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Vortex-induced vibrations (VIVs) have been observed on a long-span suspension bridge. The nonstationary
wind in the field characterized by the time-varying mean wind speed is likely to lead to time-varying
aerodynamics of the wind-bridge system during VIVs, which is different from VIVs induced by stationary or
even steady wind in wind tunnels. In this paper, data-driven methods are proposed to reveal the time-varying
aerodynamics of the wind-bridge system during VIV events based on field measurements on a long-span
suspension bridge. First, a variant of the sparse identification of nonlinear dynamics algorithm is proposed
to identify parsimonious, time-varying aerodynamical systems that capture VIV events of the bridge. Thus we
are able to posit new, data-driven, and interpretable models highlighting the aeroelastic interactions between
the wind and bridge. Second, a density-based clustering algorithm is applied to discovering the potential modes
of dynamics during VIV events. As a result, the time-dependent model is obtained to reveal the evolution of
the aerodynamics of the wind-bridge system over time during an entire VIV event. It is found that the level of
self-excited effects of the wind-bridge system is significantly time varying with the real-time wind speed and
bridge motion state. The simulations of VIVs by the obtained time-dependent models show high accuracies
of the models with an averaged normalized mean-square error of 0.0023. The clustering of obtained models
shows underlying distinct dynamical regimes of the wind-bridge system, which are distinguished by the level of
self-excited effects.
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I. INTRODUCTION

Through improved sensors and the emerging structural
health monitoring (SHM) system, it is now possible to con-
tinuously assess modern bridge performance in real time. Not
only is it critical that bridges be monitored, e.g., for structure
monitoring and safety, but the rich time-series recordings
provided by the sensors allow bridge engineers to gain a
new understanding of the aerodynamics of prototype bridges
subjected to real wind. By leveraging sparse regression tech-
niques, the so-called sparse identification of nonlinear dy-
namics (SINDy) method provides a new paradigm for data-
driven model discovery [1]. The emergence of the SINDy
algorithm is allowing researchers to discover governing equa-
tions by sampling either the full or partial state space of a
given system, respectively. Although nonlinear, data-driven
system identification methods such as SINDy are emerging
as viable techniques for a broad range of applications, the
methods have yet to be applied to the complex aeroelastic
interactions observed on bridges. In this paper, we lever-
age (i) time-series measurements from the SHM system on
a long-span suspension bridge and (ii) the SINDy model
discovery architecture to build data-driven models of the
wind-bridge system to reveal and interpret the time-varying
aerodynamics during vortex-induced vibration (VIV) events.
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We find that the SINDy architecture is effective in identifying
parsimonious, time-varying dynamical systems which result
from VIV events of the bridge. Thus we are able to posit
new, data-driven and interpretable models highlighting the
time-varying aerodynamics of a long-span bridge during VIV
events subjected to time-varying wind.

The conventional study of bridge aerodynamics is essen-
tially composed of theoretical analysis, wind tunnel tests,
and computational fluid dynamics (CFD). The complex wind
loading and fluid-structure interaction of a long-span bridge
result in a variety of aerodynamical phenomena such as
buffeting [2–5], VIV [6–9], and flutter [10,11]. Tremendous
advances in theoretical analysis, wind tunnel tests, and com-
putational modeling have made significant constributions to
characterizing bridge aerodynamics. Wind tunnel tests with
cylinders, simplified sectional models, or scaled, full aeroelas-
tic models are combined with theoretical analysis to discover
bridge aerodynamics [12–16], leading to simplified semi-
empirical models and a number of corresponding aerody-
namic and aeroelastic parameter identifications [17–26]. In
addition, significant progress has been made in computa-
tional models, resulting in a number of CFD-based meth-
ods [27–29]. Such CFD-based models are typically idealized
versions of the bridge itself. Our proposed model discovery
architecture can also help augment bridge models using the
data acquired in field testing for discrepancy modeling [30].

In recent years, the emerging SHM systems on long-span
bridges provide an opportunity to study bridge aerodynamics
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based on the full-scale structure subjected to real natural wind,
although the field monitoring is still usually limited by the
spatial sparsity of measurements and type of measurements.
For example, only winds and bridge vibrations can be moni-
tored for wind and wind effects monitoring. Wind loads and
wind pressures are difficult to monitor in the field. Therefore,
how to mine the dimension-limited data and discover the
potential knowledge hidden in the data is the key challenge
in studying bridge aerodynamics by field measurements.

Emerging data-driven methods are allowing for the dis-
covery of physical and engineering principles directly from
time-series recordings. Our focus is on the SINDy architecture
[1], which has been demonstrated on a diverse set of problems,
including spatiotemporal [31], parametric [32], networked
[33], control [34], and multiscale [35] systems. The underly-
ing algorithms can also be made robust and can accommodate
parametrized functional dependencies [36]. Importantly, the
SINDy architecture promotes sparsity and parsimony which
can be directly related to model selection theory [33] in order
to assess the quality and robustness of the model discovered.
The SINDy method is computationally efficient and the algo-
rithms for all the innovations mentioned above are available
as open source code. An alternative data-driven approach to
SINDy uses symbolic regression to identify directly the struc-
ture of a nonlinear dynamical system from data [37–39]. This
works remarkably well for discovering interpretable physical
models, but the symbolic regression is computationally expen-
sive and can be difficult to scale to large problems.

There are numerous alternative approaches to fitting the
data with models, including nonsparsity promoting regres-
sions to polynomial and/or special function bases [40,41].
Deep neural networks are yet another approach to data-driven
models, allowing for future-state prediction of dynamical
systems [42–49]. However, a key limitation of these data-
driven methods is the lack of interpretability of the resulting
model: They are focused on reconstruction error and fitting
the data and do not provide governing equations or clearly
interpretable models in terms of the original variable set.
Additionally, models that are parametrized by a larger number
of terms often do poorly when considering model selection
from an information criteria viewpoint, since there is a linear
penalty in the total number of terms using either Akaike
information criteria (AIC) or Bayesian information criteria
(BIC) [33].

Our aim is to use the SINDy architecture to provide inter-
pretable dynamical models that can aid in understanding the
time-varying aerodynamics of the wind-bridge system during
VIV events. Using field measurements data, we discover
the nonlinear aerodynamics that results from wind-bridge
interaction during VIV events. In particular, we discover a
parsimonious set of governing equations which are time vary-
ing. These parsimonious models are also ideal from a model
selection viewpoint of AIC and/or BIC. The discovered mod-
els allow us to reveal the evolution of aerodynamics with
time during VIV events and identify distinct regimes of the
aerodynamics. Importantly, the sparsity patterns discovered
by SINDy allow one to clearly identify four distinct physical
regimes for different intensity VIV events, i.e., different domi-
nant balance nonlinear physics that come into play depending
on the strength of the VIV. Such distinct dynamical regimes

are difficult to identify in models as they tend to lock-in the
wind speed forcing the bridge.

The manuscript is outlined as follows: In Sec. II, VIV
events are discussed in detail as they are the central con-
cern affecting the nonlinear bridge aerodynamics. Section III
details the bridge field monitoring and data acquisition of
the time-series measurements used for model identification.
Section IV develops the SINDy architecture for the bridge
data of Sec. III. In Sec. V, we discover the distinct dynamical
regimes of the bridge-wind system by clustering the discov-
ered models. The paper is concluded in Sec. VI.

II. VORTEX-INDUCED VIBRATION
OF LONG-SPAN BRIDGE

A long-span bridge may have intrinsically distinct modes
of aerodynamic behavior such as buffeting, VIV, and flutter.
For modern bridges, flutter must be avoided in the design
stage by increasing the critical flutter wind speed, because of
its unique divergent response which results from aeroelastic
instability. As a consequence, only buffeting and VIV are
observed in modern bridges. Unlike buffeting, VIV involves
aeroelastic effects characterized by fluid-structure interactions
which result in a possible negative aerodynamic damping,
thus generating large vibration amplitudes. VIV occurs during
periodic vortex shedding within a range of shedding frequen-
cies near the structural natural frequency. Large-amplitude
oscillations occur in this range that appear to control the
shedding process in a fluid-structure interaction phenomenon
known as lock-in.

Comprehensive investigations of the mechanisms respon-
sible for VIV have been performed. Nakamura and Mizota
[12] have observed the lock-in phenomenon by measuring the
lift force and characterizing wakes of rectangular prisms with
various aspect ratios oscillating transversely in a uniform flow,
with the short sides normal to the flow direction in a wind
tunnel. It was found that the phase angles of the frequency
response components of both the lift and near-wake velocity
show abrupt changes when approaching the critical reduced
wind velocity for vortex shedding. This is suggested to be a
key phenomenon involved when solving the problem of the
vortex excitation of bluff structures. Komatsu and Kobayashi
[13] characterized two types of VIV through a series of
experiments on various cross sections (such as L-shaped,
T-shaped, H-shaped, and rectangular cylinders) with various
aspect ratios in a wind tunnel. One is a forced small-amplitude
vibration caused by von Kármán vortex shedding in cylinders
(T cylinders) with a separation point at the trailing edge. The
other is a self-excited vibration with relatively large amplitude
in cylinders (L, H, and rectangular cylinders) with a separation
point at the leading edge, which occurs independently on
the von Kármán vortex street. The generating mechanism in
the latter case is described as a motion-induced vortex at
the leading edge that synchronizes with the motion of the
cylinder. The frequency of this type of vibration does not
change within a certain range of wind velocities and coincides
with the natural frequency of the cylinder, i.e., the lock-in
phenomenon. Li et al. [16] have investigated the Reynolds
number effects on the aerodynamic characteristics and VIV of
a twin-box girder within a range of Reynolds number values
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(5.85 × 103–1.12 × 105). They find that the transition point of
the separated shear layer moves upstream, and the bubble size
gradually decreases with increasing Reynolds number values.
Such investigations give a strong foundation for a qualitative
understanding of VIV and critical fluid-structure interactions.

In addition to understanding fundamental mechanisms, ac-
curate VIV modeling is quite important, especially for the de-
sign of a bridge. Rigorous mathematical-physical modeling of
VIV requires simultaneously solving the Navier-Stokes (N-S)
equations and equations of motion of the structure. However,
because of the strong nonlinearity of the N-S equations, this
has proven mathematically and computationally intractable
[50]. As a less-than-ideal alternative, simplified semiempirical
models have been proposed based on wind tunnel tests. To
date, the most widely accepted empirical model is proposed
by Simiu and Scanlan [9], which is described as

m
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) = F, (1)

with

F = 1

2
ρU 2(2D)

×

⎡
⎢⎢⎢⎣Y1(K )

(
1 − λ

y2

D2

)
ẏ
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where m is mass per unit span length; ω1 is mechanical
circular frequency; ζ is mechanical damping ratio; y is cross-
flow displacement; F is aerodynamic force; ρ is air density; U
is wind speed and assumed to be time independent; D is cross-
flow dimension of the section; K = ωD/U is the reduced
frequency of vortex shedding, where ω is vortex-shedding
frequency that satisfies the Strouhal relation, ωD/U = 2πSt ,
outside lock-in regime; and St is the Strouhal number. The
parameters λ, Y1, Y2, and C̃L have to be determined by calibra-
tion to experiments. Specifically, λ is a constant denoting the
nonlinear dependence of self-excited force on displacement
amplitude, C̃L is the stochastic lift force coefficient, and Y1

and Y2 are aerodynamic parameters which are functions of the
reduced frequency of vortex-shedding K .

The total force in the model consists of two types of forces:
One is induced directly by vortex shedding around the bluff
body simulated by the third term with C̃L in Eq. (2), and the
other is a motion-induced lift force represented by the first two
terms in Eq. (2) including aerodynamic damping with Y1 and
aerodynamic stiffness with Y2. The direct forcing term with C̃L

is found to be small relative to the motion-induced force when
large-amplitude oscillations are present [51]. The model (1)
thus may be simplified by dropping the direct forcing term
and then be nondimensionalized to:

η′′(s) + 2ζK1η
′(s) + K2

1 η(s)

= mrY1[1 − λη2(s)]η′(s) + mrY2η(s), (3)

where η = y/D is the nondimensionalized cross-flow dis-
placement, mr = ρD2/m is mass ratio, K1 = ω1D/U is the
reduced natural frequency, and primes indicate derivatives
with respect to the dimensionless time, s = Ut/D.

A solution for the bridge dynamics is then sought in the
form:

η(s) = A(s) cos [Ks − ψ (s)]. (4)

The VIV of a bridge is generally considered as quasilinear,
i.e., the system has a small amount of nonlinearity where A(s)
and ψ (s) are slowly varying functions of dimensionless time
s. The solution η(s) can then be replaced by two separate
solutions for A(s) and ψ (s), which are given as follows:

A′(s) = −1

8
αA(s)[A2(s) − β2], (5a)

ψ ′ = 1

2K

[
mrY2 + (

K2 − K2
1

)]
, (5b)

where α = mrY1λ, β = (2/
√

λ)[1 − (2ζK1)/(mrY1)]1/2. It
should be noted that the wind speed U is assumed to be time
independent and is thus reduced during nondimensionaliza-
tion. Actually, this model is proposed from the wind tunnel
test where the wind speed is stationary or even steady during
VIV. However, the real wind in the field is usually obviously
nonstationary with a time-varying mean wind speed which
may get out of VIV wind speed range for a while during an
entire VIV event and thus lead to the change of aerodynamics
with time. Therefore, this model fails to reveal the possible
time-varying aerodynamics of the bridge subjected to time-
varying wind speed. Our aim is to find time-dependent models
(ordinary differential equations) to highlight and reveal the
time-varying aerodynamics.

III. FIELD MEASUREMENTS AND DATA
PREPROCESSING

The long-span suspension bridge investigated in this study
crosses a narrow water channel that lies between two islands.
An SHM system, including wind and vibration monitoring,
was implemented in 2009 and has since continuously recorded
measurements in real time.

At each side of the bridge section, the wind speed and di-
rection are monitored with anemometers. In particular, Young
Model 81000 three-dimensional ultrasonic anemometers with
a sampling frequency of 32 Hz are located at 1/4, 1/2, and
3/4 center span (locations are indicated by S1, S2, and S3
in Fig. 1, respectively) on both the upstream and downstream
sides. These anemometers are installed on lighting columns
at a height of 6 m above the bridge deck surface. The wind
data used in this study are all from the inflow anemometers,
which can measure natural winds without interference from
bridge components. Vertical vibration of the bridge deck
is monitored by GT02 force-balance triaxial accelerometers
with a sampling frequency of 50 Hz at S1, S2, and S3.

VIV events of this bridge captured by wind and vibration
histories were identified using cluster analysis in a previ-
ous study [52]. In the present study, we first process the
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North Tower

1/4 center span 3/4 center span

Accelerometer
Anemometer

S1 S2

SouthNorth

South Tower

S3

1650 m

FIG. 1. Field monitoring on the bridge. Anemometers and ac-
celerometers are installed at 1/4, 1/2, and 3/4 center span.
Anemometers are installed on both sides of the bridge section.

original data to identify potential key factors accounting for
the bridge aerodynamics during VIVs. First, the wind data
are preprocessed (see Fig. 2). Histories of the horizontal wind
speed V and wind direction θ are obtained from the measured
horizontal wind components. The crosswind speed, which is
the component perpendicular to the spanwise direction, is ob-
tained by Ũ = V |sin(θ )|. The time-varying mean wind speed
U is determined by applying a low-pass filter to crosswind
speed Ũ .

Besides, the vibration displacements are obtained by dou-
ble integrations of acceleration in the frequency domain.
The power spectral density (PSD) of displacement is further
obtained in Fig. 3. It is found that the vibration amplitude
changes slowly with time; the VIV frequency (0.3252 Hz)
is almost identical to the natural frequency of the bridge
(0.32507 Hz), indicating that ψ (s) is much smaller than Ks
in Eq. (4) and does not lead to a frequency change. We
thus only need to focus on the time-varying amplitude A(s)
in Eq. (4). Accordingly, the ordinary differential equation
(ODE) of displacement amplitude A described by Eq. (5) is
the key equation describing the VIV aerodynamics. Our aim
is to find some time-dependent ODE of A to replace Eq. (5)
to highlight the potential time-varying aerodynamics during
VIVs subjected to time-varying wind speed.

In normal situations, vehicle and wind are the main causes
of bridge vibrations in the field. Vehicle effect on the studied
bridge is almost always present except for the closure of the
bridge when the typhoon is passing. It is difficult to remove
the vehicle-induced vibration from the measured total effect.
However, the vehicle-induced vibration is generally much
smaller than the wind-induced vibration under strong winds
and VIV, which is a kind of resonance. Figure 4 shows the
comparison of vehicle-induced vibrations at different times
(around 00:00, 06:00, 12:00, and 18:00) and vehicle-wind-
induced vibration under strong wind. It should be noted that
these four samples are not from the same day because it is
rare that the wind speeds at these four times on the same
day are all close to zero. It can be found that the vehicle-
induced vibration is much smaller than vehicle-wind-induced
vibration under strong winds which is smaller than VIV

FIG. 2. Preprocessing of wind data. S1, S2, and S3 indicate
1/4 span, midspan, and 3/4 span, respectively, as shown in Fig. 1.
(a) Horizontal instantaneous wind speed V and wind direction θ

are obtained from original measurements of wind speed; 90◦ and
270◦ indicate the perpendicular direction to the spanwise direction.
(b) The wind speed component perpendicular to the spanwise di-
rection is determined. (c) The time-varying mean wind speed is
estimated by applying a low-pass filter.

[see Fig. 3(b)]. We thus believe that the vehicle effects have
little impact on the study of VIV.

Equation (5) needs to be generalized from wind tunnel
tests to field measurements by carefully considering two key
points: (i) the wind condition during an entire VIV event is
nonstationary with time-varying mean wind speed for real
VIVs while stationary or even steady in wind tunnel tests
and (ii) the spatial dimension of the wind-bridge system for
field measurements, which depends on the constellation of
the sensors, is higher than the one-dimensional section model
typically used in wind tunnel tests. To build our data-driven
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Natural frequency 0.32507 Hz        FEM

S1 S2 S3

(a)

(b)

(c)

FIG. 3. Time-frequency analysis of measured acceleration for
a VIV event. (a) The PSD of the vibration displacement history.
(b) Displacement history of a VIV event. (c) The mode shape and
the natural frequency of the bridge obtained by an accompanying
numerical simulation using FEM.

model and account for these considerations, we extract the
envelope of the vibration displacement to obtain the time-
varying displacement amplitude A and its time derivative Ȧ
(see Fig. 5).

IV. DATA-DRIVEN MODEL DISCOVERY: SPARSE
IDENTIFICATION OF TIME-VARYING AERODYNAMICS

OF A LONG-SPAN BRIDGE

We use data-driven model discovery methods to ex-
tract improved characterizations of the nonlinear bridge
aerodynamics. Our aim is to make maximal use of the time-
series data generated by the bridge sensors.

A. The SINDy algorithm

The primary method used for our model discovery is
the SINDy algorithm, which leverages advances in machine
learning and sparse regression to discover nonlinear dynam-
ical systems from data [1]. SINDy solves an overdetermined
linear system of equations by sparsity-promoting regulariza-
tion. The basic algorithmic structure of SINDy has been mod-
ified to discover parametrically dependent systems [32], re-
solve multiscale physics [35], infer biological networks [33],
discover spatiotemporal systems [31], and identify nonlinear
systems with control [34,53].

Consider a dynamical system of the form

ẋ = f (x), (6)

where the function f (·) is unknown but assumed to have
only a few dominant contributing terms. The SINDy algo-
rithm posits a large set of potential candidate functions that
comprise f (·) and then uses a sparsity-promoting regression
to determine the dominant terms. The relevant active terms
in the dynamics can be solved for using an �1-regularized
regression that penalizes the number of active terms. The
general framework for SINDy is shown in Fig. 6(b).

(a) (b)

(c) (d)

FIG. 4. Comparison of vehicle-induced vibrations (mean wind speed is close to zero) around (a) 00:00, (b) 06:00, (c) 12:00, (d) 18:00 and
vehicle-wind-induced vibration under strong wind (mean wind speed is 10 m/s).
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FIG. 5. Preprocessing of vibration data. (a) The time-varying
displacement amplitude A is obtained by extracting the envelop
from the displacement history y which is obtained by integration of
acceleration ÿ in the frequency domain. (b) Vibration amplitudes are
obtained for all the three sensor locations. (c) Time derivatives of the
amplitudes are obtained.

Sensor measurements are used to collect time-series data
which are arranged in the data matrix:

X = [x(t1) x(t2) · · · x(tm)]T , (7)

where the superscript “T ” denotes the matrix transpose. The
matrix X is m × n, where n is the dimension of the state x ∈
Rn and m is the number of measurements of the state in time.
Similarly, the matrix of derivatives,

Ẋ = [ẋ(t1) ẋ(t2) · · · ẋ(tm)]T , (8)

is collected or computed from the state data in X. Accurate
derivatives are critical for model identification, and the total-
variation regularized derivative [54] is used as a numerically
robust method to compute derivatives from noisy data.

A library of candidate nonlinear functions is constructed
from X. This takes the general form

�(X) = [1 X X2 · · · Xd · · · sin(X) · · · ], (9)

where Xd denotes the matrix containing all possible column
vectors obtained from time series of the dth degree polynomi-
als in the state vector x. For example, for a system with two
states x = [x1, x2]T , the quadratic terms are given by the
matrix X2 = [x2

1 (t), (x1x2)(t), x2
2 (t)], where t is a vector

of times at which the state is measured. Thus, the vector x is a
symbolic variable, while the matrix X is a data matrix.

It is now possible to relate the time derivatives in Ẋ to the
candidate nonlinearities in �(X) by:

Ẋ = �(X)�, (10)

where each column ξk in � is a vector of coefficients that
determines which terms are active in the kth row in Eq. (6).
Sparsity promoting algorithms are used to ensure that most of
the entries of the column ξk are zero. SINDy promotes sparsity
by sequential least-squares thresholding, which has recently
been shown to converge under suitable conditions [55,56].

By identifying the sparse coefficient vectors ξk , a model of
the nonlinear dynamics may be constructed:

ẋk = �(x)ξk, (11)

where xk is the kth element of x and �(x) refers to a
row vector whose elements are symbolic functions of x, as
opposed to the data matrix �(X).

Using sparse regression to identify active terms in the
dynamics from the candidate library �(X) is a convex opti-
mization. The alternative is to apply a separate constrained re-
gression on every possible subset of nonlinearities and then to
choose the model that is both accurate and sparse. This brute-
force search is intractable, and the SINDy method makes it
possible to select the sparse model in this combinatorially
large set of candidate models.

B. Time-varying SINDy

The potential for the SINDy algorithm to discover dom-
inant balance physics has been demonstrated on a diverse
set of problems [33–35]. However, the dynamics in these
problems are often assumed to not change with time, i.e., they
generally have constant coefficients, although the original
SINDy algorithm is able to account explicitly for forcing
and parameterized dynamics. More recently, SINDy has been
extended to deal with parametric partial differential equations
[32] by allowing the coefficients ξ of each term in the library
to be time dependent. In the present study, we propose a
time-varying SINDy to discover intrinsically and strongly
time-varying dynamics:

ẋ = f t (x), (12)

where f t changes with time but is not assumed as an explicitly
time-dependent function. Then, the coefficients of the terms
identified with SINDy are time varying so that the active terms
can vary dramatically with time:

ẋk = �(x)ξk (t ). (13)

We assume t ∈ [t − w, t] with window size w over which
the coefficient vector ξk (t ) is determined. The basic idea is
shown in Fig. 6. We introduce a time sampling window w

which moves across the time-series data collected from a
time-varying dynamical system [see Fig. 6(a)] and conduct
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FIG. 6. Schematic of the time-varying SINDy framework, demonstrated on the aerodynamics of a VIV event on a bridge. (a) Data are
collected from the measurement system, including a history of time-varying mean wind speed U, amplitudes A, and time derivatives Ȧ. (b) A
typical SINDy is conducted in a moving time window at each time instant. The time window is swept across the entire VIV event with a size
of 50 s and a moving step size of 25 s. Each component of the obtained model ξ is reshaped into a three-column matrix, where each column
corresponds to sensor measurements at one bridge section, respectively, for a more interpretable representation of the obtained time-varying
aerodynamics. (c) A time series of the model in terms of ξ is obtained that captures the time-varying aerodynamics of an entire VIV event.
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a basic SINDy regression on the data in the window at each
time step [see Fig. 6(b)]. We can then sort the obtained active
terms and corresponding coefficients in order to reveal the
intrinsically time-varying dynamics.

C. SINDy to model time-varying bridge aerodynamics

The time-independent model of VIV described by Eq. (3)
only accounts for a simple laboratory experiment where the
wind speed is stationary or even constant. This would give
time-independent constants for the SINDy parameters. How-
ever, the real VIV of a prototype bridge in the field is typically
a time-varying, nonlinear dynamical system characterized by
the time-varying aerodynamic regime which results from the
time variability of natural wind. Equation (3) thus fails in
simulating real VIV events. In the present study, we propose
a time-varying SINDy model of vibrational displacement
amplitude to discover the time-varying bridge aerodynamics
from measured VIV events of a long-span bridge.

The input to the time-varying SINDy algorithm consists
of time-series data of time-varying mean wind speeds U,
vibration displacement amplitudes of the bridge deck A, and
the time derivatives Ȧ obtained by numerical differentiation
for a measured VIV event. Here the wind speed Uk and
displacement amplitude Ak, k = 1, 2, 3, denote the respective
measurement at the kth sensor location along the bridge. In
particular, the subscripts 1, 2, and 3 indicate the sensor loca-
tions at the bridge sections S1, S2, and S3, respectively. We
learn the time-parametrized model over a short-term window
with a duration of 50 s, which moves across the VIV event
timeline with a step size of 25 s, as shown in Fig. 6(a). A
SINDy regression is then performed for data in each 50-s time
window, as shown in Fig. 6(b). Although the analytic model
in Eq. (5) is unable to describe the time-varying aerodynamics
during an entire VIV event, it guides our construction of
candidate functions for the library �. Specifically, we expand
the terms in Eq. (5) and propose a set of polynomial products
of the time-varying mean wind speed U and the vibration
displacement amplitude A:

Ai � U j, (14)

where i = 0, 1, 2, 3, j = 0, 1, 2, 3, 4, 5 are the element-wise
power and i and j do not both equal zero. We believe that the
higher order of vibration amplitude A in the candidate function
implies a higher level of self-excited effects. Note that the
Scanlan’s model [see Eq. (5)] has well described the highest
level of self-excited effects induced by constant wind speed in
the VIV wind speed range. The time-varying wind speed in
the field which may get out of the VIV wind speed range is
only possible to decrease the level of self-excited effects. We
thus believe that the highest order of vibration amplitude in
the constructed candidate functions should not be more than
that in the Scanlan’s model [see Eq. (5)], i.e., three.

In addition to the choice of polynomial terms, the single-
section model characterizing wind tunnel tests with Eq. (5)
is generalized to a higher-dimension variant by incorporating
the sensors placed at the S1, S2, and S3 along the bridge span.
After computing time derivative data Ȧ, the proposed SINDy
architecture takes the form

Ȧ(t ) = �(A, U) �(t ), (15)

where the library of candidate functions is defined by

�T (A, U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
U
A2

A � U
U2

A2 � U
...

A3 � U5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

and “�” denotes the element-wise multiplication of A and U,
e.g., A � U = [A1U1, A2U2, A3U3]T . Note that the dynamics
of Ak at the kth location depend on sensor information at all
three locations, i.e., they depend on Al and Ul with l = 1, 2, 3.

The Akaike information criterion with a correction for
small sample sizes (AICc) [57] is proposed to aid the SINDy
regression for model selection. Alternatives, such as BIC
and/or the description length approach used by Small et al.
[41], could also be potentially used in evaluating mod-
els. Trajectory reconstructions are then used to ensure the
accuracy of the model. For interpretability and visualization,
we reshape the obtained models ξk into three sets of models
ξl

k, l = 1, 2, 3 corresponding to sensors at locations S1, S2,
and S3. For example, ξ1

k is a vector of coefficients of terms
[U1, . . . , A3

1U
5
1 ].

SINDy results in a set of models for a VIV event after
the 50-s time window moves through the entire event, as
shown in Fig. 6(c). It is found that the active terms and
coefficients vary significantly with time. It should be noted
that the candidate terms are sorted in ascending polynomial
order of vibration amplitude A and wind speed U from bottom
to top in Fig. 6(c) and that a higher polynomial order of A
implies a stronger wind-structure interaction with a higher
level of self-excited (motion-induced) effects. In the same
way, we have conducted the proposed time-varying SINDy
on 31 measured VIV events in total and report the results
for three VIVs in Fig. 7. From the obtained time-varying
dynamics for all the VIV events, We can intuitively find four
dynamical regimes which are distinguished by the polynomial
order of vibration displacement amplitudes A. Accordingly,
we rewrite the time-varying SINDy model [see Eq. (15)] for
these discovered different dynamical regimes specifically and
respectively in Table I. The dynamics at any moment during a
VIV event must be from one of or the mix of the discovered
regimes.

The effects of window size and moving step size are further
studied, as shown in Fig. 8. The time-varying SINDy results
with the three different wind sizes and moving step sizes
have shown almost identical evolution of active terms and
only different time scales. The time-varying SINDy result
in this paper is robust to the window size and moving step
size because the dynamics of the wind-bridge system changes
slowly over time. However, if the dynamics of the studied
system changes fast over time, then a self-adaptive window
size and moving step size as a function of changing rate of the
time-varying dynamics could be a better alternative.

In the VIV wind speed range for the bridge considered in
Ref. [58], we find a strong correlation between the time varia-
tion of aerodynamics and wind speed (see Fig. 9). Specifically,
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Time (s)

VIV no.1

VIV no. 2

VIV no. 3

FIG. 7. Time-varying dynamics of three exemplary VIV events
discovered by time-varying SINDy.

during the first stage (0–600 s), the wind speeds at S1, S2, and
S3 all stay within the VIV win speed range, resulting in full
development of wind-structure interaction with an increasing
motion-induced (self-excited) effect. This is indicated by the
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FIG. 8. The effects of window size and moving step size on the
time-varying SINDy results for a VIV event.

increasing polynomial order of A in active terms with time.
During the second stage (600–1000 s), the aerodynamic sys-
tem reaches the steady state of high wind-structure interaction
with the strong motion-induced (self-excited) effects. Here
only the terms with the highest polynomial order in A are
active. During the third stage (1000 s to the end), wind speeds
at S2 and S3 fall out of the VIV wind speed range, resulting in

TABLE I. The obtained SINDy models for the discovered different dynamical regimes which are distinguished by the polynomial order
of vibration displacement amplitude A in the active terms accounting for the level of self-excited effect in the bridge-wind interaction.
�R1(t ), �R2(t ), �R3(t ), and �R4(t ) are the corresponding subsets of �(t ), respectively.

Dynamical regime SINDy model Characteristics

Regime 1 Ȧ(t ) = [U, U2, U3, U4, U5, A]�R1(t ) No self-excited effect
Regime 2 Ȧ(t ) = [A � U, A � U2, A � U3, A � U4, A � U5, A2]�R2(t ) Slight self-excited effect
Regime 3 Ȧ(t ) = [A2 � U, A2 � U2, A2 � U3, A2 � U4, A2 � U5, A3]�R3(t ) Medium self-excited effect
Regime 4 Ȧ(t ) = [A3 � U, A3 � U2, A3 � U3, A3 � U4, A3 � U5]�R4(t ) Strong self-excited effect
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FIG. 9. Interpretation of time-varying aerodynamics for a VIV
event and the VIV wind speed range obtained in Ref. [52]. (a) The
time series of model sets ξ2. (b) The history of time-varying mean
wind speeds U compared with the VIV wind speed. (c) The history
of displacement y2 with the amplitude A2.

a significant decrease of motion-induced (self-excited) effects.
This is indicated by the decreasing polynomial order of A
in the active terms, i.e., the system becomes weak coupled.
The obtained time-dependent, nonlinear dynamics is capable
of producing a parsimonious model of the aerodynamics of a
real bridge VIV event.

D. Simulation of measured VIVs by the obtained
time-dependent SINDy models

We have obtained a specific parametric model for each
measured VIV event by the proposed time-varying SINDy.
Each VIV is thus represented by an ODE with the correspond-
ing time-dependent parameter �(t ) [see Eq. (15)]. To validate
the obtained models, we simulate all entire VIV events by
numerically solving the parametric models with the corre-
sponding time-dependent parameters �(t ) given the measured
initial states A(t = 0) and the measured wind histories U(t ).
The normalized mean-square error (NMSE) is calculated to
evaluate the prediction performance. The comparisons be-
tween the simulated and measured states for three VIV events
as examples show a near perfect agreement with an averaged
NMSE of 0.0023 (see Fig. 10), indicating the high accuracies
of the obtained models.

V. DISTINGUISHED DYNAMICAL REGIMES:
CLUSTERING OF DYNAMIC MODELS

The analysis of the identified time-varying aerodynamic
response from the VIV events (see Fig. 9 for a single VIV
event) indicates the existence of several distinct dynamical
regimes, all of which contribute to revealing the underlying,
time-varying aerodynamic physics. The patterns associated
with different SINDy model structures, e.g., as shown in
Table I, indicate distinct dynamical regimes. This motivates
the application of cluster analysis on the model sets to
automatically discover the potential modes of aerodynamic
behavior in the VIVs.

A. Clustering algorithm

In the clustering algorithm [59] applied in this study, two
quantities are calculated for each data point i: the local density

(a) (b) (c)

NMSE = 0.0011 NMSE = 0.0058 NMSE = 0.0003

FIG. 10. Simulations for three entire VIV events as examples by solving the ODE with the corresponding obtained time-dependent
parameter �(t ) [see Eq. (15)] with only the measured initial state A(t = 0) and the measured wind history U(t ) given. (a) VIV event
No. 1 with NMSE of 0.0011. (b) VIV event No. 2 with NMSE of 0.0058. (3) VIV event No. 3 with NMSE of 0.0003.
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FIG. 11. Decision graph: Seven cluster centers (colored) are
determined by points for which the value of δ is anomalously large.

ρi and the distance δi. The local density of data point i is
defined as

ρi =
∑

j

e
− d2

i j

d2
c , (17)

where di j is the Euclidean distance between data point i and

j, dc is a cutoff distance, and e
− d2

i j

d2
c is actually the Gaussian

radial distance. The quantity ρi thus measures the local density
of data point i within the radial radius dc. The distance δi is
defined as the minimum distance between the point i and any
other point with a higher density:

δi = min
j:ρ j>ρi

(di j ). (18)

But for the point with the highest global density, the distance
δi is defined as the maximum distance between data point i
and any other point as there is no data point with a higher
density.

By plotting all the data points with the two quantities
defined by Eqs. (17) and (18), the cluster centers are recog-
nized fast and easily as points for which the value of δi is
anomalously large without a definite pre-specified number of
clusters.

After the identification of cluster centers, each remaining
point is assigned to the same cluster as its nearest neighbor
of higher density. It is noted that this algorithm is sensitive
only to the relative magnitude of ρ for different points and the
clustering results are robust against the parameter dc for large
data sets [59].

B. Cluster analysis of the obtained dynamic models

We consider the time series of the model coefficient vector
ξ2 obtained by the time-varying SINDy algorithm for each
of the measured 31 VIV events. Each model set (consisting
of ξ 1

2 , ξ 2
2 , and ξ 3

2 ) is considered as a data point in the 23-
dimensional model space for this cluster analysis, where each
dimension corresponds to a term in the candidate function
library. With ploting all the model sets with the two quantities
defined by Eqs. (17) and (18), seven cluster centers are iden-
tified as points for which the value of δi is anomalously large
(see Fig. 11). And the corresponding clusters are obtained
after the assignment of each remaining model set to the same
cluster as its nearest neighbor of higher density.

The obtained clusters along with their members are shown
in Fig. 12. It can be found that the model sets in the same clus-
ter have common dominant terms. Specifically, the common
dominant terms in C1 are U, U 2, U 3, U 4, and U 5, indicating
purely forced vibrations by wind. C2 and C3 are dominated
by the same term A, however with different signs. Thus, these
clusters represent linear dynamics with respect to A. The most
dominant term in C4 is A2, followed by A and A3. C5 and C6
have the same dominant term A3, which corresponds to the
parameter α in Eq. (5) related to the aerodynamic parameter Y1

C1 C2 C3 C4

C5 C6 C7

FIG. 12. The obtained seven clusters in the model sets. The model sets in the same cluster have common donimant terms except Cluster 7
(C7). These clusters are distinguished by the polynomial order of the vibration amplitude A in the dominant terms.
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in Eq. (2). We can thus know that the discovered terms with A3

actually correspond to the aerodynamic damping component
of the motion induced force in the Simiu and Scanlan’s model
[see Eq. (2)]. In C7 no term is dominant, but instead the
dynamics are mixed where both wind-induced force and self-
excited force account for the vibration of the bridge. It can be
found that these clusters are distinguished by the polynomial
order of the vibration amplitude A in the dominant terms,
which is just consistent with the intuitively discovered four
dynamical regimes shown in Table I, indicating that different
dynamical regimes in VIV aerodynamics of this bridge are
distinguished by the level of self-excited effects in the wind-
structure interaction. As analyzed with Fig. 9, the tempo-
ral dynamical regime of the bridge-wind system is intrinsi-
cally determined by the temporal wind condition and bridge
state.

VI. CONCLUSIONS

In the present work, we have developed a data-driven
method to discover time-varying aerodynamics of a long-
span bridge during VIV events based on field measurements.
Using the SINDy algorithm, we are able to identify parsi-
monious, time-varying dynamical systems which result from
VIV events of the bridge subjected to nonstationary wind
characterized by time-varying mean wind speed. Thus we
are able to posit new, data-driven models highlighting the
time-varying aerodynamics of the wind-bridge system during
VIV events subjected to time-varying wind, which may get
out of VIV wind speed range for a while.

The wind-bridge aerodynamical system is shown to have
distinct, time-dependent modes of behavior, thus requiring
parametric models to account for the diversity of dynamics.

The obtained time-varying SINDy models have visualized and
revealed the evolution of bridge aerodynamics over time dur-
ing VIV events. The variation of aerodynamics is mainly re-
flected in the level of self-excited effects, which is intrinsically
determined by temporal wind condition and bridge motion
state. Clustering of obtained models has discovered potential
modes of bridge aerodynamics during VIV events and clearly
show distinct dynamical regimes of the wind-bridge system
that are distinguished by the level of self-excited effects.
Simulation of VIV displacement amplitude history by the
obtained time-varying SINDy model which is actually a time-
dependent ODE has shown high accuracies of the model. All
the above indicate that time-varying SINDy architecture and
clustering analysis are effective in identifying parsimonious,
time-varying aerodynamical systems which result from VIV
events of the bridge.
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