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Oscillatory systems with long-range or global coupling offer promising insight into the interplay between
high-dimensional (or microscopic) chaotic motion and collective interaction patterns. Within this paper, we
use Lyapunov analysis to investigate whether chimera states in globally coupled Stuart-Landau (SL) oscillators
exhibit collective degrees of freedom. We compare two types of chimera states, which emerge in SL ensembles
with linear and nonlinear global coupling, respectively, the latter introducing a constraint that conserves the
oscillation of the mean. Lyapunov spectra reveal that for both chimera states the Lyapunov exponents split into
several groups with different convergence properties in the limit of large system size. Furthermore, in both
cases the Lyapunov dimension is found to scale extensively and the localization properties of covariant Lypunov
vectors manifest the presence of collective Lyapunov modes. Here, however, we find qualitative differences
between the two types of chimera states: Whereas the ones in the system under nonlinear global coupling exhibit
only slow collective modes corresponding to Lyapunov exponents equal or close to zero, those which experience
the linear mean-field coupling exhibit also faster collective modes associated with Lyapunov exponents with
large positive or negative values. Furthermore, for the fastest collective mode we showed that it spreads across
both synchonous and incoherent oscillators.
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I. INTRODUCTION

Chaos readily emerges in systems composed of many
coupled oscillatory “units.” These units may represent indi-
vidual oscillators or infinitesimally small patches of spatially
extended oscillatory media, and the coupling is what gives
rise to chaotic instabilities. The origin of the instabilities,
however, might lie in microscopic (i.e., local) interactions,
involving only a small number of oscillators or may result
from complex interaction patterns on macroscopic system
scales. The character of the corresponding chaotic dynamics,
accordingly, may vary significantly.

One way to shine light on the nature of the chaotic dy-
namics is to study chaotic states in oscillatory ensembles
containing different numbers of oscillators N while being
subject to equivalent coupling schemes. Thereby, the chaotic
dynamics are usually characterized in terms of Lyapunov
exponents (LEs), which measure the average infinitesimal
divergence rates of the motion in phase space [1,2]. Our
understanding of chaos within this context is comparatively
advanced in two limiting cases, so-called intensive and solely
extensive chaos. Intensive chaos is characterized by an (in
general small) number of positive LEs that is independent
of the number of oscillatory units. It occurs, e.g., for certain
parameters in systems of globally coupled oscillators [3–5]. In
the opposite case, when the chaotic motion arises exclusively
from microscopic degrees of freedom and the number of
positive LEs scales linearly with N , then the chaotic dynamics
is solely extensive. Such behavior was shown to exist in some
generic spatially one-dimensional models [6]. However, it
has been recently established that large systems with global
coupling schemes or spatially extended systems in two or

three spatial dimensions, might exhibit chaotic motion that
belongs to neither of these two situations. Instead, their dy-
namics are characterized by both a few collective macroscopic
modes and a large number of microscopic, chaotic degrees of
freedom [3–5]. Our knowledge how and when such collective
modes develop and which role they play in the overall high-
dimensional chaotic dynamics is still very limited.

The investigation of collective dynamics in high-
dimensional chaotic systems remains a challenge. For a long
time, it was common belief that conventional Lyapunov
analysis cannot capture these collectively chaotic dynamics
correctly [7]. Instead, finite-size perturbations needed to be
studied in order to identify collective dynamical modes and
the associated LEs. Only recently, Takeuchi et al. [8,9] were
able to demonstrate that standard Lyapunov analysis can in
fact provide information on collective dynamics. The key of
their analysis was the calculation of the covariant Lyapunov
vectors (CLVs) associated with the LEs [1,10,11]. Having
access to CLVs, Takeuchi et al. complemented the information
provided by the Lyapunov spectrum with an investigation
of the localization or delocalization properties of CLVs as-
sociated with particular LEs. They illustrated their strategy
for N globally coupled Stuart-Landau (SL) oscillators in a
high-dimensional chaotic state. Most of the CLVs were found
to be well localized for a large range of ensemble sizes
N , while a small number of modes appeared to become
increasingly delocalized with increasing N . The respective
perturbations, named collective Lyapunov modes, were shown
to be related to macroscopically chaotic degrees of freedom.
Moreover, in accordance with earlier work on collective chaos
by Nakagawa and Kuramoto [5,12,13], they showed that the
overall Lyapunov spectrum can be separated into parts with
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different convergence properties in the limit of large N . In
particular, they identified an extensively scaling group of
O(N ) positive LEs in the middle of the spectrum, resulting
in a flattening of the spectrum. Around the most positive
and most negative exponents, however, they also observed
subextensive groups of exponents, the number of which was
shown to scale approximately as O[ln (N )] [9]. In other
studies, the localization properties of CLVs were elaborated.
In scale-free networks of chaotic maps Kuptsov and Kuptsova
[14] observed a localization of nodes which were preserved in
the course of the dynamics. Xu and Paul [15] studied CLVs
in Rayleigh-Bénard convection and could correlate spatial
localization of the CLVs with defect structures in the fluid
flow field.

In this paper, we perform a related Lyapunov analysis
of chimera states in globally coupled SL oscillators. Being
composed of coexisting groups exhibiting synchronous and
asynchronous motion, respectively, chimera states are peculiar
dynamic states which can be seen as “a natural link between
coherence and incoherence” [16]. They might offer insight
into natural phenomena such as some neural activity patterns
[17] or hydrodynamic flows with mixed laminar and turbulent
patterns [18]. So far, there are only a few studies on Lyapunov
analysis of chimera states that mainly focus on systems of
coupled phase oscillators. Wolfrum et al. [19,20] showed
that the Lyapunov spectra for chimera states in coupled
phase oscillator networks of finite size exhibit an extensive
number of positive LEs, revealing the hyperchaotic nature
of chimera states. Yet, all the positive exponents decay with
increasing system size and finally yield neutrally stable zero
exponents in the limit N → ∞. Nevertheless, they found the
Lyapunov dimension DL to scale extensively with system
size. Furthermore, Botha et al. [21,22] studied the distribution
of finite-time LEs in chimera-like dynamics and identified
characteristic patterns in their temporal distribution function.
While for usual chaotic states without synchronization pattern
the finite-time LEs follow a Gaussian distribution, they found
that the distribution in the case of chimera states possesses a
complex, multimodal shape, which they proposed to use as an
indicator for chimera-like behavior.

In this work, however, we want to focus our attention
on properties of the asymptotic Lyapunov spectra, without
further reference to the temporal distribution of finite-time ex-
ponents. In particular, we examine whether Lyapunov spectra
for chimera states of the globally coupled SL ensemble exhibit
similar patterns as observed for the above-mentioned chaotic
states, which exist in the same type of oscillatory network
for different parameter values [8]. Furthermore, we compare
chimera states in these mean-field coupled SL ensembles with
those arising in SL oscillators subject to a nonlinear global
coupling that conserves a harmonic oscillation of the ensem-
ble mean. This coupling scheme was introduced to describe
experiments on Si electrodissolution [23,24]. In our context,
it gives additional information of how a global constraint
might further impact the interplay between high-dimensional
incoherent motion and collective interaction patterns.

The paper is organized as follows. In the next section,
we introduce our two models as well as the particular types
of chimera states that are subject to our investigations. In
Sec. III, the notation used throughout the paper is introduced,

Lyapunov analysis as performed on our data reviewed, and
measures used to characterize the dynamics, in particular the
Lyapunov dimension DL and the inverse participation ratio
(IPR) as well as a group localization index ρx, are defined.
In the results and discussion Sec. IV, we start by investigating
the Lyapunov spectra of the two types of chimera states for
N = 16 oscillators in detail, discuss then how the spectra
change when N is stepwise doubled up to N = 256, and
end with a discussion of how the Lyapunov dimension and
the IPR depend on N . The latter allows us in particular to
draw conclusion on the existence and on some properties of
collective Lyapunov modes. The paper is completed with the
conclusion Sec. V.

II. DYNAMICAL SYSTEMS

There is a vast number of different chimera states that have
been reported in the literature in recent years [25–28]. In this
article, we focus on two kinds, also called type I and type II
chimeras [29], which can be observed in systems with long-
range interactions [23,30]. The former, the type I chimera, ap-
pears in Stuart-Landau ensembles with linear global coupling.
The time evolution of the systems is governed by equations of
the form

∂tWk = Wk − (1 + ic2)|Wk|2Wk + κ

⎛
⎝ 1

N

N∑
j=1

Wj − Wk

⎞
⎠, (1)

wherein Wk denotes the complex amplitude of oscillator k, and
k = 1, . . . , N , with N being the total number of oscillators.
Parameters are the real shear, c2, and the complex coupling
constant, κ , which we set to c2 = 2 and κ = 0.7 (1 − i) in
the following. Hereby i denotes the imaginary unit. Given
this set of parameters, we investigate ensemble sizes N = 2l

for 4 � l � 8 and find the type I chimera state to be a stable
attractor for N � 16. The oscillator dynamics in the complex
plane, as well as the corresponding time series of the real parts
are shown in Figs. 1(a) and 1(c), respectively, for N = 256.
There one observes a coherent group of oscillators, depicted
in dark red (dark gray), with a larger absolute value of Wk ,
and an incoherent group composed of oscillators with smaller
amplitudes, shown in orange (light gray). The thick dots
highlight a snapshot of the dynamics. Note that the motion
of the incoherent group, when viewed in the complex plane,
lies on a stringlike object undergoing stretching and folding.
The structure is similar to a Birkhoff-Shaw attractor [31] and
resembles the chaotic motion found in mean-field coupled SL
ensembles [8,12].

In contrast to the type I chimeras, the type II chimera
state has only been observed in systems with nonlinear global
coupling [29]. In particular, it appears in Stuart-Landau en-
sembles of the form

∂tWk = − iνWk − (1 + iν)

⎛
⎝ 1

N

N∑
j=1

Wj − Wk

⎞
⎠

− (1 + ic2)

⎛
⎝ 1

N

N∑
j=1

∣∣Wj

∣∣2
Wj − |Wk|2Wk

⎞
⎠, (2)
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FIG. 1. Simulation data of the type I chimera, (a) and (c), and
the type II chimera state, (b) and (d), with N = 256 oscillators.
Trajectories of coherent and incoherent oscillators are shown in dark
red (dark gray) and orange (light gray), respectively. Top: Oscillator
trajectories in the complex plane. Dots represent a snapshot of the
oscillator states. Bottom: Real part of the oscillator states as a
function of time.

in certain regions of parameter space. Exemplary simulation
data with parameters c2 = −0.66, ν = 0.1 and the initial
absolute value of the mean amplitude,

|〈W 〉| =
∣∣∣∣∣∣
∑

j

Wk (t = 0)/N

∣∣∣∣∣∣ = η = 0.67,

are depicted in Figs. 1(b) and 1(d) for N = 256. The coloring
scheme is identical to that of the type I chimera state. Note
that the type II chimera state exhibits an additional frequency
component in the oscillator dynamics and that there is no clear
amplitude separation between the coherent and incoherent
oscillators, as opposed to the type I dynamics. Furthermore,
qualitative differences between both types of chimera states
can be captured in terms of order parameters [26]: While
the type II chimera states possess an order parameter with
oscillatory behavior, leading to a categorization as “breathing
chimeras,” the order parameter of the type I chimera state
fluctuates irregularly around a constant value, as characteristic
for the class of “turbulent chimeras.” In the following, we
investigate the ensemble dynamics of the two cases more
carefully using Lyapunov analysis, with a particular emphasis
on the apparently chaotic motion of the oscillators in the
incoherent groups.

III. BACKGROUND AND METHODS

A. Lyapunov analysis

Lyapunov analysis provides quantitative methods to inves-
tigate the degree of chaoticity of dynamical systems [2]. To
introduce concepts and notation, we consider a sufficiently
well-behaved dynamical system, whose time evolution is
described by a time-dependent vector x = x(t ) ∈ R2N and
governed by the autonomous ordinary differential equation

ẋ = f (x). (3)

Equations (1) and (2) can be cast in this form by introducing
the real-valued oscillator coordinates {ak, bk}N

k=1 through

ak = 1√
2

(Wk + W ∗
k ),

bk = − i√
2

(Wk − W ∗
k ),

wherein W ∗
k denotes the complex conjugate of Wk . Organizing

all coordinates in a 2N-dimensional state vector then yields

x =
(

a
b

)
= (a1, . . . , aN , b1, . . . , bN )T .

Furthermore, we specify a reference trajectory x̂(t ), which at
any point in time has to satisfy Eq. (3) and investigate the
growth or decay of small perturbations around x̂(t ). The time
evolution of infinitesimal perturbations δx = δx(t ) ∈ Tx̂(t )R2N

is governed by the tangent-space dynamics

δẋ = ∂ f
∂x

∣∣∣∣
x̂(t )

δx, (4)

wherein ∂ f
∂x |x̂(t )

is the Jacobian matrix of f (x), evaluated at

x̂(t ), and Tx̂(t )R2N denotes the tangent space of the dynamical
system in the vicinity of x̂(t ). For our purposes, we have
Tx̂(t )R2N ∼= R2N .

Given a suitable initial condition δx(t0) = δx0 ∈ R2N ,
Eq. (4) possesses the formal solution

δx(t ) = �x̂(t, t0)δx0, (5)

wherein �x̂(t, t0) denotes the fundamental matrix of Eq. (4),
encoding the time evolution of perturbation vectors from
Tx̂(t0 )R2N at time t0 to Tx̂(t )R2N at time t . Using Eq. (5), as well
as the standard scalar product in Rm, the squared amplitude of
some perturbation vector δx(t ) can thus be expressed as

‖δx(t )‖2 = δxT
0 �x̂(t, t0)T �x̂(t, t0)δx0.

Oseledets’ theorem, also known as the multiplicative ergodic
theorem [1], states that under rather general conditions there
exist symmetric matrices

M (±)
x̂(t0 ) = lim

t→±∞[�x̂(t, t0)T �x̂(t, t0)]
1
2t , (6)

with real positive eigenvalues μ1 > μ2 > . . . > μr , r � 2N ,
which thus characterize the long-term expansion and contrac-
tion rates of perturbation vectors. In what follows, we will
refer to the eigenspaces of M (±)

x̂(t0 ) associated with eigenvalue

μk as U (±)
x̂(t0 ),k . Note here that symmetries of the system as well

as of the dynamical pattern can give rise to degeneracies in
the spectrum, which we will discuss later on in more detail.
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Denoting with gk the degree of degeneracy of eigenvalue
μk , the degeneracies satisfy

∑r
k=1 gk = 2N and agree with

the dimensionality of the corresponding eigenspaces U (±)
x̂(t0 ),k .

Furthermore, the eigenvalues μk and degrees of degeneracy gk

coincide for M (+)
x̂(t0 ) and M (−)

x̂(t0 ) and are independent of the partic-
ular reference trajectory for ergodic dynamics. The Lyapunov
exponents λ1 > λ2 > . . . > λr are then defined through λk =
ln μk and satisfy

‖�x̂(t, t0)δx0‖ ∼ eλkt‖δx0‖ (7)

for δx0 ∈ 
x̂(t0 ),l . Therein, the subspaces 

(k)
x̂(t0 ) ⊂ Tx̂(t0 )R2N

are defined as follows: Employing the above notation, we set

�
(+)
x̂(t0 ),k =

r⊕
l=k

U (+)
x̂(t0 ),l ,

�
(−)
x̂(t0 ),k =

k⊕
l=1

U (−)
x̂(t0 ),l ,

with ⊕ denoting the direct sum of vector spaces, and obtain


x̂(t0 ),k = �
(+)
x̂(t0 ),k ∩ �

(−)
x̂(t0 ),k .

The set of subspaces {
x̂(t0 ),k : 1 � k � r} is called Oseledets’
splitting [1,10] and provides a nonorthogonal decomposition
of the tangent space according to different expansion rates of
infinitesimal perturbations, i.e.,

Tx̂(t0 )R
2N =

r⊕
k=1


x̂(t0 ),k .

The Oseledets subspaces satisfy dim (
x̂(t0 ),k ) = gk . In con-
trast to the eigenspaces U (±)

x̂(t0 ),l of M (±)
x̂(t0 ), Oseledets’ splitting

is norm independent, invariant under time inversion, and
depends on the current system state in a way that is covariant
with respect to the dynamical flow, i.e.,


x̂(t ),k = �x̂(t, t0)
x̂(t0 ),k .

The spanning vectors of Oseledets’ splitting are called CLVs
[10,32,33] and by virtue of Eq. (7) indicate the local orien-
tation of stable and unstable manifolds in phase space. The
spanning vectors of the orthogonal eigenspaces of M (±)

x̂(t0 ) are
known as forward [FOLVs, (+)] and backward orthogonal
Lyapunov vectors [BOLVs, (−)]. Despite the superior dy-
namical properties of CLVs compared to FOLVs and BOLVs,
the efficient computation of CLVs has become possible only
recently due to algorithms by Ginelli et al. [10], Wolfe and
Samelson [11], and later on Kuptsov and Parlitz [32], who
improved on the method by Wolfe and Samelson. CLVs have
since attracted much scientific interest and proved to be a fruit-
ful source of insight, especially into phase-space structures
of high-dimensional dynamical systems. In particular, CLVs
have been used to study, e.g., dynamics of rigid disk systems
[34,35], chaotic motion in spatially extended systems [36,37],
stability properties of geophysical models [38], and collective
chaos in systems of coupled oscillators [8,9,39].

B. Lyapunov dimension and inverse participation ratio

The dimensionality of a chaotic attractor can be estimated
from the Lyapunov dimension

DL := L +
∑L

l=1 λl

|λL+1| . (8)

with L � 2N denoting the largest integer for which
∑L

l=1 λl >

0. Note here that for computing DL, we have to take account
for degeneracies in the Lyapunov spectrum explicitly. The
summation in Eq. (8) therefore runs over an extended index
l ∈ {1, . . . , 2N}, which enumerates all of the 2N potentially
degenerate LEs in a way that satisfies λ1 � λ2 � . . . � λ2N .
Under generic circumstances, the Kaplan-Yorke conjecture
then states that DL is an upper bound of the information
dimension DI of the dynamical pattern [40], which is obtained
as a special case of the Renyi-q dimension for q = 1 [41,42]
and is closely related to the information production in the
underlying system [43]. A linear scaling of DL with the system
size, i.e., in our case the number of oscillators N , is commonly
used to demonstrate extensivity of chaotic dynamics.

As mentioned above, oscillatory systems with global cou-
pling schemes might also possess collective modes arising
from strong correlations [3–5], which do not scale linearly
with system size. Such collective modes can be identified
investigating the localization or delocalization properties of
CLVs associated with particular LEs. Using oscillator coordi-
nates and the above notation, an arbitrary perturbation can be
expressed as

δx = (δa1, . . . , δaN , δb1, . . . , δbN )T ∈ R2N , (9)

wherein δak and δbk denote the relative perturbation ampli-
tudes affecting the real and imaginary part of the oscillator
state Wk , respectively. As demonstrated by Takeuchi et al.
[8], the inverse participation ratio (IPR) defined by Mirlin
et al. [44] is a suitable measure for vector localization. For
perturbations in the form of Eq. (9), the IPR can be written as

IPR =
N∑

k=1

(
δa2

k + δb2
k

)2
. (10)

Therein, we assume vector normalization according to∑N
k=1 (δa2

k + δb2
k ) = 1. By definition, the IPR then takes val-

ues between N−1 and 1. Large values are obtained if the vector
under study possesses a small number of large-amplitude
components, indicating localization of the perturbation mode.
Smaller values are obtained if all terms in the summation are
of similar magnitude so that a greater number of oscillators
is affected by the perturbation. A small IPR value is thus
indicative of a collective Lyapunov mode.

For chimera states it is of particular interest whether
the perturbations spread across synchronized and incoherent
groups or whether they remain localized within one of the
two groups. Since the IPR does not allow for a discrimination
of intra- and intergroup delocalizations, we define a group
localization index ρx according to

ρx = IPRx/IPR

Nx/N
(11)
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with

IPRx =
Nx∑

k=1

(
δa2

k + δb2
k

)2
. (12)

Here, x refers to “sync” or “inc,” Nx being thus either the num-
ber of synchronized or the number of incoherent oscillators.
IPRx measures the share of the two groups in the total IPR
and ρx scales it to the respective normalized group size. Con-
sequently, if the group localization index ρx = 1, then ρsync =
ρinc and the mean perturbation of oscillators in both groups is
equal, i.e., the intergroup delocalization is maximum. If, on
the other hand, ρinc > 1(< 1), then the perturbations are more
localized on the incoherent (synchronized) group.

C. Numerical methods and simulation details

For the integration of the system dynamics, we use the
variable-step Dormand-Prince method [45] implemented in
the explicit Matlab integration function ode45 [46] with a
maximum time step of 5 × 10−3 for Eq. (1) and 1.5 × 10−2

for Eq. (2). During simulation of the type I chimera states, we
allowed an initialization period of at least 10 000N periods of
the dynamics for the system state to settle down to an attractor.
In the case of type II chimera states, we observe extremely
long oscillatory transients, during which the number of syn-
chronized oscillators increases with time. The duration of the
transients is found to scale exponentially with system size and
is of the order of 106 periods of the dynamics for N = 256. For
a give system size, we find that the time between successive
oscillators joining the synchronized cluster grows exponen-
tially with increasing size of the cluster. The observed dynam-
ics might be related to supertransients as reported in Ref. [19],
but a more detailed analysis of the transients is beyond the
scope of this paper. In order to minimize the influence of
transient dynamics on our studies, we chose the initialization
period so long as to observe no more changes in the number
of synchronized oscillators for at least 10 000N periods. Based
on an analysis of Fourier spectra, we assume average period
lengths of the dynamics of approximately 4.2 time units for
type I and 12.9 for type II chimera states, independent of
the system size N . For the computation of LEs and BOLVs,
we employ the standard method developed independently by
Shimada et al. [47] and Benettin et al. [48] and reviewed by
Eckman et al. [49]. It is based on repeatedly performing QR
decompositions and averaging over the logarithmic diagonal

entries of the R matrices for a sufficiently long time. We
choose to perform 20 QR decompositions per period of the
dynamics. Expecting an exponential convergence of the Q
matrices containing the BOLVs, we admit a transient period of
at least 1000N periods before recording the LEs and BOLVs.
The CLVs are obtained from the BOLVs and the respective R
matrices by applying the dynamic algorithm by Ginelli et al.
[10]. In backward-time direction, we admit an initialization
period of at least 100N periods before recording the CLVs.
The final estimate of the LEs is obtained from an average
over at least 2.5 × 104 periods of the dynamics. The CLVs
are saved after each QR-step (resulting in 20 samples per
period) over a time interval of 2.5 × 104 periods. Based on the
statistics of the short-time estimates, we expect an accuracy of
the exponents of at least 10−3.

IV. RESULTS AND DISCUSSION

A. Lyapunov spectra for N = 16 oscillators

Figure 2 shows Lyapunov spectra of the type I and type
II chimera states for a system size of N = 16 oscillators.
Simplifying further discussions, we plot the full spectra, con-
sisting of 2N = 32 exponents, without removing degenerate
exponents. We furthermore follow the suggestion of Ref. [2]
and introduce the rescaled index

l̃ := (l − 1/2)/(2N ) ∈ (0, 1),

which enables us to show spectra for different ensemble sizes
over the same abscissa range. The simulation data, used to
generate the spectra, is not depicted here but resembles the
data in Fig. 1 closely. For the type I dynamics, we find a
group of Nsync = 10 synchronized oscillators, which coexists
with Ninc = 6 oscillators performing incoherent motion. For
the type II dynamics, the fraction of synchronized oscillators
is higher with Nsync = 13 and Ninc = 3. The clustering of the
oscillators into synchronized and incoherent groups induces
a similar grouping pattern also for the LEs: These can be
assigned to four main groups—P, N, and CI1,2—which are
separated by a small number of singleton exponents: Z and
S1,2.

Starting with P, the group of positive exponents, we recog-
nize that both types of chimera states possess Ninc − 1 positive
exponent, revealing their hyperchaotic character. In addition
to P, we find a group N of negative exponents, with the same
number of exponents, cf. Fig. 2. The facts that P and N are
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FIG. 2. Lyapunov spectra of a type I chimera state in Eq. (1) and a type II chimera state in Eq. (2) for a system size of N = 16 oscillators.
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identical in size, and that the number of exponents appears to
relate to the number of incoherent oscillators in the ensemble,
suggests that P and N exponents correspond to stable and
unstable directions in tangent space, which affect the group
of incoherent oscillators predominantly. As we discuss in
Sec. IV D in more detail, the shapes of the corresponding
CLVs support this finding: All CLVs associated with the P and
N exponents perturb all synchronized oscillators in the same
way, without disturbing the clustering pattern.

Besides groups P and N, we find a group Z of very small
exponents with values of the order of 10−4 or smaller. We
observe two such exponents for the type I chimera state and
three for the type II dynamics. These numbers are consistent
with the number of zero exponents to be expected from
symmetry considerations of Eqs. (1) and (2). The governing
laws of both systems are independent of time, so that for
any solution Ŵ (t ) of Eqs. (1) or (2) the time-shifted solution
Ŵ (t + δt ) provides a valid trajectory, as well. Perturbations
along the dynamical flow therefore neither grow nor decay in
time, resulting in a neutrally stable direction of perturbation
and a zero LE. Trivially, the invariance is preserved also when
changing to the real-valued coordinates. With Eq. (3) it is easy
to see that the corresponding CLV is

δxts ∝ f [x̂(t )],

which, by chain rule, satisfies Eq. (4). Similarly, Eqs. (1) and
(2) are invariant with respect to phase shifts in the complex
plane, i.e., for any angle φ ∈ R, eiφ Ŵ (t ) is a valid solution if
the same is true for Ŵ (t ). As a result, another zero exponent
is associated with the covariant Lyapunov vector

δxps ∝ (−b1, . . . ,−bN , a1, . . . , aN )T ,

corresponding to an infinitesimal rotation of all oscillators in
the complex plane.

For the type II chimera state in Eq. (2), we have an
additional zero exponent, which arises from the conservation
law

d/dt |〈W 〉| = 0. (13)

This can be seen from the fact that

d〈W 〉/dt = −iν〈W 〉, (14)

wherein 〈W 〉 = ∑N
k=1 Wk/N denotes the complex amplitude

of the mean field. According to Eq. (14), 〈W 〉 performs a
harmonic oscillation in time and thus conserves the mean-field
amplitude. The conservation law (13) induces a splitting of
phase space into invariant manifolds associated with different
values of |〈W 〉| = η and thus yields another neutrally stable
direction in tangent space. The CLV associated with this
direction, however, appears to possess a nontrivial structure
so that an analytical expression has not been identified, yet.

Two further groups of exponents, CI1,2, are made up of
only two distinct LEs, possessing a (Nsync − 1)-fold degen-
eracy each. Clearly, these degeneracies originate from the
synchronization pattern of the chimera states. To see this, we
take a closer look on the tangent space dynamics in presence
of synchronized oscillators. Extending the notation of Eq. (3),

we write

ẋ =
(

ȧ

ḃ

)
=

[
f (a)(a, b)

f (b)(a, b)

]
= f (x),

with a = (a1, . . . , aN )T and b = (b1, . . . , bN )T . The Jacobian
matrix of the overall system can then be written in block-
matrix form as

∂ f
∂x

=

⎡
⎢⎢⎢⎣

∂ f (a)

∂a
∂ f (a)

∂b

∂ f (b)

∂a
∂ f (b)

∂b

⎤
⎥⎥⎥⎦. (15)

Denoting the kth coordinate of f (a) with f (a)
k , the global

coupling scheme in Eqs. (1) and (2) allows us to separate the
terms according to

f (a)
k (a, b) = g(a)(ak, bk ) +

N∑
j=1

c(a)(a j, b j ), (16)

with c(a) and g(a) being independent on the oscillator indices
k and j, respectively. A similar argument is valid for f (b).
Sorting then the oscillators in a way that synchronized oscilla-
tors Wk obtain indices k = 1, . . . , Nsync, we can conclude from
Eq. (16) that each of the sub-Jacobians in Eq. (15) can again
be written in block-matrix form as

∂ f (p)

∂q
=

(
gpq1 + cpqE . . .

Rpq . . .

)
,

wherein for p, q ∈ {a, b},

gpq := ∂g(p)

∂q

∣∣∣∣
a1,b1

,

cpq := ∂c(p)

∂q

∣∣∣∣
a1,b1

,

and 1, E ∈ RNsync×Nsync denote the unit matrix and the matrix
with entries all equal to unity. Furthermore, the entries of
Rpq ∈ RNinc×Nsync are row-wise constant. From this structure,
we can deduce that for perturbations affecting only the relative
position of synchronized oscillators, i.e.,

δx⊥ := ( δa1, . . . , δaNsync , 0, . . . , 0, . . .

δb1, . . . , δbNsync , 0, . . . , 0 )T , (17)

with
Nsync∑
k=1

δak =
Nsync∑
k=1

δbk = 0, (18)

we have
Nsync∑
k=1

d (δak )/dt =
Nsync∑
k=1

d (δbk )/dt = 0,

as well as

d (δak )/dt = d (δbk )/dt = 0

for k = Nsync + 1, . . . , N . Perturbations of type (17) subject
to constraint (18) thus form an invariant subspace under time

022217-6



LYAPUNOV SPECTRA AND COLLECTIVE MODES OF … PHYSICAL REVIEW E 100, 022217 (2019)

0 0.2 0.4 0.6 0.8 1
Rescaled index

-3

-2

-1

0

LE
s

Type I

P
N

256
128
64
32

0 0.1 0.2
Rescaled index

-0.05

0

0.05

0.1

0.15

LE
s

0.5 0.6 0.7
Rescaled index

-1

-0.5

0

LE
s

0 0.2 0.4 0.6 0.8 1
Rescaled index

-0.8

-0.6

-0.4

-0.2

0

0.2

LE
s

Type II

P

N

256
128
64
32

0 0.05 0.1
Rescaled index

-0.02

0

0.02

0.04

0.06

0.08

LE
s

0.9 0.95 1
Rescaled index

-0.8

-0.6

-0.4

-0.2

LE
s

P N P N

FIG. 3. Lyapunov spectra of type I and type II chimera states for increasing ensemble sizes from N = 32 to N = 256.

evolution in tangent space, the dimension of which is 2Nsync −
2. Reducing tangent space dynamics to only this subspace,
it is possible to obtain a two-dimensional system of linear
equations, whose temporal asymptotics exactly reproduce the
values of the two degenerated LEs, as obtained from the
full system dynamics. Similar sets of exponents have also be
found by Ku et al. [50] in the context of pure cluster states
in oscillatory systems with linear global coupling and were
termed cluster integrity exponents. Due to the very similar
role of the degenerate exponents in our context, we adopt this
nomenclature here, leading to the group annotations CI1 and
CI2.

What remains in both spectra is a small number of single-
ton exponents—S1 and S2 in the type I spectrum and only S1

for type II—the role of which will become clear when inves-
tigating the localization properties of the associated covariant
Lyapunov vectors.

B. Lyapunov spectra for larger systems

Figure 3 shows Lyapunov spectra for type I and type II
chimera states in Eqs. (1) and (2). Again, the spectra are
plotted against the rescaled index and include the degener-
ate exponents. Apart from small fluctuations of the order
of two to four oscillators, the number Ninc of incoherent
oscillators scales roughly linearly with ensemble size, so that
the structure of the spectra is similar to those in Fig. 2. In
particular, we find that in most cases the number of P and
N exponents equals Ninc − 1 each and thus scales extensively
with system size. Only for the type I spectra with N = 128
and N = 256 oscillators, there are Ninc − 2 positive exponents
and one additional singleton exponent very close to zero. This,
however, is likely to be an artifact. On the one hand, espe-
cially for high-dimensional systems, it may take a long time
for the smallest exponents to converge properly, since these
correspond naturally to the slowest directions of perturbation.
On the other hand, the QR-based method for computing LEs
is known to be vulnerable to numerical errors in computing
close-to-zero exponents and associated BOLVs [2,51,52].

Similarly to P and N exponents, the groups of degenerate
exponents scale extensively with system size, as well. In
agreement with theory, we find a degeneracy of degree Nsync −
1 for each of the exponents.

While the values λl of the degenerate exponents do not
appear to follow an obvious trend as a function of system size,
the P and N exponents exhibit a pronounced size dependence
with a significant trend. To give a better overview on the
size dependence of the nondegenerate P and N exponents,
the smaller subfigures in Fig. 3 depict magnified views onto
the relevant regions. For the type I dynamics, we observe a
decreasing trend for the main part of the positive exponents
while some of the positive exponents close to the zero group
appear to follow an increasing trend. The bulk of P group thus
seems to approach a constant value, which is consistent with
former results by Takeuchi et al. [9]. However, for the most
positive exponents, the rate of decrease is slower compared to
bulk and furthermore appears to slow down with increasing
N . Similarly to the observations of Takeuchi et al., this might
indicate a subpartitioning of the positive exponents into an
extensively scaling and a subextensive group.

In contrast to the type I case, we observe an increasing
trend for the main part of the positive exponents within the
type II spectra. Only some of the smallest positive exponents
do not follow the increase. In particular, the smallest positive
exponent seems to approach zero, so that for N = 256 oscil-
lators four instead of three exponents are very close to zero.
From a numerical perspective, the values of the Z-group expo-
nents of the type II dynamics fluctuate stronger compared to
the those of the type I spectra. This might indicate difficulties
with the numerical integration method. Still, it might also give
an indication that in the limit of large system sizes some of
the CLVs come very close to those of the zero subspace and
should thus be explored further.

The N group of negative exponents appears to flatten
with increasing system size for both types of chimera states,
i.e., more negative exponents increase, whereas less negative
exponents decrease. For the type I spectra, this results in an
increasingly tangentlike shape of the spectral curve. A similar
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FIG. 4. (a) Lyapunov dimensions type I and a type II chimera
states as a function of N . (b) Effective Lyapunov dimension as a
function of the reduced number of oscillators Ninc + 1.

pattern is found also within the type II spectra. A differ-
ence, however, occurs in the behavior of the most negative
exponents between l̃ = 0.95 and l̃ = 1. Within this range,
the type II spectra deviate significantly from the tangentlike
shape. The presence of an additional turning point in the
spectral curve around l̃ = 0.975 results in an steplike shape of
the N-group spectrum and might suggest that there exist ad-
ditional substructures in the spectrum, which are not resolved
by the grouping structure proposed in this paper.

C. Lyapunov dimension and extensivity of type I and type II
chimera states

Given the Lyapunov spectra, it is straightforward to com-
pute also the Lyapunov dimension as stated in Eq. (8). The
computed values are shown in Fig. 4(a) and reveal a mono-
tonic increase of DL with system size. Interestingly, the trend
of the type I chimera state (at least for system sizes below
N = 256) is not perfectly linear, but slightly slower. Going
to larger system sizes, however, the deviation from linear
growth decreases, suggesting that the attractor dimension of
the chimera state behaves extensively in the limit N → ∞.
Similarly, the Lyapunov dimension appears to grow slightly
faster than linear for type II chimera states, but growth slows
down when considering larger systems.

The extensive nature of the attractor dimension is further
strengthened by another consideration. Due to identical syn-
chronization of Nsync = N − Ninc oscillators, the system state
x̂(t ) is necessarily confined to a 2(Ninc + 1)-dimensional sub-
space of the 2N-dimensional phase space. From Eqs. (1) and

(2), it is easy to see that oscillators remain synchronized for
all time, once they move in synchrony, so that this subspace
is invariant under the dynamical flow. Although simulations
achieve synchronization only within numerical accuracy, it
thus seems natural to compute the Lyapunov dimension in a
way that excludes directions orthogonal to the synchroniza-
tion manifold. In Sec. IV A, we have seen that these directions
correspond to the cluster integrity exponents CI1 and CI2.
Therefore, removing the 2(Nsync − 1) degenerate exponents
before computing DL results in an effective value of the Lya-
punov dimension, D(eff)

L , which respects the synchronization
pattern. This procedure is equivalent to considering an (Ninc +
1)-oscillator system, in which the synchronized oscillators are
replaced by a single representative and weighted accordingly
before taking averages. When plotting this effective dimen-
sion as a function of the reduced system size (Ninc + 1),
finite-size effects are minimized and the deviations from linear
growth are marginal, as shown in Fig. 4(b). To quantify the
deviation, we presumed a power-law dependence of the form

D(eff)
L = α(Ninc + 1)β ,

and obtained power-law exponents β = 0.96 for the type I
chimera and β = 0.94 for the type II chimera from a log-
log linear fit to the data. Within numerical accuracy, both
exponents are well consistent with an extensive scaling of
the effective Lyapunov dimension, and thus with extensively
chaotic motion of the incoherent oscillators.

D. Localization of covariant Lyapunov vectors

As a last part of the Lyapunov analysis of type I and type
II chimera states, we discuss the localization properties of
the CLVs. Let us first focus on the CLVs corrsponding to
the largest Lyapunov exponents in ensembles of 128 oscilla-
tors. Figure 5 displays distributions of the magnitude of the
components of a typical leading CLV for type I and type II
chimeras. To begin with, it is striking that each distribution
features one bin with a much larger count than all the other
magnitude intervals. This peak arises from the contributions
from the synchronous group which are all identical. Since
the synchronized groups are larger than the incoherent ones,
more than half of the entries of CLVs contribute to those
magnitude bins. Furthermore, the two distributions exhibit
a marked difference: While in the case of type I chimeras
the magnitudes of the entries from the synchronized and
incoherent oscillators are similar, there is a magnitude gap
in the case of type II chimeras, the perturbation acting on
the synchronous oscillators being considerably lower than the
perturbations acting on the incoherent ones. This suggests that
at least for this particular instant in time the perturbations
remain localized within the incoherent group in case of type
II chimeras, whereas type I chimeras exhibit some degree of
intergroup delocalization.

Since the entries of the CLVs strongly fluctuate in time any
further analysis of the existence of collective modes requires
a temporal statistics of appropriate measures. Therefore we
look next at the temporal distributions of the IPR as defined
in Eq. (10). They are displayed for the two types of chimera
states as blue (dark gray) histograms in Fig. 6. Clearly, their
shapes differ drastically: The distribution from the type I dy-
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FIG. 5. Distribution of the magnitude of the entries of the leading
CVL at an arbitray instant in time for type I and type II chimeras
in systems of 128 oscillators. The large peaks marked by arrows
correspond to magnitude intervals which contain the magnitude
entries of the synchronized oscillators.

namics is skewed with the tail toward large IPR values while
the much more compact distribution of the type II chimera has
a tail toward lower values of IPR and is shifted altogether to
larger values. The more compact shape at larger IPR values
points to a larger degree of localization of the CLVs in type
II chimeras than in type I chimeras. This conjecture is backed
up below by the trend of the median IPR with ensemble size.

But before we further discuss the delocalization of the
CLVs within the entire ensemble, it is worthwhile to first con-
centrate on the intergroup delocalization of the perturbations
of the first CVL. The localization indices for the synchro-
nized and incoherent groups, ρsync and ρinc, respectively [see
Eq. (11)], are depicted in Fig. 7 versus time for both chimera
states. In the case of type I chimeras, the localization index
of the synchronized group, although being for nearly all times
smaller 1, varies largely in time and becomes equal to 1 once
in a while. An index of 1 indicates that the perturbations are

spread equally across all oscillators, evidencing a “perfect”
intergroup delocalization. In contrast, ρsync of the type II
chimeras is always negligible, revealing that here the perturba-
tions only affect the oscillators of the incoherent group. Note
that this does not mean that the perturbations are delocalized
within the incoherent group. Whether the perturbations are
delocalized across many oscillators or affect only a few in-
dividual onescan only be judged from the dependence of the
mean or median IPR on the ensemble size N .

It is also instructive to calculate the IPRs for the incoherent
group alone (after normalizing the corresponding vectors to
1). In Fig. 6 the resulting temporal distributions are overlaid
in orange (light gray) to the entire ensemble contributions. In
case of the type I dynamics, the IPR distributions of the entire
ensemble and of the incoherent group differ markedly. The
mode of this distribution obtained without the synchronous
group is shifted to the right and, more importantly, the flank
to smaller IPR values is steeper, as one would expect it for
an intergroup spreading of perturbations. Opposed to this, the
histograms with and without synchronous group of the type
II dynamics are nearly superimposable, evidencing that the
contribution of the synchronous group to the IPR is negligible.

As emphasized above, the dynamics of the incoherent os-
cillators of the type I dynamics projected to the complex plane
appears to be very similar to the stringlike chaotic dynamics
in the same set of equations as studied by Nakagawa and
Kuramoto [12] and Takeuchi et al. [8]. For easy comparison of
the temporal IPR distribution of our type I chimera state with
the one of collective stringlike chaos we plot the histogram
of the incoherent group in a log-log-plot in Fig. 6(c) as it
was done in Fig. 3(c) in Ref. [8]. The close resemblance of
both IPR distributions suggests that the intragroup collective
behavior corresponding to the fastest mode of the incoherent
chimera group is very similar to the corresponding collective
behavior in the stringlike chaotic state. In their study, Takeuchi
et al. could go one step further and investigate the scaling of
the mean IPR with the ensemble size and found that it scales
with N−1. Evidence of the same scaling would underline the
close relation between both incoherent dynamics. However,
the ensemble sizes we could computationally handle were still
too small to allow for the determination of scaling properties.
This task is left for future studies.

Above we discussed that the form of the distributions of
the IPRs of type I and II chimeras pointed to a considerable

FIG. 6. Temporal distributions of the IPRs for type I [(a) and (c)] and type II (b) chimeras of the 128 oscillator ensembles. The blue
(dark gray) IPR distributions were from all entries of the CLV, the orange (light gray) ones from the entries corresponding to the incoherent
oscillators only (which were normalized to 1 before calculating the IPRs).
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FIG. 7. Localization indices for synchronized and incoherent groups as defined in Eq. (11) for type I and type II chimeras of the 128
oscillator ensembles.

delocalization of the perturbations in case of type I but not in
case of type II chimeras. This conjecture can be substantiated
if we consider in analogy to Takeuchi et al. [8] the median
of the temporal distribution as a function of the ensemble
size. (Note that in Ref. [8] the mean value was taken while
we consider for our asymmetric contribution the median the
more appropriate choice.) A decrease of the median IPR
indicates delocalization of the mode, while a value that is
rather insensitive to the ensemble size N indicates localization
of the perturbation. Moreover, as shown in Fig. 8 where the
temporal median IPR of the CLVs is plotted as a function of
the corresponding LEs, the behavior of the median IPR with
system size gives concise information about the delocalization
properties of all relevant CLVs. Note, however, that special
care had to be taken for the cluster integrity exponents CI1

and CI2, as well as for the zero exponents Z. Since all of the
CLVs associated with a degenerate exponent share the same
invariant subspace in tangent space, and due to linearity of
the tangent space dynamics, any linear combination of two
or more CLVs is again a valid CLV with the same expo-
nent. The IPR, however, is intrinsically nonlinear and varies
strongly when performing linear combinations, so that strictly
speaking the IPR cannot be properly defined in degenerate
subspaces. For reasons of clarity, we thus excluded the groups
CI1 and CI2 from the plots. For the zero exponents, especially
for the type II chimera state, we observed a similar effect.
Knowing analytical solutions of the corresponding covariant
Lyapunov vectors, however, we chose one vector to be equal
to the time derivative of the dynamics δxts, another one to
equal the phase-shift direction δxps, and the remaining one
to lie within the zero-subspace, linearly independent of the
former ones.

From the localization spectra, we recognize that the group-
ing of the Lyapunov spectra manifests itself also in the
localization properties of the CLVs. Regarding the type I
spectra in Fig. 8, we observe a notable decrease of the IPR
with increasing system size for the largest few exponents, for
close-to-zero exponents and for some of the smallest expo-
nents. These findings are again consistent with the results of
Takeuchi et al. [8,9], who identified five collective Lyapunov
modes in similar positions for stringlike chaotic states in the
same set of equations. Trivially, the zero exponents, resulting
from time- and phase-shift symmetries, are associated with
delocalized vectors, yielding two neutrally stable collective
Lyapunov modes. Close to zero, however, we observe addi-
tional Lyapunov modes that appear to become increasingly
delocalized with increasing system size and correspond to
both positive and negative near-zero exponents. On the neg-
ative side, we observed already in Fig. 2 the close-to-zero
singleton exponent S1, which possesses analogs also in spectra
for larger system sizes, as visible in Fig. 3 (Type I, P). The
exceptional position of this exponent in the spectra might
indicate correspondence to some collective Lyapunov mode or
to an otherwise special direction in phase space yet to be iden-
tified. Similarly, we observe also a small number of positive
exponents, for which the median IPR appears to decrease with
increasing N . However, these close-to-zero modes are hard
to separate from the zero-subspace because of both, strong
finite-size effects, which were also found by Takeuchi et al.
[8], and the before-mentioned inherent numerical inaccuracies
of close-to-zero exponents and associated BOLVs from QR
decomposition. We thus leave the study of larger systems,
which exceed our current computational facilities, for future
research. Nevertheless, the qualitatively similar pattern of
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FIG. 8. Median localization of covariant Lyapunov vectors.
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Lyapunov spectra and median respectively mean IPRs of the
incoherent group of type I chimera states and stringlike chaos
in ensembles of SL oscillators with linear global coupling
reveals that the synchronized group plays only an inferior role
for the macroscopic chaotic motion of the ensemble although
the delocalization might spread also across the synchronized
oscillators, as discussed above for the fastest collective mode.
Looking at the spectrum of the type II chimera state the picture
is again qualitatively different from the one of type I chimera
states: a notable decrease of the median IPR is visible only
for zero exponents and the ones close-by, cf. Fig. 8 (Type
II). In particular, we note that in the type II spectrum neither
the most positive LE nor the singleton exponent S1 appear
to be associated with a collective Lyapunov mode since their
median IPR decrease only slightly with N . This substantiates
that there are significant differences between the collective
properties of type I and type II chimera states. It is tempting to
conclude that it is the additional constraint on the dynamics of
type II chimeras, the conservation of the mean oscillation (13),
that impedes the formation of fast collective motion. However,
at the current state of analysis this remains a hypothesis. A
starting point for further investigations are type-I-like chimera
states which transiently form also in Stuart-Landau ensembles
subject to nonlinear global coupling [29]. If for some param-
eter values these states can be stabilized or at least pushed
to a “supertransient regime,” a Lyapunov analysis should
reveal whether also then the collective modes are suppressed
or whether the stringlike chaos of the incoherent group is a
signature of its collective dynamics.

V. CONCLUSION

In the present paper, we have investigated Lyapunov spec-
tra and localization properties of the associated CLVs for two
examples of chimera states in systems of globally coupled
amplitude oscillators. We found that for both type I and type
II chimera states the Lyapunov exponents can be subdivided
into four main clusters, containing extensively many LEs, and
a small number of singleton and zero exponents. Two of the
main clusters, CI1 and CI2, are found to consist of degenerate
exponents, which are a result of the synchronization pattern
of the chimera state. The corresponding perturbations affect
the synchronized oscillators only, leading to the name cluster
integrity exponents. A further group contains the positive ex-
ponents and indicates the hyperchaotic nature of the chimera
states. For both type I and type II chimeras, the spectra exhibit
a pronounced dependence on system size. While, for the type
I dynamics, most of the positive LEs decrease with increasing
system size toward a limiting value, the main part of the
positive exponents grows to a limiting value in the case of

type II dynamics. The origin of this difference in behavior has
to be addressed in future research.

Notwithstanding the different trend of the positive LEs of
our two types of chimera states, the Lyapunov dimension of
both dynamics grows extensively with system size. Next to
the standard Lyapunov dimension, computed from the whole
spectrum of LEs, we defined an effective Lyapunov dimension
by neglecting the cluster integrity exponents, which measures
the dimensionality only of the effective dynamics and takes
account for the synchronization pattern. The size dependence
of the effective Lyapunov dimension can be fitted with a
power law, and yields a power-law exponent very close to
unity for both type I and type II dynamics.

An analysis of the localization properties of covariant Lya-
punov vectors for type I and type II chimera states revealed
further differences between the dynamics. While we found
evidence for at least four collective Lyapunov modes being
present in the type I dynamics, two of them being associated
with large positive and negative LEs, the data suggest that
no more than four weak collective modes with LEs zero or
close to zero exist in the type II chimera state. Furthermore, in
type I chimeras the fastest collective mode spreads across both
synchronous and incoherent group. Future research should set
in at this point and provide additional data for larger system
sizes to exclude finite-size effects from the localization spectra
and to determine the exact number of collective Lyapunov
modes for both types of chimera state. Here it would be
of particular interest whether the collective modes form a
subextensive group that grows approximately as O[ln (N )] as
found for stringlike chaos [9].

From a theoretical point of view, it can be expected that
constraints on the system dynamics have a qualitative impact
on tangent-space geometry. It therefore appears promising to
investigate the geometric relation between the collective Lya-
punov modes, for example in terms of angles or correlations
between the vectors. Such a study could reveal information
on the effective degrees of freedom within the ensemble, and
might thus guide a way toward a statistical description of
nonlinear amplitude oscillators subject to global coupling and
constraints. To address this topic, it furthermore appears rea-
sonable to examine in which way the collective modes affect
the oscillator distribution in the complex plane. Solutions to
these problems, however, have to be based on a thorough
statistical analysis of the dynamics and thus require the study
of oscillatory ensembles of much larger size.
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