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Wave-number selection in pattern-forming systems remains a long-standing puzzle in physics. Previous
studies have shown that external noise is a possible mechanism for wave-number selection. We conduct an
extensive numerical study of the noisy stabilized Kuramoto-Sivashinsky equation. We use a fast spectral method
of integration, which enables us to investigate long-time behavior for large system sizes that could not be
investigated by earlier work. We find that a state with a unique wave number has the highest probability of
occurring at very long times. We also find that this state is independent of the strength of the noise and initial
conditions, thus making a convincing case for the role of noise as a mechanism of state selection.
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I. INTRODUCTION

This work addresses the question of wave-number se-
lection in pattern-forming systems. Pattern-forming systems
are characterized by the emergence of a band of spatially
periodic steady states, as a certain quantity called the control
parameter is varied [1]. Examples of pattern-forming systems
in physics are Rayleigh-Bénard convection [1] and directional
solidification [2]. Although a large number of periodicities
are mathematically allowed in such systems, experiments
and simulations of realistic physical systems have repeatedly
shown that only a narrow range of periodicities is realized in
practice. The tendency of a system to prefer a narrow set of
states out of many possible states is known as wave-number
selection.

Many mechanisms have been proposed to explain this
phenomenon. These include evolution from random initial
conditions having a power spectrum centered at a given wave
number [3,4] and control parameter ramps [5–7] (see Sec. III
for a brief discussion). Various computational studies [8–11]
have also investigated the role of additive stochastic noise in
wave-number selection. The idea that noise can trigger wave-
number selection can be justified with the help of a simple
dynamical system which evolves in a relaxational manner; i.e.,
it minimizes a potential energy. If the potential has several
local minima, the deterministic system will evolve to one of
these minima, depending on the initial conditions. However,
in the presence of noise, the system will escape from any
local minima and eventually reach the global minimum of
the potential energy, where it will then spend most of its
time, provided the noise strength is small. This has been
investigated in Ref. [12] for the Swift-Hohenberg model [13],
which is a potential system. While this example of a potential
system illustrates wave-number selection, the systems that
are described in Refs. [8–11] do not have a potential energy
function. The role of noise in inducing wave-number selection
in nonpotential systems is not well understood.

In this paper, we further explore the role of noise as a
mechanism for wave-number selection in a model known
as the stabilized Kuramoto-Sivashinsky (SKS) equation [14].
There are two main reasons for this choice. First, we chose

this model because it exhibits rich nonlinear behavior and a
band of spatially periodic stationary states, while being rela-
tively simple and one-dimensional, which makes simulating
it easy. The second reason is that it is nonvariational, i.e.,
the deterministic driving force cannot be expressed as the
gradient of a potential. Thus, we expect that studying this
system would shed light on wave-number selection in systems
where minimization of a potential cannot explain selection of
a particular state.

Noise-induced wave-number selection in this model has
been studied before using direct numerical simulation [11],
but only for small systems and a limited range of control
parameters. More recently, Qiao et al. [15] used path integral
methods to find the selected wave number for a range of
control parameter values. It is of considerable interest to
extend the work in Ref. [11] to larger system sizes, because
numerical simulation of any periodic problem necessarily
allows only a discrete set of wave numbers, and these discrete
wave numbers are widely separated for small system sizes.
Thus, the uncertainty in the selected wave number obtained
for a small system is large. Therefore, our aim in this work
is to obtain more precise estimates for the selected wave
number by simulating larger systems and to cover a wider
range of control parameter values. We also wish to determine
if the results of Ref. [15] can be reproduced through direct
integration.

This paper is organized as follows: Sec. II introduces
the mathematical formalism used to study pattern-forming
systems and describes the SKS model. Section III describes in
detail the results of Refs. [11] and [15]. Section IV describes
our computational method, and Sec. V shows some of our
results and their interpretation. Finally, Sec. VI discusses
some of the drawbacks of our computational methods and
touches on potential improvements that will be the focus of
future work.

II. PATTERN FORMATION AND THE SKS MODEL

Pattern-forming systems such as the ones mentioned above
are represented by nonlinear partial differential equations that
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govern the evolution of a given physical quantity. In general,
the equation for such a system is of the form

∂t u(x, t ) = L̂pu(x, t ) + N̂[u(x, t )], (1)

where u(x, t ) is a field representing the quantity of interest, L̂p

is a linear differential operator acting on u(x, t ), and N̂[u(x, t )]
is a nonlinear operator. The subscript p on the linear operator
indicates that it depends on the control parameter p. As an
example, in the case of directional solidification, the quantity
of interest u(x, t ) is the position of the interface between the
liquid and solid phases. The trivial solution (or base state)
ub(x, t ) = 0 is generally a stationary state of these equations.
However, this solution is stable only for a certain range of val-
ues of p. After p crosses a critical value pc, the trivial, spatially
uniform state becomes unstable to periodic perturbations, and
a band of stable, periodic steady states emerges. To determine
when the uniform state becomes unstable, we imagine adding
to the uniform base state ub(x, t ) = 0 the perturbation δu ∼
eiqx+σ (q)t . This perturbation is periodic in space with wave
number q and grows with time at a rate σ . We then substitute
u(x, t ) = ub(x, t ) + δu in Eq. (1), retain only terms linear in
δu, and derive an expression for the growth rate σ as a function
of q. If, for a given value of p, Re[σ (q)] is negative, that
means that the perturbations with those wave numbers decay
exponentially with time, and hence the uniform base state ub is
stable to those perturbations. However, if Re[σ (q)] is positive,
then perturbations with wave number q grow exponentially
with time, implying that the base state is unstable to them.
Of course, in practice, the unbounded exponential growth of
these perturbations is balanced by the nonlinear terms in the
original equation.

To make these ideas more concrete, we illustrate the above
steps for the deterministic SKS model. The SKS equation is
given by

∂t u(x, t ) = −αu(x, t ) − ∂2
x u(x, t ) − ∂4

x u(x, t ) + [∂xu(x, t )]2.

(2)
Here α plays the role of the control parameter, and u(x, t ) is
a dimensionless field of dimensionless space-time variables.
This equation is used to describe directional solidification
[14] and the Burton-Cabrera-Frank model of terrace growth
[16]. The trivial solution ub(x, t ) = 0 is one of the steady
states of this equation. We now add to this solution a small
perturbation of the form δu ∼ eiqx+σ (q)t . Substituting into
Eq. (2) and linearizing about the base state (ub(x, t ) = 0) give
us an expression for the growth rate:

σ = −α + q2 − q4. (3)

From this, we see that the growth rate is real and non-
negative for 1/2 − √

1/4 − α � q2 � 1/2 + √
1/4 − α and

α � 1/4, as shown in Fig. 1. We do not consider imaginary
solutions of Eq. (3) here, which correspond to oscillatory
instabilities. For values of q in the above range, the state
ub(x, t ) = 0 is unstable. By solving the equation ∂σ

∂q = 0, we

see that the growth rate is maximum for q = qc = 1/
√

2,
for all α. In summary, for α � 1/4 = αc, a band of periodic
steady states exists, with wave numbers given by

1/2 −
√

1/4 − α � q2 � 1/2 +
√

1/4 − α, α � αc. (4)

FIG. 1. Growth rate of periodic modes for values of α below,
above, and at the threshold value αc = 0.25.

These periodic states may themselves be unstable to long
wavelength periodic perturbations. Hence, in practice, one
observes a band of periodic states that is narrower than
suggested by Eq. (4) and is called the Eckhaus stable band [3].
Wave numbers within this band are stable to long wavelength
periodic perturbations.

III. PREVIOUS STUDIES OF WAVE-NUMBER SELECTION

As mentioned in the Introduction, many possible ex-
planations for wave-number selection have been suggested.
Schober et al. [4] studied wave-number selection in the con-
text of the one-dimensional Swift-Hohenberg equation [13].
The deterministic equation was integrated numerically, start-
ing from random initial conditions with a power spectrum cen-
tered at a particular wave number k̄. It was observed that the
width of the noise-averaged power spectrum (or the structure
function) decreased with time until a sharp power spectrum
centered about a final wave number k∞ was obtained. Their
simulations showed that the final wave number depended on
the value of k̄.

Another proposed mechanism is the slow spatial variation
of the control parameter, so that it changes from a value below
the threshold in one part of the experimental apparatus to a
value above the threshold in another part of the apparatus.
This has been investigated experimentally [5] for the case
of rotating Couette-Taylor flow. The experimental apparatus
consists of two coaxial cylinders, separated by a gap that
contains fluid. The inner cylinder is allowed to rotate with
a given angular velocity. The control parameter, which is a
function of the gap, is varied gradually by reducing the gap
linearly towards the bottom of the apparatus. The variation
in the gap is characterized by the angle made by the outer
wall with the vertical. The wavelength of the resulting flow
pattern was measured in the straight section for different bulk
values of the control parameter and was observed to lie in a
narrow band, whose width decreased as the control parameter
was increased beyond the threshold. The observed wavelength
was also found to be a periodic function of the aspect ratio
(the ratio of the length of the straight section to the gap). The
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role of ramps has also been studied analytically [6,7]. Ramps
provide an efficient way to obtain a desired, well-defined
periodic state. However, it must be noted that Ref. [7] shows
that varying different quantities which influence the control
parameter leads to different selected wave numbers. This
implies that the selected wave number depends either on the
initial conditions or, in the case of control parameter ramps,
on the chosen ramping protocol. In other words, the selected
wave number in a deterministic system is not an intrinsic
property of the system itself, but depends on the measuring
protocol.

The role of noise in inducing wave-number selection is the
subject of some debate. While thermal noise is small enough
that its effect on macroscopic patterns can be neglected [1],
the same cannot be said about noise in an experimental appa-
ratus [8–11,17,18]. As argued in Ref. [9], it is hard to precisely
control experimental conditions in situations such as direc-
tional solidification, leading to uncertainties which are most
easily modeled as additive noise. Studies have also shown
that multiplicative noise can have nontrivial consequences on
the dynamics of bifurcations, such as shifting the primary
bifurcation point in the Swift-Hohenberg equation [17] and
inducing new patterns which are absent in the deterministic
system [18]. In addition, Refs. [8–11] have shown evidence of
additive noise-induced wave-number selection. In our view,
the other mechanisms mentioned above are too deterministic
because they sample only a restricted set of perturbations.
In contrast, stochastic noise is the most unbiased mechanism
possible because it perturbs all periodic states of the deter-
ministic system equally and does not favor a particular wave
number over the others. It also samples a much larger set of
perturbations. Hence, it is our view that more work needs to
be done to gain a deeper understanding of the effects of noise,
whether additive or multiplicative.

A notable study on noise-induced wave-number selection
was performed by Kurtze [19]. This work used a WKB
approximation [20] to estimate the stationary probability dis-
tribution for a general stochastic differential equation. The
selected wave number was determined to be the one that maxi-
mized the stationary probability distribution. This method was
applied to the Greenside-Cross equation [21] in one dimen-
sion and was found to give good agreement with direct numer-
ical simulations. However, to our knowledge, Kurtze’s method
has, so far, not been used to find the selected wave number for
other pattern-forming systems. A study by Hernández-García
et al. [22,23] found that for the Swift-Hohenberg equation,
the presence of noise smears the boundaries of the Eckhaus
band, resulting in a smooth transition region between stable
and unstable wave numbers. It was also found that the time
evolution of the dominant wave number obeyed a scaling
form.

For the particular case of the SKS equation, Obeid et al.
[11] and Qiao et al. [15] have recently investigated noise-
induced wave-number selection. We present here a brief sum-
mary of their results, which are relevant to this work. Obeid
et al. carried out direct numerical simulations of the noisy SKS
equation

∂t u(x, t )=−αu−∂2
x u(x, t )−∂4

x u(x, t )+[∂xu(x, t )]2+ζ (x, t ),
(5)

where ζ (x, t ) is an additive Gaussian noise satisfying

〈ζ (x, t )〉 = 0 (6)

and

〈ζ (x, t )ζ (x′, t ′)〉 = 2εδ(x − x′)δ(t − t ′). (7)

Here ε is the noise strength. Equation (5) was discretized
using a simple finite difference scheme, and the time integra-
tion was performed using the explicit forward Euler method.
Various values of α between 0.17 and 0.24 and noise strengths
ranging from 10−5 to 10−3 were studied. For α = 0.24, it was
found that the state with q = 0.6995 was most stable, in the
sense that the system could not be knocked out of this state
for 108 time steps, with noise strengths up to ε = 5 × 10−4.

For α values farther from the critical value of 0.25, no
unique state could be identified as being most stable. For α =
0.2, the allowed wave numbers are 0.589 � q � 0.767. It was
found that states with 0.650 � q � 0.712 all remained stable
up to 108 time steps and noise strengths up to ε = 2 × 10−3.
Similarly, for α = 0.17, states with 0.650 � q � 0.699 were
found to remain stable at 108 time steps and noise strengths
up to ε = 2 × 10−3. It was therefore concluded that very
long computational times would be required to destroy the
stability of the states. In summary, the simulations in Ref. [11]
hinted that the noise does indeed select a narrow band of
wave numbers over others. However, selection of a unique
state could be demonstrated only for α = 0.24. A conclusive
numerical demonstration of state selection therefore requires
integration over large system sizes (to reduce discretization
errors), long times, and a wider range of control parameters.

A more recent study of state selection in the SKS equation
was conducted by Qiao et al. [15]. They used the least
action principle of Freidlin-Wentzell theory [24] to calculate
transition probabilities between pairs of periodic steady states
for the SKS equation. For the stochastic process defined on a
spatial domain [0, L]

�̇(x, t ) = f [�(x, t )] + ζ (x, t ), (8)

the probability of a particular trajectory �(x, t ) = φ(x, t )
defined over a time interval [0, T] is

PT [φ(x, t )] = N exp{−ST [φ(x, t )]/ε}, (9)

where N is a normalization constant independent of φ(x, t ), ε
is the noise strength defined by

〈ζ (x, t )ζ (x′, t ′)〉 = 2εδ(x − x′)δ(t − t ′), (10)

and ST [φ(x, t )] is the action, given by

ST [φ(x, t )] = 1

2

∫ T

0
dt

∫ L

0
dx{φ̇(x, t ) − f [φ(x, t )]}2

. (11)

Equation (9) implies that the most probable trajectory con-
necting two states of the system is the one which minimizes
the action. The most likely paths entering and leaving suc-
cessive periodic states of the SKS equation were computed
by finding the minimum action for transitions between those
states (for example, S∗

q j→q j+1
is the minimum action to go

from a periodic state with wave number qj to one with wave
number q j+1, and S∗

q j+1→q j
is the minimum action for the

reverse transition). These values were then used to determine
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the net direction of transitions between two adjacent states.
By implementing this procedure for all pairs of successive
steady states, the wave number corresponding to the selected
state was found. In order to minimize the actions Sqj→q j+1

and Sqj+1→q j , the saddle state between the states q j and q j+1

was found numerically. The saddle state of the lowest order
amplitude equation [1,25] was used as the initial guess for this
procedure. Having found the saddle state, the time-reversed
deterministic paths between the saddle state and the states qj

and q j+1 were used as initial guesses to find the minimum
action paths (see Sec. III B of Ref. [15] for a detailed discus-
sion).

IV. CALCULATING THE EMPIRICAL PROBABILITY
DISTRIBUTION OF FINAL STATES

Although Qiao et al. have devised a way to calculate the
selected wave number for the SKS problem, we wish to know
if the same results can be obtained by direct integration of
the equation of motion. There are two hurdles that must be
overcome in order to do so. The first is that farther from
the threshold, several neighboring states in the middle of the
Eckhaus band become very stable to noise [11]. In order
to determine which one, if any, is the most stable, one has
to induce transitions between these states, so that the state
in which the system spends most of its time is the most
stable state. Observing such transitions between highly stable
states requires extremely long integration times, as noted in
Ref. [11]. The second hurdle is that simulations must be
performed on very large systems due to the reasons mentioned
in the Introduction. These two hurdles suggest that one look
for a fast and efficient integration algorithm. Here we used a
semi-implicit, Fourier spectral integration method [26]. Using
a semi-implicit time integration scheme instead of explicit
time integration allows one to use a significantly larger time
step without compromising on accuracy, thus yielding a much
higher speed of integration. At the same time, using a Fourier
spectral method to approximate spatial derivatives gives much
higher accuracy than finite difference methods [27]. Thus, the
use of a semi-implicit Fourier spectral method enabled us to
integrate Eq. (5) for long times and large system sizes. The
general idea behind the semi-implicit Fourier method is as
follows. Consider the partial differential equation

∂u(x, t )

∂t
= L̂u(x, t ) + N̂[u(x, t ), ∂xu(x, t ), ∂2

x u(x, t ), . . . ],

(12)
where L̂ is a linear differential operator and N̂ is a nonlinear
functional of u and its spatial derivatives. If we discretize
space into N (not to be confused with N̂) grid points with
lattice spacing h and denote the value of the field u(x, t )
at each grid point by ui(t ), we obtain a system of ordinary
differential equations:

dui

dt
= (L̂u)i + N̂[u(x, t ), . . . ]i i = 0, 1, . . . , N − 1. (13)

Taking the discrete Fourier transform of this equation gives

dũk

dt
= (̃L̂u)k + ˜̂Nk k = 0, 1, . . . ,

N

2
− 1,−N/2, . . . ,−1.

(14)

For the (deterministic) SKS equation,

L̂u(x, t ) = −αu(x, t ) − ∂2
x u(x, t ) − ∂4

x u(x, t ) (15)

and

N̂[u(x, t ), ∂xu(x, t )] = [∂xu(x, t )]2 (16)

The Fourier transform of the discretized field ui can be found
numerically using the fast Fourier transform (FFT). If ũk de-
notes the kth wave-number component of the discrete Fourier
transform of the field u, then the discrete Fourier transform of
Eq. (15) is [27]

(̃L̂u)k = −αũk + (2πk/Nh)2ũk − (2πk/Nh)4ũk . (17)

Evaluating the nonlinear term ˜̂Nk[u(x, t ), . . . ] in Fourier space
directly is computationally expensive, since the Fourier trans-
form of a product of functions is a convolution involving
O(N2) computations. Therefore, we perform the integration
by evaluating the nonlinear term in position space and then
transforming it back to Fourier space. Putting all this together,
we get

dũk

dt
= −αũk + (2πk/Nh)2ũk − (2πk/Nh)4ũk

+ ˜̂Nk[u(x, t ), . . . ]. (18)

To solve the issue of small time step, we use a semi-implicit
integration scheme. We integrate forward in time by treating
the linear terms implicitly and the nonlinear term explicitly
[26]. Let u j

k be the value of uk at time t j . Then we approximate

the time derivative by du j
k/dt = u j+1

k −u j
k

�t , and Eq. (18) becomes

u j+1
k = u j

k + �t˜̂N j

k

1 − �t
[
−α + (

2πk
Nh

)2 − (
2πk
Nh

)4
] . (19)

With this semi-implicit scheme, it became possible to increase
the time step by a factor of about 50 compared to that in an
explicit time integration scheme, without causing instabilities
and without loss of accuracy. This resulted in a significant
speed up of the algorithm. Finally, in order to incorporate
noise, we let ζ

j
k denote the value of the noise term at time

t j , and Eq. (19) is modified to read

u j+1
k =

u j
k + �t˜̂N j

k +
√

2εN�t
h ζ

j
k

1 − �t
[
−α + (

2πk
Nh

)2 − (
2πk
Nh

)4
] , (20)

where 〈ζ j
k 〉 = 0 and 〈ζ j

k ζ
j′

k′ 〉 = δk,−k′δ j j′ . This is simply the Itô
formula for the solution of a stochastic differential equation
[28]. The procedure for generating noise in Fourier space
which satisfies equations Eqs. (6) and (7) is also given in
Ref. [28], Appendix B.

V. RESULTS

Our aim is to compute the empirical probability distri-
bution for the allowed periodic states and determine if the
distribution has a peak at a particular wave number. If such
a peak is present, it would support the hypothesis that noise is
a possible mechanism of wave-number selection. To do this,
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(a)
(b)

(c) (d)

(e) (f)

FIG. 2. Empirical probability distributions for various control parameter values and small and large system sizes. (a) α = 0.22, N = 1024;
(b) α = 0.22, N = 4000; (c) α = 0.20, N = 1024; (d) α = 0.20, N = 4000; (e) α = 0.17, N = 1024; (f) α = 0.17, N = 4000.

we used noise strengths that are around 0.1% of the amplitude
of the field u(x, t ). This noise strength is quite large, but it
allowed the system to explore a large number of states. We
started the simulation with the system initially placed in one
of the periodic states and then perturbed it with noise. The
noise caused the system to visit other steady states. We then
counted the number of times each periodic state was visited
and computed the fraction of the time spent in each state,
for long runs of ∼108 time steps. Our hypothesis was that
the system would spend the greatest fraction of time in the

most stable or selected state. It is important to clarify what we
mean by “visiting a given periodic state.” In the presence of
large noise strengths, the state of the system at any given time
has a broad power spectrum, with nonzero components for
several wave numbers, and it is, strictly speaking, inaccurate
to say that the system is in a given periodic state. Instead, we
consider the system to be in the neighborhood of a periodic
state, if the power spectrum has a peak at that periodicity,
and if the Fourier component at that periodicity is at least
twice as large as the other Fourier components. Hence, what
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TABLE I. Most visited wave numbers for various sizes, α = 0.22.

Number of
lattice points N

System length
(L = Nh) Most visited state

1024 512 0.6749 (n = 55)
1600 800 0.6754 (n = 86)
2200 1100 0.6740 (n = 118)
3000 1500 0.6744 (n = 161)
4000 2000 0.6754 (n = 215)

we actually calculated was the empirical probability for being
near a periodic state. To do so, we calculated the time average
of the indicator function for a state with wave number q,

MT (q) = 1

T

∫ T

0
1q(t ) dt . (21)

If the system is in a state with a power spectrum peaked at
wave number k (and this peak is at least twice as large as
other peaks), then the indicator function for wave number q
is defined by

1q(t ) =
{

1 k = q at time t
0 otherwise

. (22)

This quantity gives the fraction of time spent near the state
with wave number q and approaches the stationary probability
distribution at very long times:

lim
T →∞

MT (q) = Pst (q). (23)

Since wave-number selection has already been demon-
strated for a small system with control parameter α = 0.24 in
Ref. [11], we attempted to carry out the procedure described
above for α = 0.22. We restricted our simulations to the inter-
val 0.16 < α < 0.25, since for α � 0.16 the second harmonic
in the stationary solution becomes active, in addition to the
fundamental harmonic, leading to complicated instabilities
[14]. For α = 0.22, the wave numbers that are stable to
perturbations lie within the range 0.6136 � q � 0.7486, [14].
We used periodic boundary conditions, which implies that out
of the wave numbers in the above range, only those appeared
in the simulation that satisfy

qn = 2πn

Nh
, (24)

where n is an integer (1 � n � N ). Thus, the imposition of
periodic boundary conditions limited the allowed wave num-
bers to a discrete set given by Eq. (24), with n representing the
number of cells in the solution. For all our simulations, the

TABLE II. Most visited wave numbers for various sizes, α = 0.20.

Number of
lattice points N

System length
(L = Nh) Most visited state

1024 512 0.6627 (n = 54)
1600 800 0.6597 (n = 84)
2200 1100 0.6569 (n = 115)
3000 1500 0.6576 (n = 157)
4000 2000 0.6566 (n = 209)

TABLE III. Most visited wave numbers for various sizes, α = 0.17.

Number of
lattice points N

System length
(L = Nh) Most visited state

1024 512 0.6381 (n = 52)
1600 800 0.6361 (n = 81)
2200 1100 0.6340 (n = 111)
3000 1500 0.6367 (n = 152)
4000 2000 0.6377 (n = 203)

initial condition was of the form uin ∼ sin(2πninx/Nh) with
nin being an integer. For the range 0.6136 � q � 0.7486, and
N = 1024, h = 0.5, we have 50 � n � 61. Our time step was
�t = 0.3.

We first used a small noise strength ε = 10−4 to determine
which states were the most stable. We found that the states
with n = 54, 55, 56 were all very stable and the system could
not be knocked out of them with this noise strength. In order
to determine which one of these three states was the most
stable, we increased the noise strength gradually and found
that at ε = 1.8 × 10−3, the n = 54 and n = 56 states became
unstable, while the n = 55 (q = 0.6749) state persisted. When
we plotted the fraction of time spent near each state, the
resulting histogram developed a peak at this state. This peak
persisted until the end of the integration (about 108 time
steps), indicating that the system spent most of its time near
that state. The histogram was also seen to become narrower
with time, again indicating that the system spent most of its
time close to the n = 55 state. We ran a few simulations at
ε = 1.9 × 10−3 and ε = 3.9 × 10−3 and again observed that
after spending some time around n = 54 or n = 56, the system
transitioned to a neighborhood of the n = 55 state and spent
the most amount of time there [see Fig. 2(a)]. In all three
cases, the histogram became nearly stationary after around
108 time steps. The observation that the most visited state
remains the same in spite of increasing the noise strength is
promising evidence of the selection of a unique state by noise.
The most visited state was also found to be independent of
initial condition.

We repeated these simulations for the same value of α, i.e.,
α = 0.22, but different system sizes and noise strengths. In
each case, we observed that after initially visiting a narrow
band of states, the system settled down close to one of them.
This state was independent of the noise strength and initial
conditions. The largest system size we tried was N = 4000
lattice points, which gives us the most precise estimate of
the selected wave number [see Fig. 2(b)]. For this size, the

TABLE IV. Most visited wave numbers for various sizes, α = 0.24.

Number of
lattice points N

System length
(L = Nh) Most visited state

1024 512 0.6995 (n = 57)
1600 800 0.6990 (n = 89)
2200 1100 0.6969 (n = 122)
3000 1500 0.6953 (n = 166)
4000 2000 0.6974 (n = 222)
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(a)
(b)

FIG. 3. Long-time power spectra for α = 0.22 and 4000 lattice points. We have plotted the number of cells n in the solution on the x axis
for visual clarity. (a) ε = 0.0018; (b) ε = 0.0039.

difference between two successive wave numbers is the small-
est and is equal to �q = 2π/Nh = 0.003. The most visited
states for α = 0.22 are presented in Table I. Thus, our best
estimate for the selected wave number for α = 0.22 is qs =
0.6754 ± �q/2 or qs = 0.6754 ± 0.0015, corresponding to
the case N = 4000.

Next, we repeated the same process for smaller values of α.
As explained in Ref. [11], states in the middle of the Eckhaus
band become more and more stable away from the threshold.
This made it necessary to use slightly larger noise strengths
to destabilize the states and obtain the required probability
distributions. For α = 0.20 and N = 1024, the Eckhaus stable
wave numbers are 0.5890 � q � 0.7608 or 48 � n � 62. For
a range of noise strengths between 3 × 10−3 and 6 × 10−3 and
different initial conditions, we found n = 54 (q = 0.6627) to
be the most visited state [Fig. 2(c)]. For N = 4000 lattice
points, we found n = 209 to be the most visited state; see
Fig. 2(d). Results for various system sizes are shown in
Table II. Finally, results for α = 0.17 are shown in Table III
and Figs. 2(e) and 2(f).

Figure 2 shows that the width of the probability distribu-
tions shrinks as the system size increases and as the noise

strength decreases. However, the position of the maximum
of the distributions remains unchanged. For the sake of com-
pleteness, we have also reproduced Obeid’s result for α =
0.24 and extended it to larger sizes, as shown in Table IV.

The power spectra at the end of integration for α = 0.22
and low and high noise strengths are shown in Fig. 3. These
figures show that the final power spectra have prominent
maxima at the most visited wave number, in spite of the
large noise strengths we have used. Small but visible second
harmonic peaks are also observed, indicating that the system
is close to a periodic steady state of the deterministic system.
The power spectra for α = 0.20 and 0.17 are similar. Note that
we have plotted the number of cells n on the x axis, instead of
the wave number.

We also show plots of the field u(x, t ) (for α = 0.22 and
1024 lattice points) at very long times in Fig. 4. Figure 4(a)
corresponds to ε = 0.0018, while Fig. 4(b) is for ε = 0.0039.
Finally, a plot of the selected wave numbers for 4000 lattice
points against α is shown in Fig. 5, with error bars represent-
ing the discretization error. It also shows the results obtained
in Ref. [15] for the same values of α. Both curves show that as
the value of α is decreased below the threshold, the selected

(a) (b)

FIG. 4. Typical final configurations at the end of integration for α = 0.22, 1024 lattice points. (a) ε = 0.0018; (b) ε = 0.0039.
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FIG. 5. Comparison of our results with those of Ref. [15]. The
horizontal line represents the critical wave number qc = 1√

2
, which

is the fastest growing wave number in the linear stability analysis.

wave number is shifted to the left of the critical wave number
qc (horizontal line in Fig. 5). However, our values for the
selected wave number do not agree with theirs far from α =
αc. We believe that the reason for the disagreement is likely
numerical. Since the disagreement is particularly large away
from the threshold, it is our view that the use of the amplitude
equation may be inappropriate. It is possible, for example,
that the saddle solution for the amplitude equation is not a
sufficiently accurate initial guess for the true saddle state for α

values far from 0.25. Second, the time-reversed deterministic
path is the minimum action path only for potential systems
[15]. While it is reasonable to assume that it would be a good
initial guess for nonpotential systems, it is also possible that
the actual minimum action path is far more complicated away
from the threshold, where the nonpotential term in Eq. (5)
is not small. The discretized action is a function of the dis-
cretized field at all lattice points and all times and hence could
be an extremely complicated function, with possibly multiple

FIG. 6. Interpolating curve for α = 0.22, with a maximum at
qs = 0.6748.

FIG. 7. Interpolating curve for α = 0.20, with a maximum at
qs = 0.6567.

minima. It is not clear what kind of numerical uncertainties
arise in minimizing this action, and whether the minimum
action paths found in Ref. [15] are local minima or global
minima. A thorough analysis of the optimization techniques
is needed to explore these issues.

Extension to thermodynamic limit

It is interesting to note that the probability distributions
we have obtained sharpen about the selected wave number as
the system size is increased. This appears to be surprising,
because the number of accessible wave numbers increases
with system size, and hence, one would expect the histograms
of Fig. 2 to become wider when the system size is increased.
The emergence of new modes is, in fact, seen in Figs. 2(b),
2(d), and 2(f). However, the crucial observation is that these
newly excited wave numbers lie in a narrower band than
the excited wave numbers for a smaller system. Combined
with the observation that the histograms and power spectra
become broader with increasing noise strength, our findings
are consistent with the existence of a correlation length ξ

which diverges in the limit ε → 0 and N → ∞, but is finite

FIG. 8. Interpolating curve for α = 0.17 with a maximum at
qs = 0.6384.

022223-8



WAVE-NUMBER SELECTION IN PATTERN-FORMING … PHYSICAL REVIEW E 100, 022223 (2019)

TABLE V. Most visited or selected wave numbers qs in the
thermodynamic limit.

Control Parameter α qs

0.22 0.6748
0.20 0.6567
0.17 0.6384

for finite ε and N . We emphasize that, at present, we cannot
prove this assertion, but its validity is consistent with our data.

Assuming that the above claim is valid, one can use the dis-
crete probability distributions obtained for finite system sizes
to estimate the selected wave number for an infinite system
(for which there exists a continuous band of allowed wave
numbers). This is similar to the finite size scaling procedure
in critical phenomena. We carried out this procedure using
the histograms obtained for the largest system size, i.e., 4000
lattice points. To do so, we used cubic spline interpolation
to get a smooth function passing through the discrete points
obtained from our simulations. The continuous curves thus
obtained show which wave number would be most probable
in the continuum case. The results are shown in Figs. 6, 7, and
8. Our continuum estimates for the selected wave numbers are
given in Table V.

We emphasize again that there is no scaling theory for sys-
tems such as the one we have studied, so that the existence of a
divergent correlation length cannot be conclusively proved at
present. Finally, we note that there is another explanation for
the sharpening of the probability distributions with increasing
system size: namely, that there is a finite correlation length,
but this length is greater than the largest system size we have
used (for the noise strengths used in our simulations). This is
certainly possible for the lower end of the noise strengths we
have used. However, we believe that this is unlikely to be the
case for the higher end of noise strengths. The power spectrum
in Fig. 3(b) is quite broad (in spite of having a prominent
peak at the selected wave number), which implies that the
correlation length is smaller than the system size.

VI. CONCLUSIONS

We have performed a detailed numerical study of noise-
induced wave number selection in the one dimensional SKS

equation. We have shown that even in the presence of large
noise, long-time power spectra of the field are most likely
to be peaked at a unique wave number that does not depend
on the initial state or the noise strength. We note again that
due to the large noise strengths we had to use, there were
nonzero Fourier components at other wave numbers, which
means that for finite system sizes and large noise strengths,
there is no true selection, as expected. However, since the
position of the peak of the power spectrum was found to
be independent of noise strength and since the probability
distributions were seen to become sharper with increasing
system size and decreasing noise strength, it is plausible to
conclude that the same wave number would be selected for
noise strengths much less than the ones used here, except that
it would require prohibitively large integration times.

It is interesting to compare our findings with other selection
mechanisms proposed in Refs. [5–7]. As discussed there, con-
trol parameter ramps are an efficient way to select a unique,
well-defined wave number. However, Ref. [7] also shows
that varying different quantities that lead to the same final
control parameter results in different selected wave numbers.
Reference [4] has shown that starting from random initial
conditions and simulating deterministically, the final wave
number depends on the initial state. In contrast, our work
shows that at long times, the system is most likely to be
found in a state with a dominant wave number, and this
dominant wave number does not depend on initial conditions
or noise strength, but is an intrinsic property of the SKS
system. We have been able to show this for a wide range
of control parameters and large system sizes, in contrast to
previous work. Our work shows that noise-induced wave-
number selection can occur in nonpotential systems. Much
remains to be done however; a future direction could be to
devise efficient importance sampling techniques which would
enable us to study transitions between states without using
large noise strengths. It would also be interesting to see if it
is possible to predict the selected wave number analytically,
although to our knowledge no such analytical theory exists.
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