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PT -symmetric direct electrical transmission lines: Localization behavior
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In this paper, we study a finite direct electrical transmission line when we distribute resistors Rn according to
a parity-time (PT ) distribution composed of a gain (−R) and loss (+R) sequence. Considering zero boundary
conditions, we find analytical results for the frequency spectrum ω(R, kd ) as a function of resistance R and the
wave number kd . A frequency spectrum analysis shows a phase transition from real to complex eigenvalues as
a function R for fixed kd=N , where 2N is the size of the transmission line. Numerically, we study localization
properties through the normalized localization length �(R, kd ). This measure shows good agreement with the
analytical results and gives an account of the PT -phase transition. Our results pave a solid way toward studying
the interplay between parity-time symmetry concepts and one-dimensional electrical transmission lines, aiming
to find another generation of electronic devices capable of controlling the flow of energy.
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I. INTRODUCTION

In the last decades, parity-time (PT -) symmetric systems
have been the subject of intense research in many areas of
physics. These systems were introduced for the first time by
Bender and Boettcher [1] in the context of non-Hermitian
quantum mechanics. Basically, the authors studied a set of
non-Hermitian Hamiltonians that satisfy joint transformations
of spatial reflection P : x → −x and time reversal T , given
by complex conjugation. These non-Hermitian Hamiltonians
have a parameter region with a completely real spectrum (un-
broken PT -symmetric phase) and a region with a conjugated
complex spectrum (broken PT -symmetric phase). The tran-
sition point between the unbroken and broken PT -symmetric
phase is known as the exceptional point [2].

Behind the concept of PT symmetry is the condition
that the loss and gain in a system are exactly balanced and
thus result in bounded dynamics [3]. With this approach, the
concept was quickly extended to other disciplines of physics
such as optical [4–6], mechanical [7–9], and electronic sys-
tems [10,11], among others [2]. Experimentally, optical and
electronic classical systems have been shown to be flexible to
observe the spontaneous PT -symmetry rupture [10–13].

In the context of finite one-dimensional structures, the
effects of different gain and loss configurations have been
studied, which include the tight-binding model [14–16], op-
tic models [5,17,18], and artificial electromagnetic materials
[3,19]. A widely used configuration consists of an alternating
distribution of gain-loss elements, also known as stacks of pe-
riodic PT -symmetric structures [19–22]. This configuration
presents interesting applications in optical switching devices
[20] and nonreciprocal wave propagation [21]. Another kind
of configuration has been studied in Ref. [23], where the
authors use a one-dimensional photonic quasicrystal in the
context of PT symmetry. Their study focuses on structure
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properties, which support topological edge modes in their
band gaps induced by the PT -symmetric configuration. In
general, for parity-time-symmetric finite lattices, it has been
shown that the symmetry is conserved within a window of
parameters whose size is reduced when the number of sites
increases [3,18,24]. Hence, based on the concept of PT
symmetry, the development of new artificial materials and
structures has been one of the main topics of research in many
areas of physics. It has also been shown, theoretically and
experimentally, that these media with balanced loss and gain
can exhibit several intriguing characteristics that at present are
unobtainable with standard arrangements [25]. For example,
in optics, they include phenomena of unidirectional propaga-
tion and the nonreciprocal wave propagation [12,26].

On the other hand, a system recently studied is the ideal
discrete electrical transmission line (TL). Interest in this clas-
sic electrical system is addressed in studies of localization
properties considering periodic, aperiodic, quasiperiodic, and
long-range correlated distribution of capacitances and induc-
tances [27–34]. The localization properties were also studied
for disordered linear and nonlinear electrical lattices [35–40].
However, these systems are incompatible with dissipative
elements, i.e., electrical resistances, because any resistance
value will render the conduction properties unstable and a
greater injection of energy will be necessary to compensate
for the dissipation. In this line, PT -symmetric electrical TL
models have been proposed in magnetic metamaterials [3] and
in noninvasive techniques to detect glucose changes [41].

In this paper, we work on a one-dimensional finite electri-
cal transmission line in its direct configuration. We introduce a
distribution of electric resistances Rn, which is alternately dis-
tributed as gain (−R) and loss (+R) on the horizontal elements
of TL. Using zero boundary conditions and owing to the fact
that the distribution of resistances is horizontal, we can derive
analytical expressions for characteristic frequencies ω(kd , R)
that govern the dispersion properties of the one-dimensional
electrical TL. For a completely real spectrum, i.e., when
the gain-loss parameter R is less than a critical value Rc,
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we show that the presence of the PT -symmetric resistance
distribution favors the conduction properties of the electric
current function. By increasing the gain-loss parameter R,
we find a region where the current function is attenuated to
zero. The transition from the extended to dissipative state, and
control of it, is impossible in ideal TLs. In addition, we find an
expression for the critical point Rc(N, Z0) as a function of the
system size N and the characteristic impedance Z0. For fixed
N , the unbroken PT phase grows when the characteristic
impedance Z0 increases. For increasing system size N , Rc goes
to zero.

We are also interested in studying the localization prop-
erties of the PT -symmetric TL. To do that, we use the nor-
malized localization length �(R, ω) and the electric current
function In(R, ω) as a function of the frequency ω and the
gain-loss parameter R. �(R, ω) can accurately find the critical
resistance Rc, which separates the different phases of the
PT -symmetric problems.

This paper is organized as follows. In Sec. II, we introduce
the PT -symmetric direct electric transmission line model.
Next, we propose a plane-wave-type solution to obtain an
analytical expression of eigenfrequencies that govern the evo-
lution of the system. In Sec. III, we show results and provide
discussions. Last, conclusions and final remarks appear in
Sec. IV.

II. THE MODEL

In this section, we introduce the PT -symmetric direct
electrical transmission line which is formed by a horizontal
distribution of inductances Ln, a vertical distribution of ca-
pacitances Cn, and a horizontal distribution of resistances Rn

according to a gain-loss sequence. The latter is defined as

Rn =
{+R, n even,

−R, n odd,
(1)

where n = 0, . . . , (2N + 1) and +R and −R account for
dissipative (loss) and active (gain) elements of the system, re-
spectively. Notice that our paper describes a theoretical model,
which simultaneously considers gain (−R) and loss (+R) in
the direct transmission line. The practical implementation of
the negative resistance (using nonlinear devices) has been
recently proposed in two different ways: (a) using operational
amplifier devices [10,41] and (b) using photocells connected
to a metal-oxide semiconductor field-effect transistor (MOS-
FET) [42].

Figure 1 shows the PT -symmetric direct TL configuration.
Applying the Kirchhoff loop rule to three successive unit cells

of our PT -symmetric direct TL model allows us to obtain a
dynamic equation relating the electric current in(t ) circulating
in (n − 1)th, nth, and (n + 1)th cells. Thus we get

Ln
d2in
dt2

+ Rn
din
dt

+ 1

Cn
(in − in+1) + 1

Cn−1
(in − in−1) = 0.

(2)

Here, we consider zero boundary conditions at cells n = 0 and
n = (2N + 1). Also, the capacitances and inductances in each
cell are considered constants, i.e., Ln = L and Cn = C ∀n. The
equations of motion (2) are reduced to

din
dt

= pn, (3a)

d pn

dt
= −βn pn + ω2

0(in−1 − 2in + in+1), (3b)

where βn = Rn/L is the damping coefficient and ω0 =√
1/(LC) is the natural frequency of each cell. This system

of equations is PT symmetric under the following transfor-
mations [43],

P : in → −i2N−n+1, pn → −p2N−n+1, (4a)

T : in → in, pn → −pn, (4b)

where 1 � n � 2N . Next, for the electric current intensity
in(t ), we use zero boundary conditions at cells n = 0 and
n = (2N + 1), and using the Fourier transform on each site,
we obtain[

2 −
(

ω

ω0

)2

+ iβn
ω

ω2
0

]
In − In−1 − In+1 = 0, (5)

where In(ω) is the complex amplitude of the electric cur-
rent intensity at site n, and ω is the vibration frequency of
each site. Based in classical and quantum solutions used in
PT -symmetric problems [7,15,44], we propose solutions of
Eq. (5) in the form

In =
{

A cos(nk) + B sin(nk), n even,

ε[A cos(nk) + B sin(nk)], n odd.
(6)

Applying the zero boundary conditions I0 = 0 and I(2N+1) = 0
on the previous solution, we obtain discrete values for k as

kd =
(

π

2N + 1

)
d, (7)

Gain: Rn−1 Ln−1

Cn−1

Loss: Rn Ln

Cn

Gain: Rn+1 Ln+1

Cn+1in−1 in in+1

FIG. 1. A PT -symmetric resistance configuration in a direct electrical transmission line.
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where d = 1, . . . , N . Replacing the solution (6) into Eq. (5)
and considering the PT -symmetric resistive configuration Rn

(1), it turns out that[
2 −

(
ω

ω0

)2

+ iβ
ω

ω2
0

]
= 2ε cos(k), n even, (8a)

ε

[
2 −

(
ω

ω0

)2

− iβ
ω

ω2
0

]
= 2 cos(k), n odd, (8b)

where β = R/L. Next, combining these equations and remem-
bering the discrete relation (7), we obtain the equation for the
frequency spectrum ω(R, kd ),

ω4 + 4ω2
0Mω2 + 4ω4

0 sin2(kd ) = 0, (9)

where M = ( β

2ω0
)
2 − 1. Solutions are given by

ω2(R, kd ) = 2ω2
0[−M ±

√
M2 − sin2(kd )], (10)

The unbroken PT -symmetric phase only exists for real
frequencies, and this condition is fulfilled by the following
relations,

(I) M2 − sin2(kd ) � 0, (II) M > 0. (11)

In addition, we impose the condition that the real part of the
ω(R, kd ) frequencies is always positive; we denote them as
ω1,2(R, kd ).

From (11) we obtain two conditions for R as a function of
kd , namely,

R � R±(kd ) = 2Z0

√
1 ± sin(kd ), (12)

where Z0 = √
L/C is the characteristic impedance of ideal TL

and d = 1, . . . , N . We note that when condition R � R−(kd )
is fulfilled, the other condition R � R+(kd ) is also fulfilled
for any wave number kd . Then, for each value of d < N ,
the spectrum is constituted by complex and real eigenvalues.
However, for d = N the spectrum only contains real eigenfre-
quencies since the function R−(kd ) takes its smallest value.
For this value, d = N , the phase transition occurs for the
critical resistance Rc, i.e.,

Rc = R−(kd=N ) = 2Z0

√
1 − sin(kN ), (13)

where kd=N = πN/(2N + 1). Conversely, for d = 1 we ob-
tain the greatest value of the function R−(kd ), and as a
consequence, for R > Rsmt we obtain a spectrum completely
complex without real eigenvalues, where

Rsmt = R−(kd=1) = 2Z0

√
1 − sin(k1), (14)

with kd=1 = π/(2N + 1) [see Fig. 3(a)]. Finally, the function
R+(kd ) takes its greatest value for d = N and its spectrum
only contains imaginary eigenvalues, that is,

RI = R+(kd=N ) = 2Z0

√
1 + sin(kN ). (15)

Next, using expression (8) and the zero boundary condi-
tions, we can find the In(kd ) electric current (6) as

In(kd ) =
{

2iA sin (nkd ), n even,

2iAεd sin (nkd ), n odd,
(16)

where εd = eiδd and A is a constant that can be determined by
the normalization condition. δd is defined as

tan δd = τω1,2(R, kd )

2 + (ω1,2(R,kd )
ω0

)2 . (17)

If ω1,2(kd , R) are real, we obtain the following amplitudes,

|In(kd )| =
{

2|A| sin (nkd ), n even,

2|A| sin (nkd ), n odd,
(18)

where

|A|2 = 1

4N − 2 sin(2Nkd )
sin(kd ) (−1)d

. (19)

Otherwise, if ω1,2(kd , R) are complex numbers, δd is also a
complex number. Thus, the current intensity is given by

|In(kd )| =
{

2|A| sin (nkd ), n even,

2|A||εd | sin (nkd ), n odd,
(20)

where

|A|2 = 1

4

(
N∑

n=1

pn(εd )

)−1

, (21)

with

pn(εd ) = sin2(2Nkd ) + |εd |2 sin2[(2n − 1)kd ]. (22)

III. RESULTS AND DISCUSSION

In this section, we analyze the transition from a completely
real spectrum (unbroken PT -symmetry phase) characterized
by extended current functions to a complex spectrum (broken
PT -symmetry phase) characterized by dissipative current
functions. In all figures, we use the following parameter
values: N = 30 [except for Fig. 3(b)], L = 1(μH), and C =
10(nF).

In Fig. 2 the real Re(ω) and imaginary Im(ω) parts of
eigenvalues ω1,2(R, kd ) appear as a function of wave number
kd , considering several values of the gain-loss parameter R =
{0.2, 5, 16, 30}(	). For R = 0.2(	) < Rc where Rc(kd=30) =
0.3642(	), Figs. 2(a) and 2(b) show the frequency range
where the unbroken PT -symmetric region exists, since the
imaginary part Im(ω1,2) is equal to zero. For R values such
as Rc < R = {5, 16} < Rsmt = 19.48(	), Figs. 2(c) and 2(d)
show that eigenfrequencies begin to leave the unbroken PT
phase, since the condition (12) is not fulfilled for all wave
numbers kd . When R grows, R → Rsmt, the transition point
P moves to kd=1. This point P separates the region with
real eigenvalues ω(kd , R) = ωR(kd , R) from the region with
complex eigenvalues ω(kd , R) = ωR(kd , R) + iωI (kd , R). For
R = 30(	) > RI = 28.28(	), eigenvalues in Figs. 2(e) and
2(f) are of the form ω(kd ) = iωI (kd , R) (the broken PT -
symmetric region).

Figure 3(a) shows R±(kd ) as a function of kd . The red-
asterisk dashed line is R+ and the blue-circle solid line
is R−. Here, we observe that if the condition (12) is sat-
isfied for all kd , we can find the critical resistance Rc

as Rc = 2Z0
√

1 − sin (kN ) = 0.3642(	). The unbroken PT -
symmetric phase occurs for R � Rc, getting a completely
real spectrum. Also, Fig. 3(a) shows four regions: (i) For
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FIG. 2. A sequence of the real and imaginary part of ω1,2(kd , R) as a function of kd for several values of the gain-loss parameter R for
N = 30. (a), (b) Completely real spectrum for R = 0.2(	) < Rc and (c), (d) both real and imaginary eigenvalues for R = {5, 10, 16}(	) with
R > Rc. (e), (f) Completely imaginary spectrum for R = 30(	).
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FIG. 3. (a) Resistance function R± as a function of kd with N = 30, R = Rc(kN=30 ) = 0.3642(	) (black dashed line), and RI = 28.28(	)
(pink dashed-dotted line). The inset shows a zoom of the unbroken PT -symmetric region; the condition of a completely real spectrum is
defined in Eq. (12) with d = N . (b) Critical resistance Rc as a function of N for different values of characteristic impedance Z0 = 1.0(	),
Z0 = 3.2(	), and Z0 = 10(	).
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FIG. 4. Real Re(ω) and imaginary Im(ω) part of the frequency spectrum ω1,2(R, kd ) as a function of R for different values of the parameter
d = {30, 20, 10}. (a), (b) d = N = 30, in both panels, the insets show a zoom of the unbroken PT -symmetric region. (c), (d) d = {20, 10}
with d < N . For d = 20, Rmax = R−(kd=20 ) = 7.55(	) and for d = 10, Rmax = R−(kd=10 ) = 14.3(	).

R < Rc, eigenvalues are real ω = ωR (green shaded region),
(ii) for Rc < R < Rsmt = R−(kd=1) = 19.48(	), eigenvalues
can be real ω = ωR or complex numbers ω = ωR ± iωI , (iii)
for Rsmt < R < RI , eigenvalues are complex numbers ω =
ωR ± iωI , and (iv) for R > RI , eigenvalues are imaginary
numbers ω = ±iωI . The figure inset clearly shows the green
shaded region with a real frequency spectrum ω = ωR and
critical resistance Rc = 0.3642(	). Therefore, the unbroken
PT -symmetric phase is only valid for R � Rc(kN ) and the
broken PT -symmetric phase is valid for R > Rc(kN ).

Figure 3(b) displays the critical resistance Rc(kN ) as a
function of N for three values of characteristic impedance,
namely, Z0 = 1.0(	) (red-star dashed line), 3.2(	) (blue-star
dashed line), and 10(	) (black-square dashed line). We ob-
serve that when N � 1, kd → π/2, and the critical resistance
goes to zero (Rc → 0), independently of the value of Z0,
which indicates that the unbroken PT phase disappears and as
a consequence the real eigenvalues are absent. Conversely, for
N small and for increasing values of characteristic impedance
Z0, the critical resistance Rc increases and the amplitude of the
unbroken PT -symmetric region also increases.

Figure 4 shows the frequency spectrum ω(R) as a function
of gain-loss parameter R. Figures 4(a) and 4(c) show the real
part Re(ω), and Figs. 4(b) and 4(d) show the imaginary part
Im(ω). In the panels above with d = N = 30, we can observe
that for R � RI all eigenvalues are imaginary ω = iωI . The
insets show the unbroken PT phase [R � Rc, see Eq. (13)]

and the critical point at Rc = R−(kd=N ). In the panels below
with d = {10, 20}, we show the points Rmax = R−(kd=20) =
7.55(	), Rmax = R−(kd=10) = 14.3(	), and their correspond-
ing conducting regions R � Rmax = 7.55(	) and R � Rmax =
14.3(	). Even though the spectrum has real and complex
eigenvalues (broken PT phase), we can get a conducting
region larger than in the case d = N . In this region, the electric
current has extended behavior. This is due exclusively to the
PT -symmetric resistance configuration.

Typical electric current functions are shown in Fig. 5(a).
For R = 0.23(	) < Rc, we observe that |In| is a symmetrical
and extended function for real frequencies ω1 = 1.43 × 107

and ω2 = 1.40 × 107 (unbroken PT phase). In Fig. 5(b), for
R = 31(	) > Rc, we observe that |In| is an asymmetrical and
dissipative function for imaginary eigenvalues ω1 = i9.15 ×
106 and ω2 = i2.18 × 107 (broken PT phase).

Next, we study localization properties through the nor-
malized localization length �(R, ω) which exhibit a clear
transition from the resistance R and the frequency ω. We
compare the analytical results of Sec. II with the localization
criteria for �(R, ω), namely, the electric current function
is a localized function for �(R, ω) < 1 and is an extended
function for �(R, ω) � 1. The ξ (R, ω) localization length is
defined as

ξ−1(R, ω) = lim
M→∞

1

M

M∑
n=1

ln

∣∣∣∣ In+1

In

∣∣∣∣, (23)
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FIG. 5. Modulus of the electric current function |In| as a func-
tion of n for both frequencies ω1,2(R, kd ). (a) Symmetric and ex-
tended state for R = 0.23(	) < Rc with frequencies ω1 = 1.43 ×
107 (rad/s) and ω2 = 1.40 × 107 (rad/s). (b) Asymmetrical and dis-
sipative state for R = 31(	) > RI with eigenvalues ω1 = i9.15 ×
106 (rad/s) and ω2 = i2.18 × 107 (rad/s).

where In(R, ω) is the amplitude of the electric current function
in each nth cell of the TL and M is the size of the system
under study. To calculate ξ (R, ω) we solve Eqs. (5) through an
iterative process that deploys the transfer function �n defined
as

�n(R, ω) = In+1

In
. (24)

Using (24), Eqs. (5) can be written in the following iterative
way,

�n =
[

2 −
(

ω

ω0

)2

+ iωRnC

]
− (�n−1)−1. (25)

Starting with �1 = [2 − ( ω
ω0

)2 + iωR1C], we can get all the
�n transfer functions and, after that, we can calculate ξ (R, ω)
in the following form,

ξ−1(R, ω) = lim
M→∞

1

M

M∑
n=1

ln |�n(R, ω)|. (26)

The localization behavior of the direct TL is studied us-
ing the normalized localization length �(R, ω) defined as
�(R, ω) = ξ (R,ω)

M . Even though we are working with TLs with

FIG. 6. Case (a): Normalized localization length �(R, ω1) and
�(R, ω2) vs R for fixed N = 30 and kd=N . For both frequencies ω1

and ω2, �(R, ω) determines three regions with different localization
behaviors, which are delimited by critical points Rc = 0.3642(	)
and RI = 28.28(	) (see insets). For R � Rc, insets (a) ω1 and (b) ω2

show a zoom of the unbroken PT -symmetric phase which corre-
sponds to extended electric current functions [�(R, ω1,2) � 1]. For
R > Rc we can only find a dissipative behavior which corresponds to
the broken PT -symmetric phase [�(R, ω1,2) < 1]. Inset (c) shows
�(R, ω1,2) in the neighborhood of RI = 28.28(	).

very few cells (M = 2N � 60), �(R, ω) is still able to ac-
curately discriminate between localized states [�(R, ω) < 1]
and extended states [�(R, ω) � 1]. We study the localization
behavior of the PT -symmetric direct TL calculating �(R, ω)
as a function of the resistance R and as a function of the
frequency ω, in the following two different cases: (a) when
the frequencies ω1,2 are known functions of the resistance R
[see Eq. (10)], and (b) when the frequency ω and the resistance
R are variables completely independent between them.

A. Case (a)

In this case, for each R value, the critical frequencies ω1,2

are obtained using Eq. (10) and for these specific frequen-
cies we calculate �(R, ω). In Fig. 6 we show �(R, ω1) and
�(R, ω2) for fixed N = 30 and kd=N = 1.545, when R varies
on a wide range, i.e., R ∈ (0, 36(	)]. In this figure we can see
that �(R, ω) can distinguish three zones:

(i) R ∈ (0, Rc = 0.3642(	)]. In this first zone we only find
extended states [�(R, ω) � 1], as can be seen in upper insets
(a) and (b) of Fig. 6. Also, these insets show the unbroken
PT -symmetric region, where all eigenfrequencies are real.
This result also appears in the inset of Fig. 3(a), where we
show the critical resistance R = Rc.

(ii) R ∈ (Rc, RI = 28.28(	)]. Here, we only find localized
states [�(R, ω) < 1], which corresponds to the broken PT -
symmetric phase, because the frequency spectrum has real and
imaginary values.

(iii) R > RI . Here, we only find localized states
[�(R, ω) < 1], which also corresponds to the broken PT -
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FIG. 7. Case (a): �(R, ω) vs R for frequencies ω1 and ω2, for the
case d < N = 30 which corresponds to the broken PT -symmetric
phase, where the frequency spectrum has real and complex eigenval-
ues. For each frequency we find a resistance Rmax. For R � Rmax we
obtain symmetrical extended functions [�(R) � 1]. (a) For d = 10
we obtain Rmax = 14.3(	) and (b) for d = 20 we obtain Rmax =
7.55(	) (see vertical arrows). For R > Rmax we obtain asymmetrical
localized functions, because �(R) < 1.

symmetric phase, since the frequency spectrum is purely
imaginary. The bottom inset (c) of Fig. 6 shows this broken
PT -symmetric region. This way we have demonstrated that
�(R, ω) accurately determines points Rc = 0.3643(	) and
RI = 28.28(	), and the analytic results were illustrated in
Fig. 3(a).

Figure 7 shows the �(R, ω) normalized localization length
versus the resistance R for frequencies ω1 and ω2, for the case
d < N = 30. For d < N , the frequency spectrum is formed by
real and complex eigenfrequencies, which is an indication that
we are inside the broken PT -symmetric phase. Figure 7(a)
with d = 10 and Fig. 7(b) with d = 20 show the existence of a
resistance Rmax. Only for R � Rmax do we obtain symmetrical
extended functions, because �(R) � 1. For d = 20 we obtain
Rmax = 7.55(	) and for d = 10 we obtain Rmax = 14.3(	)
(see vertical arrows). These numerical results describe exactly
the same behavior shown in Fig. 4(c). At the same time,
this result tells us that �(R) is an adequate tool to discrim-
inate symmetrical extended functions [real eigenvalues and
�(R) � 1] from asymmetrical localized functions [complex
eigenvalues and �(R) < 1].

B. Case (b)

In this case, for fixed N = 30, we study �(R, ω) as a func-
tion of the frequency ω only in the first region of the resistance
values, namely, R ∈ [0, Rc = 0.3642(	)]. We do that because
we must solve Eq. (5) considering the frequency ω as an inde-
pendent variable. In Fig. 8 we can see �(R, ω) as a function
of the ω frequency for each R in the region where the frequen-
cies are real functions, i.e., for ω ∈ [1.38 × 107, 1.45 × 107].
There we can see three peaks corresponding to the maximum
value of �(ω) with �(R, ω) > 1. The central peak separates

0
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0.2

100

0.3

0.4
1.43

1071.42
1.410.5 1.4

104

FIG. 8. Case (b): �(R, ω) vs ω for each R in the region where
the frequencies are real functions. The position of the left and right
maxima indicates exactly the frequency values ω1 and ω2 with
�(R, ω1,2) � 1 (extended behavior). The central peak only separates
the solutions corresponding to both frequencies. On the top of this
figure we superimpose the curves corresponding to ω1(R) (open
blue square) and ω2(R) (solid red circle), for a constant value of
�0 > �max(R, ω).

solutions corresponding to frequency ω1 from the solutions
corresponding to frequency ω2. The position of the central
maximum moves very little when R varies. In addition, the
position of the left and right maxima indicates exactly the po-
sition of frequencies ω1 and ω2, which numerically coincides
with the values analytically obtained from Eq. (10). On the
top of this figure we superimpose the curves corresponding to
ω1(R) (open blue square) and ω2(R) (solid red circle), for a
constant value of �0 > �max(R, ω).

The superimposed picture is identical to the figure shown
in the inset of Fig. 4(a). This way we have shown that the
normalized localization length �(R, ω) is able to determine
the values of the resistance R and the frequencies ω1,2 in which
the unbroken PT -symmetric condition is met.

IV. CONCLUSION

We introduced a discrete electric transmission line with a
resistance distribution Rn which follows a gain-loss sequence.
We obtained closed-form expressions for the corresponding
real and positive frequency spectra ω1,2 = ω1,2(R, kd ) as a
function of the gain-loss parameter R and the wave number
kd . This allows us to characterize the PT -phase transition
from a region with a completely real spectrum for R � Rc =
R−(kd=N ) (unbroken PT phase) to a region with a complex
spectrum for R > Rc which is formed by real and complex
eigenvalues (broken PT phase). However, for d < N we
report extended states for R � R−(kd ). Also, we can say that
in the unbroken PT phase, the electric current |In| is always a
symmetrical function. This symmetrical behavior disappears
when the system goes to the broken PT phase. In addition,
we are able to control the amplitude of the unbroken PT -
symmetric region (the size of Rc) by changing the impedance
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Z0 for fixed N . Conversely, for fixed Z0 the unbroken PT
phase tends to disappear when the size N of the system
increases.

Numerically, we studied the localization properties using
the normalized localization length �(R, ω) as a function of the
resistance R and the wave number kd . In case (a), we use R and
ω as dependent variables, i.e., ω1,2 = ω1,2(R), whereas in case
(b), we consider ω and R as independent variables. In both
cases, in the unbroken PT region (R � Rc) the modulus of the
electric current function |In| is an extended function (� � 1).
On the contrary, for R > Rc, |In| is a localized function (� <

1), a behavior which is characteristic of the broken PT region.

For all the above, the PT -symmetric electrical TL can be
used as a device to generate phase transitions through the
control of the gain and loss mechanism. Finally, we think
that our results represent a step in the application of parity-
time symmetry concepts to another generation of electronic
devices.
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