly, for large N , we find a
nearly sharp transition from a random (imbalanced) state to
an ordered (balanced) state at β = βc. In fact, for β < βc,

the dynamics takes the system into an imbalanced state with
U �= −1, and the positive link density satisfies the relation
(16), independent of the initial conditions. However, for β �
βc, the system finally becomes balanced, in the sense that
ρ∞ → 1/2 and 1 for ρ0 � 1/2 and ρ0 > 1/2, respectively.
As can be seen, βc slowly goes to infinity as N increases.
It is important to note that, despite large β, our model leads
to a final balanced state for arbitrary initial conditions and
different network sizes, which is contrary to the previous
results where the system would be trapped in jammed states,
especially for small networks.

Further, it is interesting to check the effect of the network
size on final values of the order parameter in the balanced
phase, i.e., the average link value, δ = 〈si j〉 = 2ρ∞ − 1 as
a function of ρ0. In this respect, we plotted in Fig. 6(b),
|δ| versus ρ0 for a typical β > βc (here β = 3). We find a
sharp phase transition from a bipolar state into a paradise
one, at ρ0 = 1/2 for large system sizes. It also illustrates that
only for finite networks can we have a bipolar state with
1/2 < ρ∞ < 1. It is worth mentioning here that we find a
sharp transition at ρ0 = 1/2, in comparison with the gradual
transition at ρ0 � 0.65 found in previous studies [20,21].

V. CONCLUSION

Balance theory has been used to study the solidarity and
the stability of a social network. Much work has been done in
studying the static and dynamic aspects of the balance theory.
Almost all studied models take into account the assumption
of tension reduction. However, social agents do not always
change their relationship to reduce the tension. On the other
hand, some previous models like CTD have shown that an
unwanted outcome may emerge, where the system is trapped
in an imbalanced jammed state forever. Some models like
LTD also suffer from long time dynamics. In this paper, we
introduced a more realistic dynamical model by adding an
intrinsic randomness, denoted by 1/β, into the social agents’
behaviors. Our dynamics is a finite temperature generalization
of the CTD model with Glauber dynamics and considers
the possibility of both increasing and decreasing the global
tension, such that, on average, the overall tension reduces.
Such randomness helps the system escape from the local
minima in its energy landscape. Due to this feature, the
dynamics is able to exit jammed states and is therefore able to
find a balanced state, in a considerably short timescale. This
shows that our dynamics can solve the undesirable findings
in previous studies. In addition, we find that for a critical
value of the randomness, 1/βc, a transition occurs from an
imbalanced into a balanced phase. Indeed, for β > βc, the
system approaches two possible balanced states: bipolar or
paradise. For finite networks, we showed that a final bipolar
state with a positive link density of ρ∞ > 1/2 can emerge. For
large networks, a sharp phase transition for the size difference
between two poles occurs at ρ0 = 1/2. Indeed, by passing
through this point, the system transitions from a bipolar state
of ρ∞ = 1/2 into a paradise state of ρ∞ = 1. This sharp
transition can be compared with the gradual transition in a
nontrivial point of ρ0 � 0.65, observed in the CTD model.

We also derived an analytical description for the time evo-
lution of the system, by applying a mean-field approximation.
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Our analytical solutions are in complete agreement with our
simulations, except for the case of ρ0 � 1/2 for large β. We
showed that this inconsistency is the result of deviation of
the dynamics from the uncorrelated situation, as the system
approaches ρ = 1/2.
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