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In spatially extended systems, it is common to find latent variables that are hard, or even impossible, to
measure with acceptable precision but are crucially important for the proper description of the dynamics. This
substantially complicates construction of an accurate model for such systems using data-driven approaches. The
present paper illustrates how physical constraints can be employed to overcome this limitation using the example
of a weakly turbulent quasi-two-dimensional Kolmogorov flow driven by a steady Lorenz force with an unknown
spatial profile. Specifically, the terms involving latent variables in the partial differential equations governing the
dynamics can be eliminated at the expense of raising the order of that equation. We show that local polynomial
interpolation combined with sparse regression can handle data on spatiotemporal grids that are representative
of typical experimental measurement techniques such as particle image velocimetry. However, we also find that
the reconstructed model is sensitive to measurement noise and trace this sensitivity to the presence of high-order
spatial and/or temporal derivatives.
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I. INTRODUCTION

Due to advances in data acquisition, storage, and compu-
tational power, data-driven discovery of mathematical models
of physical systems, which relies primarily on the empirical
observations, has emerged as a viable alternative to more tra-
ditional approaches based on, e.g., first-principles derivation.
While methods for constructing linear models of dynamical
systems are very well established [1], the progress in model
discovery for nonlinear processes is more recent, with the
earliest efforts focusing on nonlinear ordinary differential
or difference equation models of low-dimensional dynamics
[2–6]. Some progress has also been made in model discovery
for spatially distributed systems described by nonlinear partial
differential equations (PDEs).

The earliest study by Vallette et al. [7] showed that it is
possible to estimate the coefficients in a PDE of a known
form (modified complex Ginzburg-Landau equation) from
data available on a spatiotemporal grid. Their algorithm relied
on a least squares solution of a system of linear equations
constructed by evaluating individual terms in the equation
at multiple locations on the grid. Bär et al. [8] extended
this approach by constructing candidate PDE models from
a broad set of polynomial combinations of the observable
and its derivatives. While the allowed terms were constrained
by symmetry considerations, the study made no attempt to
eliminate any terms to obtain a parsimonious description
based on the data. It was found that using finite differences
for evaluating partial derivatives based on noisy data resulted
in significant errors, and even applying a Savitzky-Golay filter
[9] failed to noticeably improve the results.

The earliest successful attempt to construct a parsimonious
PDE model is due to Xu and Khanmohamadi [10,11], who
introduced an iterative procedure to eliminate the terms that
have a small effect on the residual. These were also the first
studies to allow spatially varying coefficients by including

in the candidate model terms polynomial in the observable
(dependent variable) and its partial derivatives as well as the
independent variable(s). The studies have also shown that,
by evaluating terms using spectral derivatives (Fourier or
Chebyshev, depending on boundary conditions) instead of
finite differences, the coefficients of a PDE model can be re-
constructed with high accuracy from noiseless data even in the
presence of high-order derivatives. Similar sparse symbolic
regression approaches were proposed a decade later by Rudy
et al. [12] for models with constant coefficients and by Li et al.
[13] for models with nonconstant coefficients.

We should also mention the work of Raissi et al. [14],
which has demonstrated that unknown coefficients in a PDE
model with known structure can be estimated from spatially
sparse data using statistical techniques. In comparison, ap-
proaches based on sparse regression [10–13] require data on
a fairly dense spatiotemporal grid. The statistical approach is
based on treating a temporally discretized, linearized version
of the model as a Gaussian process and becomes both cumber-
some and numerically expensive for models that involve more
than a few terms or variables.

The above approaches assume that all state (dependent)
variables that appear in the model can be either directly
measured or computed directly from the measured data. In
many cases of practical interest, one might be interested in
determining the model equations using only some of those
variables. For instance, the primitive variable description of
fluid flows relies on two physical fields: velocity and pres-
sure, only the first of which can typically be measured in
experiment with meaningful accuracy. The presence of latent
variables such as pressure makes data-driven model discovery
substantially more complicated or incomplete, since existing
approaches based on sparse regression [6,10] crucially rely
on direct measurements of every state variable which appears
in the model. In particular, using velocity measurements alone
only allows reconstruction of the vorticity equation [12] which
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describes the evolution of the curl of the velocity but not its in-
dividual components. The statistical approach [15] allows the
coefficients in the two-dimensional Navier-Stokes equation to
be determined without any knowledge of the pressure [14] but
assumes the form of the model is known.

Another common problem in data-driven model discovery
is sensitivity to noise in the data [8,10]. It is especially acute
for spatially distributed systems due to the difficulty in accu-
rately estimating spatial derivatives using noisy data. As an
example, adding just 1% noise to the data causes errors in the
model parameters of order 10% for the nonlinear Schrödinger,
KdV, and the vorticity equations, 50% for the Kuramoto-
Sivashinsky equation and introduces spurious terms in the λ-ω
model [12]. It is not currently understood on a quantitative
level what the impact of noise is on the accuracy of the model
reconstruction, however. Neither is it clear how the accuracy
of the model reconstruction based on gridded noisy data can
be quantified in the absence of some sort of a reference.

This work uses a representative example of a fluid flow to
address several of the open questions, mainly (1) how can we
get around the lack of direct measurements of latent variables
and (2) how can we quantify the accuracy of the resulting
model when the measurements of observable variables are
gridded and noisy? The structure of the paper is as follows.
Section II describes the physical problem, the model of which
we are trying to construct, and the relevant physical con-
straints. Section III describes our sparse regression approach.
Section IV discusses the use of polynomial approximations
for estimating spatial and temporal derivatives. The results are
presented in Sec. V and our conclusions in Sec. VI.

II. PROBLEM STATEMENT

We will focus on the Lorenz-force-driven flow in a thin
electrolyte layer supported by a stationary bottom plate
[16,17] as it provides an excellent illustration of the challenges
in data-driven discovery of a model for a spatially distributed
system with latent variables. The basic physics and symmetry
of the problem impose a number of constraints on the form
of the model and the choice of the fundamental variables.
Being a fluid flow, it is described by two fields, velocity u and
pressure p, so we would expect the dynamics of the fluid flow
to be described by evolution equations of the general form

∂t u = Nu(u, p),

∂t p = Np(u, p), (1)

where Nu and Np are some (generally nonlinear) differential
operators.

The form of these operators can be constrained by both
the physics and the symmetry of the problem; we will start
with the latter. In particular, in order to preserve the rotational
symmetry, Nu has to be a vector, and so it can be constructed
as a linear superposition of terms, each of which is a vector.
Since the fluid layer is thin, the vertical component of the
velocity is small compared to the horizontal component, and
we can consider u to be two-dimensional (we can think of
u as describing the flow at the free surface of the elec-
trolyte). Furthermore, again due to the small thickness of
the fluid layer, both u and p can be considered functions of

horizontal coordinates x and y and time t , but not the vertical
coordinate z.

There are several ways to construct a vector out of u, p, the
gradient operator ∇, and the external forcing field f (assumed
to be time-independent). The gravitational acceleration g,
the only other vector quantity in the problem, cannot be
included in the two-dimensional model, since the latter does
not explicitly include the vertical direction. Using one vector
object, we can construct three vector fields that are linear in
u, p, and f : ∇p, u, and f . More complicated vector fields can
be constructed using powers of ∇ and/or nonlinear functions
of p, u, and f . We will only consider terms that are linear in
p and f , since ∇p and f both describe the (volumetric) force
density and they are linearly related to the time rate of change
of the momentum density ρ∂t u according to Newton’s second
law.

More vector fields can be constructed using several copies
of u and ∇. Keeping terms up to third order in u and second
order in ∇, we obtain the following evolution equation for the
velocity field:

∂t u = c1(u · ∇)u + c2∇2u + c3u + c4(∇ · u)u

+ c5(∇ · u)2u + c6(∇ × u)2u + c7u2u

+ c8∇p + c9f . (2)

The evolution equation for the pressure can be constructed
in a similar manner, with Np that should be a scalar. The
pressure should be a function of the velocity only, so keeping
the leading order (in ∇ and u) term, we will find

∂t p = −κ∇ · u, (3)

where κ is another unknown parameter. Using the scaling
freedom in defining the latent field p explicit in Eqs. (2)
and (3), without the loss of generality we can set |c8| = 1.
Similarly, we can set c9 = 1, which amounts to choosing a
particular scale for the (unknown) forcing. The remaining
constant (to preserve the translational symmetry in space and
time) parameters c1 through c7 (and possibly κ) need to be
determined from data using sparse regression.

The combination of symmetry and basic physics we used
constrains the form of the evolution equations rather sig-
nificantly, yielding a set of evolution equations with rather
few superfluous terms. Indeed, under certain assumptions
(e.g., lubrication approximation), a two-dimensional model of
the form

∂t u = −β(u · ∇)u + ν∇2u − αu + ρ−1(f − ∇p), (4)

∂t p = −κ∇ · u, (5)

which is a special case of the general model (2)–(3), can
be derived analytically for this flow by depth averaging
the three-dimensional Navier-Stokes equation [16,18]. Here
α, ν, β, ρ, and κ are constants representing, respectively,
the vertical momentum transport, the horizontal momentum
transport, the attenuation of inertia due to vertical velocity
stratification, the density of the fluid, and the scale of the
hydrostatic pressure.

Comparison of numerical simulations and experimental
observations over a range of Reynolds numbers Re suggests
that the model (4)–(5) with constant parameters α, ν, and

022219-2



DATA-DRIVEN DISCOVERY OF PARTIAL DIFFERENTIAL … PHYSICAL REVIEW E 100, 022219 (2019)

β is qualitatively accurate [17], but there is a systematic
discrepancy that can be mostly accounted for by making these
parameters weakly dependent on Re. The assumptions made
in deriving the model mainly affect the vertical momentum
transport represented by the Rayleigh friction term −αu. This
momentum transport increases with Re due to the advection,
which can be accounted for by making the scalar coefficient
α velocity-dependent. This is what the last few terms in the
general model (2) represent. Specifically,

α = −c3 − c4∇ · u − c5(∇ · u)2

− c6(∇ × u)2 − c7u2 (6)

can be thought of as a second-order (in u and ∇) model of the
Rayleigh friction coefficient.

III. SPARSE REGRESSION

The data characterizing both components of the velocity
field u can be obtained, for instance, using particle image
velocimetry [16,17] and are assumed to be on a uniform grid
(i, j, k), where i, j, and k correspond to the x, y, and t direc-
tions, respectively. However, unlike standard sparse regression
problems where all the variables are directly observable, in
our problem neither the pressure p nor the forcing f are,
so both fields have to be either determined independently or
eliminated. In principle, for a fully resolved incompressible
(κ → ∞) flow field, if f were known, p could be obtained
in a standard way by applying a divergence to (2), which
yields a pressure Poisson equation. Typical experimental data,
however, have a resolution that is too poor (and noise level
that is too high) to make it possible to compute pressure in
this manner.

In the following, we will focus just on the evolution
equation for the velocity field; the evolution equation for
the pressure is very simple, and the coefficient κ can be
eliminated altogether by rescaling c8 and/or p. The terms
involving both latent fields can be eliminated from (2) by
applying an operator P̂ = ŜĈT̂ composed of three operations:
Ĉ = ẑ · ∇× removes the dependence on ∇p which is curl-
free, T̂ = ∂t removes the dependence on f which is constant,
and the sparsification operator Ŝ subsamples the original data
in a random fashion. The corresponding discretization of the
resulting PDE (which is second order in time, third order in
space, and fourth order overall) has the form

q0 = Qc, (7)

where Q = [q1 . . . q7], c = [c1 · · · c7]T is a vector com-
posed of scalar coefficients to be determined, and the columns

q0 = P̂(∂t u − f + ∇p), q1 = P̂(u · ∇)u,

q2 = P̂∇2u, q3 = P̂u,

q4 = P̂(∇ · u)u, q5 = P̂(∇ · u)2u,

q6 = P̂(∇ × u)2u, q7 = P̂u2u

(8)

correspond to different terms in (2). Note that q0 = P̂∂t u, so
none of the terms qi in fact depend on either p or f . For the
number K of points in the sample exceeding the number of
unknown coefficients, this yields an overdetermined system
(7) of linear equations for c, where the “library” Q and the
“target” q0 can be evaluated using any algorithm sufficiently

robust with respect to noise and sparsity of the data. The
particular procedure used in the present paper is described in
the next section.

We performed sparse regression using a variation of the
iterative algorithm for sparse identification of nonlinear dy-
namical systems (SINDy) [6], which involves computing the
solution c that minimizes the residual

η = ‖q0 − Qc‖1 (9)

of the linear system (7), followed by a thresholding procedure
to remove dynamically irrelevant terms. Note that the library
terms qi themselves can differ by many orders of magnitude
(an example of this is presented below). Since it is the product,
ciqi, that determines a given term’s role in the model, we em-
ploy a slightly modified thresholding procedure. We compare
the norms of the products ciqi to the residual η: the columns
of Q for which ‖ciqi‖1 < γη are removed, and the process
is repeated until all remaining terms are above the threshold.
Here γ is a constant that can be above or below, but is close
to, unity. This approach requires no a priori knowledge of
the system, in contrast to previous studies [6,13] that have
defined various arbitrary thresholds as stopping conditions for
the iterative procedure.

IV. POLYNOMIAL INTERPOLATION

All of the library terms involve spatial and/or tempo-
ral derivatives of the velocity field. Using total variation
regularization of the data [19] to reduce the influence of
noise is both prohibitively expensive in higher dimensions
and unnecessary given the sparse nature of the system (7).
Additionally, although spectral derivative estimates perform
better in the noiseless case, their high-frequency components
are corrupted by noise, diminishing their accuracy severely
[10]. Therefore, to accomplish the task of smoothing noisy
data and taking numerical derivatives concurrently, a higher-
dimensional generalization of the polynomial interpolation in
Ref. [9] was used instead. (We also investigated computation
of derivatives using discrete Fourier transform and found the
results to be comparable.) At each point chosen by the spar-
sification operator Ŝ, the velocity fields were approximated
by a polynomial in x, y, and t fitted to discrete data on a
rectangular domain � of size 2Hx × 2Hy × 2Ht centered at
a grid point (xi, y j, tk ).

In particular, the x component of the velocity u(x, y, t ) near
(xi, y j, tk ) was approximated as

ũ(x, y, t ) =
L∑

l=0

M∑
m=0

N∑
n=0

U lmn
i jk x̄l ȳmt̄ n, (10)

where the overbar denotes the shifted and rescaled coordinates
in which the domain � becomes a cube �′ = [−1, 1] ×
[−1, 1] × [−1, 1], e.g.,

x̄ = x − xi

Hx
, (11)

etc. The order of the polynomial in each direction should be at
least as large as the order of the highest derivative appearing
in the model equation (2) after the operator ĈT̂ is applied, but
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ultimately is a tunable parameter, with the specific choice to
be discussed in more detail in the next section.

The coefficients U lmn
i jk were found by minimizing the cost

function

F =
∑

(i, j,k)∈�

wi jk[ui jk − ũ(xi, y j, tk )]2, (12)

where wi jk is a weighting function. This is a standard
least squares problem whose solution is given by setting
∂F/∂U qrs

i jk = 0. This yields a system of (L + 1)(M + 1)(N +
1) linear equations

〈w u x̄qȳrt̄ s〉� =
L,M,N∑
l,m,n

U lmn
i jk 〈w x̄l+qȳm+r t̄ n+s〉�, (13)

where 〈·〉� denotes the average over the spatiotemporal sub-
domains for which the local fits are defined. The weighting
function wi jk was used to bias the accuracy of the approxima-
tion toward the central point of the domain � (where all of the
derivatives are evaluated) and is defined as a Gaussian

wi jk = exp

(
− x̄2 + ȳ2 + t̄2

λ2

)
, (14)

with the width λ being another tunable parameter of the model
(we set λ = 0.5). The same procedure was used to determine
the coefficients V lmn

i jk for the y component of the velocity
v(x, y, t ).

After the polynomial coefficients have been determined,
the row of the library Q and the target q0 corresponding
to the point (xi, y j, tk ) can be constructed by evaluating the
respective derivatives of u and v at (x̄, ȳ, t̄ ) = (0, 0, 0) using
(10). For instance,

qi jk
2 = 6V 301

i jk + 2V 121
i jk − 2U 211

i jk − 6U 031
i jk . (15)

The process was repeated for each point defined by Ŝ in
order to completely evaluate the library and the target. Ŝ was
defined by randomly selecting the points on the entire three-
dimensional grid representing the spatially and temporally
discretized trajectory. Throughout the paper, K = 250 points
were used to construct the library; neither the mean nor the
standard deviation of the coefficients ci was found to exhibit
meaningful variation for a larger number of points.

V. RESULTS

Surrogate data used for testing the sparse regression pro-
cedure were generated using the model (2)–(3) with the
parameters c1 = −0.826, c2 = 0.0487, c3 = −0.157, c4 =
0.164, c5 = c6 = c7 = 0, c8 = −1, and κ = 2015. This set
of parameters describes a nearly incompressible flow found
in the experiment described in Ref. [17], which features a
forcing field with a sinusoidal profile in the y direction with
period 2χ = 2 and amplitude equal to 1.0649 in nondimen-
sional units. The solution describing a weakly turbulent flow
was obtained using a numerical integration scheme based on
operator splitting as described in Ref. [18]. The linear terms
were evolved in time implicitly, while the nonlinear terms
were handled via a second-order Adams-Bashforth scheme.
The solution was integrated on a computational grid with
�xc = �yc = 0.025, and �tc ≈ 0.02. Gaussian random noise
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FIG. 1. Residual as a function of polynomial order for N = 10
and σ = 0. Here error bars denote standard deviation and symbols
denote mean values.

with variance σ was added to both components of the flow
velocity u. For reference, the maximal flow velocity is O(1)
in nondimensional units.

In order for the algorithm to produce meaningful results, its
various tunable parameters must be properly set. The noiseless
case exhibits the least amount of sensitivity to variation of
fitting parameters; the only restriction is that the polynomial
orders L, M, and N be high enough to capture the variation
in the data over �. While higher order interpolation allows
better approximation of the data, it is also more sensitive to
noise. To mitigate the influence of noise, a larger number of
measurements can be used. There are two ways to achieve
this: by increasing the size of the sampling domain � or by
using a finer grid on which data are measured. The largest
size of � is effectively limited by the characteristic length
scale and timescale for the problem. In the present problem,
the natural length scale is defined by χ . Consequently, we
will set Hx = Hy = χ/2, such that the width of � in both
spatial dimensions is equal to χ = 1. There is no natural
timescale, so we will choose one based on the autocorrelation
time τ ≈ 9.9. In the following we set Ht ≈ 0.85τ , which is an
optimal choice for σ = 10−3 and M = L. Furthermore we use
the finest grid available to us in space, i.e., �x = �xc, while
in time we use �t = 25�tc. With this choice, � corresponds
to a 40 × 40 × 34 block of data with dimensions that are
roughly comparable in the spatial and temporal directions.
At higher grid sizes evaluating the averages in (13) becomes
computationally expensive.

To investigate how the choice of polynomial order affects
the accuracy of the fit and hence the accuracy with which
various partial derivatives of u are evaluated, we computed
the residual (9). The dependence of η (normalized by the
magnitude of the target η0 = ‖q0‖1) is shown in Fig. 1. Here
and below, the averages and standard deviation are computed
using an ensemble of 40 different realizations of the sampling
operator Ŝ. Note that η generally does not vanish even for the
noiseless perfect model of the problem due to discretization
errors of the numerical solution. Also note that the magnitude
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FIG. 2. Parameter error as a function of noise amplitude for
L = N = 10. The error for c4 is not shown because SINDy discards
the corresponding term. Here and below markers are shifted left or
right to avoid overlap. Error bars indicate the full range of data, and
markers indicate mean values.

of η describes the accuracy with which Eq. (7) is satisfied,
not the accuracy of the numerical solution to the model (2)–
(3). As expected, η decreases for low L, but beyond some
threshold (in this case L = 7), increasing the polynomial order
has little effect on the residual. In particular, L = N = 10
results in both a low value of the residual and a small error
in parameter estimation in the noiseless case, as we will see
below.

To determine how the results depend on the amplitude σ

of measurement noise, we performed sparse regression and
compared the coefficients c̃i produced by SINDy with the
reference values ci used to generate the surrogate data for
κ = 2015. Of the four nonzero parameters used in generating
the data, three (c1, c2, and c3) were correctly identified as
being nonzero and estimated with a small relative error

�ci =
∣∣∣∣ci − c̃i

ci

∣∣∣∣ (16)

(of order 1% ) for sufficiently small σ , as illustrated by Fig. 2.
However, the coefficient c4 was incorrectly set to zero by
the algorithm for all σ . Furthermore, the accuracy in esti-
mating all of the remaining parameters decreased sharply for
σ � 10−4.

The failure of sparse regression to correctly identify the
value of c4 can be understood qualitatively by recalling that
it is the product c4q4 whose magnitude is used to determine
whether the corresponding term should be retained or dis-
carded. For our choice of parameters, ‖c4q4‖1 � η, suggest-
ing that the magnitude of this term is as small or smaller than
the accuracy to which the governing equation can be satis-
fied. As mentioned previously, the parameter set used here
corresponds to a nearly incompressible flow where ∇ · u is
nonzero but very small. Indeed, from (2) and (3) we find q4 ∼
∇ · u ∼ κ−1 ≈ 5 × 10−4. By eliminating the term c4(∇ · u)u
representing the effect of compressibility [18] from the model
(2), sparse regression effectively recognized this fact. The

accuracy of the incompressible model has been established
previously by comparing experimental and numerical results
[20,21].

To verify that this term was indeed eliminated due to the
large value of κ (and not some shortcoming of the method),
we repeated the analysis, setting κ = 1 to amplify the com-
pressibility effects. In this case the term c4(∇ · u)u is retained
in the model and the value of the parameter c4 is determined
correctly for sufficiently small σ . This is a good example
illustrating when sparse regression fails to identify terms that
are generally required by the physics of the problem but may
be neglected under some conditions.

To make the argument more quantitative, let us introduce
the measure

Ri = ‖ciqi‖1

η
, (17)

of the magnitude of a particular term in the linear equation
(7) relative to the corresponding residual (9). Sparse regres-
sion can correctly identify a particular term in the model
only if the corresponding Ri > 1; furthermore, we can expect
the accuracy of parameter reconstruction to decrease as Ri

approaches unity. For our choice of fitting parameters, R4

is below unity for κ = 2015 and above unity (R4 ≈ 20) for
κ = 1. Correspondingly, the terms with lower Ri exhibit the
worst fitting accuracy; this explains the larger relative error in
c3 compared with c1 and c2 in the κ = 2015 case (cf. Fig. 2),
since although R3 ≈ 30, it is much smaller than R1 and R2,
which both have Ri > 100.

Figure 2 also shows that, for the choice of fitting param-
eters optimized for noiseless data, the accuracy of sparse
regression sharply decreases for σ > O(10−4). To understand
why this happens, let us define the relative accuracy with
which a particular library term is evaluated over the entire
sample

ξi(σ ) = ‖qi(0) − qi(σ )‖∞
‖qi(0)‖∞

. (18)

The effect of noise on the accuracy of all the library terms
is shown in Fig. 3. Note that the lowest accuracy (highest
ξi) corresponds to the terms q4 and q5, which are linear and
quadratic, respectively, in ∇ · u, which is very small. These
terms are the most susceptible to corruption by noise, but, for
large values of κ , they are eliminated by sparse regression
anyway. As might be expected, in the absence of these two
terms, the term q2, which involves the highest order derivative
(third order in space and first in time), is the least accurate
in the presence of noise. This helps explain the difficulties
sparse regression has with identifying high-order derivatives
in all PDE models in the presence of noise. For instance,
in a previous study [12], the coefficient of the fourth-order
derivative term in the Kuramoto-Sivashinsky was determined
with a 52% error in the presence of 1% noise. In our case,
the terms q3 and q7, which involve the lowest order derivative
(first in space and time), have the smallest error, suggesting
that the order of the derivative is one of the main factors which
determine the accuracy of regression in the presence of noise.

The effect of noise can be offset, to some extent by a
different choice of parameters. In particular, the order of the
polynomial interpolation can be reduced to decrease noise
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FIG. 3. Relative accuracy of different library terms as a function
of noise amplitude for L = N = 10.

sensitivity. The dependence of the residual η on L is shown
in Fig. 4 for noise amplitude σ = 10−3 at which our previous
choice of parameters lead to unacceptably large errors. At this
value of σ , we find a minimum around L = 5 (with a sig-
nificant increase in η compared to the noiseless case), which
represents a balance between the accuracy of the interpolation
in capturing the spatial variation of the data at higher L and
the noise sensitivity at lower L. In fact, we found that setting
L = M = N = 6 is the best choice for minimizing both the
residual and the error in parameter estimation.

Using the fitting parameters optimized for higher noise
levels, sparse regression identifies the correct model (aside
from the negligible term q4) with all the model parameters
estimated to within ∼10% for 0.3% noise and to within ∼30%
for 1% noise, as illustrated by Fig. 5. This is comparable to
the accuracy achieved for the Kuramoto-Sivashinsky equa-
tion [12], which also includes a fourth-order derivative. The

4 6 8 10 12 14
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1

FIG. 4. Residual as a function of polynomial order for N =
10 and σ = 10−3. Here error bars denote standard deviation and
symbols denote mean values.
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FIG. 5. Parameter error as a function of the noise amplitude for
L = N = 6. The error for c4 is not shown because SINDy discards
the corresponding term. Error bars indicate the full range of data,
and markers indicate mean values.

trade-off of this choice of fitting parameters is the decrease
in the accuracy of model parameter estimation at lower noise
levels. Furthermore, R3 becomes close to unity, so sparse
regression yields false negatives for a noticeable fraction of
the trials (the data shown in Fig. 5 were calculated after
discarding the results for which SINDy eliminated the term
q3). In comparison, false negatives did not appear for L =
N = 10 until fairly high levels of noise. These false negatives
occur for lower L and/or N because the magnitude of the
residual is determined by the error in the term(s) most affected
by the insufficiently accurate approximation (here the term q2,
which involves the highest order derivative). For the lower L,
the variation in the data is not fully resolved, meaning that R3

is pushed closer to unity (and hence c3 can be estimated with
less accuracy).

VI. CONCLUSIONS

This paper presents an approach that allows sparse regres-
sion to be extended for data-driven discovery of PDE-based
models which involve unobservable and/or unknown (latent)
variables. Our approach relies on two key ideas: (1) using
spatial symmetry as well as other physical constraints to select
the terms that can appear in the model and (2) applying a
differential operator designed to remove terms which involve
the latent variables. We illustrated these ideas by using sparse
regression to construct a two-dimensional model for a weakly
compressible Kolmogorov-like flow in a thin electrolyte layer
driven by a steady Lorentz force with an unknown spatial pro-
file. In this particular case, two latent variables—the forcing
field which is a vector and the pressure which is a scalar—
have been eliminated by applying, respectively, a temporal
derivative and a curl to a nonlinear model with nine different
terms allowed by symmetry.

It should be noted that this approach does have limitations.
The terms in the model that involve latent variables have
been eliminated rather than reconstructed. This is why sup-
plementing the data-driven approach with additional physical
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constraints, which play a “constructive” role, is essential.
It may not be possible to find a differential operator that
eliminates the latent variables (although one could also use
an integral operator). Also, our approach might not work
for models that involve “cross-terms” which include both
observable and latent variables.

While previous studies have demonstrated the power of
sparse regression for data-driven model discovery, they left
a number of questions unanswered. In particular, how should
one choose the threshold that determines which terms in the
model are relevant? Since those studies mainly focused on re-
constructing well-known models, the threshold could be cho-
sen in an ad hoc fashion such that the a priori known model
was recovered. In case the form of the model is not known a
priori, the proper choice is less clear, since sparse regression
will recover different models for different choices of the
threshold. We have shown that a self-consistent choice should
be based on the residual η of the linear system (7): in most
cases sparse regression can be considered to have successfully
reconstructed the model once the corresponding norm of every
remaining term ciqi is larger than the residual. However,
while the residual is the proper metric for determining the
relevance of different terms, fine-tuning the threshold does
have an effect on the reconstructed model, mainly affecting
the terms with Ri = O(1). For γ somewhat smaller than unity,
sparse regression can produce false positives, e.g., the term
c4(∇ · u)u is retained even in the essentially incompressible
case when ∇ · u is very small and R4 is just below unity.
However, the value (and sign) of the coefficient c4 is found
to vary drastically for different realizations of the sampling
operator Ŝ, suggesting that this term is not dynamically rele-
vant. For γ somewhat larger than unity, this term is correctly
removed by the thresholding procedure for sufficiently low
noise. However, this choice also causes the term c3u to be

removed for some realizations of Ŝ at higher noise amplitudes,
when R3 becomes comparable to unity as well. In case a
relevant term (such as c3u) is removed by the thresholding
procedure, the residual increases noticeably, which allows
detection of false negatives. Manually including the term c3u
in such cases decreases the residual by about 10%, indicating
that it is dynamically relevant despite being smaller than the
residual. Fine-tuning γ based on these metrics can allow more
robust results in border-line cases.

Our study has also highlighted the major weakness of all
spatially local approaches to sparse regression. Regardless
of whether one uses a polynomial interpolation of the data,
total variation regularization, or some other similar approach
to construct the linear system whose solution determines
the model, the procedure is inherently sensitive to noise,
especially when higher order derivatives are involved. This
difficulty is well illustrated by both the failure of previous
studies to reconstruct with acceptable accuracy the fourth-
order Kuramoto-Sivashinsky equation in the presence of as
little as 1% noise and a similar loss in the accuracy for
the model considered here, whose latent-variable-free form
also involves fourth-order derivatives. In both cases, as the
noise amplitude increases, the term involving the highest
order derivative becomes the largest contributor to the residual
at which point its coefficient cannot be reliably determined
anymore. Since experiments commonly involve substantially
higher amounts of noise, a more robust alternative to such
local methods is needed.
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