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The Hamiltonian mean-field (HMF) model describes particles on a ring interacting via a cosine interaction,
or equivalently, rotors coupled by infinite-range XY interactions. Conceived as a generic statistical mechanical
model for long-range interactions such as gravity (of which the cosine is the first Fourier component), it has
recently been used to account for self-organization in experiments on cold atoms with long-range optically
mediated interactions. The significance of the HMF model lies in its ability to capture the universal effects of
long-range interactions and yet be exactly solvable in the canonical ensemble. In this work we consider the
quantum version of the HMF model in one dimension and provide a classification of all possible stationary
solutions of its generalized Gross-Pitaevskii equation (GGPE), which is both nonlinear and nonlocal. The exact
solutions are Mathieu functions that obey a nonlinear relation between the wave function and the depth of the
mean-field potential, and we identify them as bright solitons. Using a Galilean transformation these solutions
can be boosted to finite velocity and are increasingly localized as the mean-field potential becomes deeper. In
contrast to the usual local GPE, the HMF case features a tower of solitons, each with a different number of
nodes. Our results suggest that long-range interactions support solitary waves in a novel manner relative to the
short-range case.
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I. INTRODUCTION

Solitary waves are one of the most distinctive conse-
quences of nonlinearity and result from a balance between
dispersion and nonlinear forces. Their defining property is
shape-preserving (i.e., dispersionless) propagation, as first
noted in 1834 by J. Scott Russell when he observed them
on the Edinburgh and Glasgow Union Canal [1]. The phe-
nomenon has subsequently been extensively studied in clas-
sical hydrodynamics [2–5] and also in light propagating in
optical fibers [6–11] and Bose-Einstein condensates (BECs)
formed in dilute atomic gases. In the latter case, quantum
pressure (quantum zero point motion) provides the stabilizing
dispersion against collapse. Bright [12–17], dark [18–25], and
dark-bright [26,27] varieties of solitary wave have all been
observed in BECs.

In integrable systems solitary waves are guaranteed to
survive collisions with one another, and are then referred to
as solitons, i.e., elastically scattering and shape-preserving
wave packets. Well-known examples occur in the Korteweg-
de Vries equation [28–30], Sine-Gordon equation [28,29,31],
and the nonlinear Schrödinger or Gross-Pitaevskii equation
(GPE) [29,30,32]. The nonlinearity in all these wave equa-
tions appears as a local term that depends only on the wave
function at the same point. For example, the GPE has a
cubic term g�(x, t )|�(x, t )|2 where g parameterizes the sign
and magnitude of the self-coupling. However, there exist
physical systems where long-range interactions (LRIs) lead to
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a nonlocal nonlinearity that can also support solitary waves.
This is the case in nonneutral plasmas [33], where there is a
net Coulomb 1/r interaction, in the Calogero-Sutherland (CS)
model [34–36], where particles interact via a 1/r2 potential,
and in dipolar BECs [37–44], where dipole-dipole interactions
lead to 1/r3 interactions. Nonlocal interactions also occur
in optical systems, such as those mediated by thermal con-
duction [45–49], and their consequences have been observed
experimentally [50,51]. The CS model is integrable and hence
supports true solitons [52–55], whereas nonneutral plasmas
are not integrable systems and only support solitary waves.
Dipolar BECs display an instability where the attractive part
of the interaction can cause the system to collapse [40]; far
from the instability solitary waves are predicted to collide
elastically and thus behave as solitons, whereas close to the
instability the collisions become inelastic due to the emission
of phonons [56]. In the BEC literature it is common not to
distinguish solitons from solitary waves and thus we use the
terms somewhat interchangeably in this paper.

In dipolar BECs solitons are usually analyzed using
a generalized Gross-Pitaevskii equation (GGPE), which is
an integro-differential equation that incorporates the non-
local nonlinearity through a Hartree-type mean-field term
of the form �(x, t )

∫
V (x − x′)|�(x′, t )|2 dx′ [56–61]. This

approach has recently been put on a rigorous mathematical
footing [62,63]; for reviews of nonlocal nonlinear Schrödinger
equations we refer the reader to Refs. [64] and [65]. It has
also been suggested that the Manakov equations [66] (which
describe both two-component BECs [67] and randomly bire-
fringent light in optical fibers [68,69]) can give rise to a so-
called algebraic nonlinearity provided the system is prepared
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with a specific set of initial conditions [70]. Integral terms
can also appear in the equations describing the motion of
vortices in superfluids at finite temperatures; they arise, for
example, from the mutual friction between a solitary wave
along a vortex and its surrounding flow [71].

Another physically important class of nonlocal nonlinear-
ity is found in self-gravitating systems. In particular, compact
yet stable astrophysical objects made of bosons and known
as “Bose stars” have been hypothesized [72,73]. These can be
identified as solitons if the attraction due to gravity is balanced
by quantum pressure [74]. The realization that dark matter
in the universe may be bosonic and cold enough to Bose
condense into such Bose stars has driven considerable interest
in these systems [75–81]. For the most part these studies
use the nonrelativistic Schrödinger-Newton (also known as
the Schrödinger-Poisson) equations [82,83], which result in
a GGPE similar in form to both the GGPE used for dipolar
BECs and also the equation to be studied in this paper. We also
note in passing that laboratory analogues of the Schrödinger-
Newton system have been proposed in the form of atomic
BECs with a 1/r interaction provided by laser-induced dipole-
dipole interactions [84,85].

The focus of the present paper is the Hamiltonian mean-
field (HMF) model [86] which describes N particles of mass
m living on a ring. They have positions θi ∈ (−π, π ], angular
momenta Li, and interact via a pairwise cosine potential of
strength ε giving the Hamiltonian

H =
∑

i

L2
i

2I
+ ε

N

∑
i< j

cos(θi − θ j ), (1)

where I = mR2 is the moment of inertia for a ring of radius R.
Since every particle interacts with every other due to the long-
range nature of the interactions, a factor of 1/N is explicitly
included to make the energy extensive (often termed the Kac
prescription [87]). The cosine potential can be thought of as
the first nonconstant term in a Fourier series expansion of a
gravity- or Coulomb-like 1/r interaction around the ring, but
without the singularity at r = 0 that otherwise complicates
the treatment of such potentials. Another way to view the
HMF model is as a system of N rotors interacting via an
infinite range XY interaction. If ε > 0 the particle interactions
are repulsive at small distances, or equivalently, the rotors
experience an antiferromagnetic coupling and hence prefer
to antialign. If instead ε < 0 the interactions are attractive-
ferromagnetic and the rotors prefer to align. The average mag-
netization of the rotors along an axis specified by its angle ϕ to
the vertical is given by 〈cos(θ − ϕ)〉 = (1/N )

∑
i cos(θi − ϕ),

and this quantity serves as an order parameter for a symmetry-
breaking phase transition (clustering transition) which occurs
in the attractive case at low temperatures [88]. In this paper
we focus on the attractive-ferromagnetic case.

The HMF model was originally written as a toy model,
and its significance lies in the fact that it is simple and yet
able to capture many of the general qualitative properties of
systems with LRI; for reviews see Refs. [88–90]. However,
more recently it was realized that cold atomic gases trapped
in high-finesse optical cavities can directly realize the HMF

model [up to an additional term of the form cos(θi + θ j )] [91].
Here the long-range interactions are electromagnetic in origin
and mediated by optical cavity modes that can extend over the
entire gas. Ongoing experiments [92–97], many with BECs,
have demonstrated symmetry breaking and self-organization
in the atomic density distribution that is described by the HMF
model [91,98–101].

One of the most striking properties of systems with LRI
has long been appreciated by the astrophysics community: the
two-body relaxation time (also known as the Chandrasekhar
relaxation time) to thermodynamic (Boltzmann-Gibbs) equi-
librium, diverges with the number of particles trelax ∼
Ntcross/10 log[N], where tcross is the typical time for a parti-
cle to cross the system [102]. Thus, in the thermodynamic
limit N → ∞ the system never achieves thermodynamic
equilibrium. Nevertheless, when a self-gravitating system is
disturbed from equilibrium the common mean-field potential
that arises from the long-range nature of gravity becomes
time dependent and can drive a rapid, collisionless relaxation
mechanism known as violent relaxation whose timescale does
not depend on the number of particles. This efficiently mixes
phase space [102], but the process is nonergodic and the
resulting quasistationary state is not the equilibrium state
predicted by the microcanonical ensemble. However, coarse
graining of the phase space distribution function by a macro-
scopic observer averages over the increasingly fine structures
that develop during collisionless relaxation and in this way
conventional statistical mechanics approaches can be applied
[90,103–105]. The HMF model has been shown to display
violent relaxation [106–109], as well as other generic con-
sequences of LRI, including spontaneous symmetry breaking
in low dimensions, i.e., the clustering phase transition men-
tioned above (LRI violate the Mermin-Wagner theorem), and
the so-called “core-halo” statistics observed at late times in
gravitational dynamics simulations [90,104,105].

The HMF model can be extended to describe quantum
systems with LRI if we replace the kinetic energy term in
Eq. (1) by its quantum operator − h̄2

2mR2 ∂
2
θi

, and the system is
then equivalent to an infinite range O(2) quantum rotor model
[110–114]. Motivation for studying the quantum problem
comes both from cold atom experiments and the Bose star
picture of dark matter mentioned above. The equilibrium
states of the quantum HMF model have been examined in
Refs. [115,116] and the dynamics, including violent relax-
ation, were recently studied in Ref. [117], where it was found
that the automatic coarse graining of phase space at the level
of Planck’s constant h can strongly modify the relaxation
in the deep quantum regime. Furthermore, in its quantum
form the HMF model bears a resemblance to the CS model
mentioned above, which, when defined on a finite domain
with periodic boundary conditions, has a pairwise interaction
V (θi − θ j ) = 1/ sin2(θi − θ j ). Like the HMF model, the CS
model has a periodic infinite range interaction. This connec-
tion is relevant in the present context because the CS model
supports true solitons. The HMF model is not thought to be
exactly integrable, but intriguingly, classical long-range inter-
acting many-body systems are known to be described (exactly
in the N → ∞ limit [118]) by the Vlasov equation. Vlasov
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dynamics are integrable for a on-dimensional system [119],
such as the HMF model.1 Furthermore, the classical (i.e.,
h̄ → 0) limit of the GGPE corresponds to the “zero-
temperature” limit of the Vlasov equation [108,109,117].
Therefore, although the HMF model is not exactly inte-
grable, its classical dynamics are nearly integrable due to
the structure of the Vlasov equation. We speculate that the
“pseudo-integrability” extends also to the GGPE and may
allow the solitary waves (bright solitons) presented here to
scatter elastically.

Our goal in this work is to study solitary waves in the
quantum HMF model with attractive-ferromagnetic interac-
tions. We focus on the model’s associated GGPE, appropriate
for describing the dynamics of a Bose condensed state (the
HMF model, despite its name, describes a many-body system:
to obtain a GGPE we assume all the particles occupy the
same quantum state). We find that the exact solutions to
this equation are Mathieu functions that satisfy a nonlinear
self-consistency relation. As the interaction strength tends to
infinity the number of these solutions also becomes infinite
and we identify them as bright solitons each with a different
number of nodes. Both the large number of solutions and the
fact they have nodes makes them unusual when compared to
the standard local GPE case [32]. We attribute these differ-
ences to the LRI themselves and hypothesize that this might
be a generic feature.

This paper is organized as follows: In Sec. II we introduce
the GGPE for the HMF model. In Sec. III we show how to
find the full set of exact stationary solutions to the GGPE via
a self-consistent Mathieu equation, and in Sec. IV we boost
these solutions to finite velocity to obtain traveling waves.
In Sec. V we explore the regime in which the solutions can
be considered as bright solitons and discuss the parametric
dependence of the stationary solutions on Planck’s constant.
Next we discuss the asymptotic behavior of these solutions
and derive useful analytic expressions. In Sec. VI we study
their stability at leading order in the strong coupling regime
by linearizing the equations of motion and analyzing the mode
spectrum. Finally, in Sec. VII we summarize our work and
discuss future directions of investigation.

II. GENERALIZED GROSS-PITAEVSKII EQUATION

An atomic BEC with short-range interactions is described
by the standard GPE with a local cubic nonlinearity [121]

ih̄
∂�

∂t
=
[
− h̄2

2m
∇2 + Vext (x) + gN |�|2

]
�, (2)

where N is the number of atoms, �(x, t ) is the condensate
wave function normalized to unity:

∫∞
−∞ |�|2 dx = 1, Vext (x)

is a possible external potential, e.g., a harmonic trap or
periodic optical lattice potential, and the coupling constant
g parameterizes the interatomic interactions (usually of the
van der Waals type). Any stationary solution to this equa-
tion can be found in the usual way by putting �(x, t ) =

1Furthermore, the infinite set of Casimir invariants for the Vlasov
equation can mimic the effects of integrability for higher dimensional
systems with LRI; see, e.g., Ref. [120].

ψ (x) exp[−iμt/h̄], giving

μψ =
[
− h̄2

2m
∇2 + Vext (x) + gN |ψ |2

]
ψ. (3)

If this were a linear Schrödinger equation, the eigenvalue
μ would be the energy E of the state ψ . However, due
to the nonlinearity of the GPE μ is in fact the chemical
potential which is the change in energy associated with adding
a particle to the system: μ = ∂E/∂N [121]. In a waveguide
configuration, where the BEC is tightly trapped in the x and
y directions but untrapped along the z direction, the problem
becomes effectively one-dimensional. Specializing further to
the case of attractive interactions (g < 0), the stationary GPE
has the bright soliton solution

ψ0(z) = ψ0(0)
1

cosh(z/
√

2ξ )
, (4)

where ρ0 = |ψ0(0)|2 is the central density and ξ =
1/

√
2m|g|ρ0 is a characteristic length called the healing length

[121]. In the optical soliton literature this solution is called the
fundamental soliton and the coordinate z is replaced by z − vt
representing a shape-preserving waveform propagating at the
group velocity v (there is also a multiplicative phase factor we
shall not specify here) [11].

By contrast, the LRI in the HMF model lead to a nonlocal
nonlinearity [116,117]. The HMF model lives on a ring so
that the wave function obeys periodic boundary conditions
�(θ, t ) = �(θ + 2π, t ), and it also does not include an ex-
plicit potential Vext (x). Fixing the interactions to be attractive
(i.e., ε < 0), the HMF model’s GGPE can be written in
reduced variables as

iχ
∂�

∂τ
=
[
−χ2

2

∂2

∂θ2
− (θ, τ )

]
�, (5a)

where (θ, τ ) =
∫ π

−π

ρ(θ ′, τ ) cos(θ − θ ′) dθ ′ (5b)

is a nonlocal Hartree potential that depends on the integral
over the angular probability density ρ(θ, τ ) = |�(θ, τ )|2. We

have introduced the quantities τ = t×
√

|ε|
mR2 and χ , the latter

of which plays the role of a dimensionless Planck’s constant:

χ = h̄√
mR2|ε|

. (6)

Note that χ depends on the magnitude of the interaction
strength |ε|.

The seemingly complicated integro-differential equation
given in Eq. (5) can be simplified by expanding the probability
density in its Fourier components ρ(θ ′) = ∑

ρ̂keikθ ′
/2π . We

see that  depends only on ρ̂±1, which we can write in all
generality as ρ̂±1 := M(τ ) exp [∓iϕ(τ )]. From this it follows
that the Hartree potential takes the remarkably simple form

(θ, τ ) = M(τ ) cos[θ − ϕ(τ )]. (7)

The physical significance of this result is that all the individual
two-body XY potentials of the many-body theory are replaced
in the Gross-Pitaevskii theory by a single collective potential
(θ, τ ) which retains the same XY form (a cosine) but breaks
the angular symmetry by picking out a particular direction
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specified by ϕ(τ ) along which the magnetization is M(τ ).
Furthermore, because M(τ ) is the coefficient of the ±1 terms
in the Fourier expansion of the probability density, we can
always project it out from the angular probability distribution
via the integral

M(τ ) =
∫ π

−π

ρ(θ, τ ) cos(θ − ϕ) dθ, (8)

which is the continuous version of the definition of the
magnetization given in the Introduction, M = 〈cos(θ − ϕ)〉 =
(1/N )

∑
i cos(θi − ϕ).

The stationary states �(θ, τ ) = ψ (θ ) exp[−iμτ/χ ] of the
GGPE satisfy the equation

−χ2

2

∂2ψ

∂θ2
+ (−μ − M[ψ] cos θ )ψ = 0, (9)

where we have taken advantage of the fact that in the sta-
tionary case we can define our coordinates such that ϕ = 0.
As for the case of contact interactions, the eigenvalue μ

is not the same as the energy E = 〈ψ |H |ψ〉 of the state
ψ associated with Hamiltonian given in Eq. (1), but is the
chemical potential.

The stationary GGPE given in Eq. (9) has the same form
as the Mathieu equation [122]

∂2w

∂z2
+ [a − 2q cos(2z)]w = 0, (10)

whose solutions are Mathieu functions. These are denoted
cen(z; q) and sen(z; q) and have eigenvalues a = An(q) and
Bn(q), respectively. In general, Mathieu functions also depend
on a second parameter, which physically is the quasimomen-
tum. However, here the quasimomentum is fixed to be zero by
the periodic boundary conditions imposed by the ring.

There is a crucial difference between the standard Mathieu
equation and the GGPE. Whereas the former corresponds
to a linear problem where the “depth parameter” q of the
cosine potential takes a fixed specified value, in our problem
the depth of the cosine potential is the magnetization M[ψ]
which is a functional of the wave function and so depends
on the solution itself. In other words, we have a nonlinear
eigenvalue problem which, remarkably, has eigenvectors that
are Mathieu functions obeying a linear equation but which
must be supplemented by the self-consistency condition

M[ψ] =
∫ π

−π

|ψ (θ ′)|2 cos(θ ′) dθ ′. (11)

We note that this is simply a restatement of Eq. (8) for a
density ρ(θ ) = |ψ (θ )|2 that is independent of time.

An analogous situation occurs in cavity-QED where atoms
are trapped in an optical cavity pumped by a laser [123–128].
The laser light forms a standing (or traveling [129,130]) wave
inside the cavity which the atoms experience as a sinusoidal
potential via the optical dipole interaction. The atoms’ center-
of-mass wave function is therefore also determined by the
Mathieu equation. However, the interaction acts back on the
light which sees the atoms as a refractive medium. This
backaction shifts the cavity’s resonance frequency, and hence
controls the amount of laser light that can enter the cavity, by
an amount that depends on the overlap between the atomic
density distribution and the optical mode. In this way the

atomic density profile affects the depth of the sinusoidal
potential which in turn affects the atomic density profile. The
problem is therefore nonlinear and also leads to a Mathieu
equation with a parameter q that must be determined self-
consistently from the atomic wave function like in Eq. (11).
One effect of this nonlinearity is the appearance of curious
loops in the band structure that are not present in the linear
problem and which can lie in the band gaps [124,131].

Band gap loops also occur in the problem of a BEC in
an optical lattice of fixed depth, i.e., Eq. (2) with Vext (x) =
V0 cos(kx), where the nonlinearity comes purely from inter-
atomic interactions modeled by the cubic nonlinearity. This
situation has been investigated both experimentally [132]
and theoretically [133–138] where it is found that the loops
correspond to two different types of solutions: periodic trains
of solitons, i.e., spatially extended solutions [136,138], and
localized band gap solitons [137]. Despite their localization,
these latter solitons can have one or more nodes. In the HMF
problem we also have a cosine potential but it is limited
to a single period by the periodicity of the ring. This fixes
the quasimomentum to zero and hence collapses the band
structure to the center of the Brillouin zone. Still, we shall
find analogous solutions to localized band gap solitons as will
be described below.

III. SELF-CONSISTENT MATHIEU FUNCTIONS

To convert between the GGPE given in Eq. (9) and the
standard form of the Mathieu equation given in Eq. (10)
we make the identifications2 θ = 2(z + π/2) and ∂2

z = 4∂2
θ .

Multiplying both sides of Eq. (10) by a factor of −χ2/8 we
find

μ = χ2

8
a and M = χ2

4
q. (12)

The solutions we require are the ones that are 2π -periodic in
the angle θ , and these correspond to ce2n and se2n with n � 0
an integer.

To find self-consistent solutions of the GGPE we use the
following algorithm:

(1) We first treat q as a fixed parameter like in the usual
linear theory of Mathieu functions. Taking a given Mathieu
function of fixed n and q (which we denote qn) we compute
M(qn) using Eq. (11) where ψ = cen(z; qn)/

√
π or ψ =

sen+1(z; qn)/
√

π and z = (θ − π )/2.
(2) Next, we obtain χ (qn) by using Eq. (12), which gives

χ (qn) = √
4M(qn)/qn.

(3) The above two steps are repeated a large number of
times for different values of q to obtain a map between χ and
q. This must be done separately for each Mathieu function
(each value of n).

(4) Although we have treated q as a parameter upon which
χ depends, in reality the situation is reversed with qn being
determined self-consistently in terms of χ . We therefore invert
the map χ (qn) to find qn(χ ; ℵ) where we have introduced the

2The shift in coordinates is equivalent to a negative value of q and
accounts for the attractive nature of the interparticle interaction.
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FIG. 1. Self-consistent values of the potential depth, as parame-
terized by q, as a function of χ for the first four stationary solutions:
this plot shows which Mathieu functions satisfy both Eq. (9) and
the self-consistency condition (11). Using Eq. (13) we can then
find explicit expressions for the stationary state ψn(θ ; χ,ℵ). The
parameter ℵ labels the different branches of qn(χ ; ℵ). Note that both
n = 2 and n = 3 have two branches as the function turns back on
itself. This is a generic feature for n � 2.

integer ℵ to label different branches of the function in the case
that χ (qn) is not invertible. The results are shown in Fig. 1.

Noting that Mathieu functions are conventionally normal-
ized on the unit circle such that

∫ |cen(θ )|2dθ = π , and∫ |sen(θ )|2dθ = π , we define our stationary states as

ψn(θ ; χ,ℵ) = 1√
π

{
cen

[
θ−π

2 ; qn(χ ; ℵ)
]

n even

sen+1
[

θ−π
2 ; qn(χ ; ℵ)

]
n odd

(13)

where qn(χ ; ℵ) is obtained via the algorithm outlined above.
In Figs. 2 and 3 we plot some examples of these stationary
solutions for χ = 0.5 and χ = 0.05, respectively, where in the
latter case both branches of solutions exist, so we have chosen
the ℵ = 1 branch. We see that n gives the number of nodes.

According to its definition in Eq. (6), χ decreases as the
magnitude of the (attractive) interaction strength |ε| increases,
and hence the ℵ = 1 branch solutions correspond most natu-
rally to bright solitons: from Fig. 1 we see that as χ decreases
the potential, as parameterized by q, becomes deeper and the
states are more tightly bound as can be seen by comparing
Fig. 2 with 3 (see Sec. V for further justification that these
are really localized solutions). By contrast, the ℵ = 2 branch
corresponds to shallower potentials which vary only slightly
with χ . This branch continuously passes to negative χ (not
shown in Fig. 3) corresponding to repulsive interactions,
which shows that the repulsive HMF model can also support
stationary states; however, we emphasize that these states

�
2 2

1

�
2 2

1

FIG. 2. Plots of the two self-consistent stationary solutions to the
GGPE [Eqs. (5a) and (5b)] that exist at χ = 0.5. They are the n = 0
and n = 1 states, where n gives the number of modes. The solutions
are periodic with period 2π .

�
2 2

1

�
2 2

1

�
2 2

1

�
2 2

1

�
2 2

1

�
2 2

1

FIG. 3. Plots of the first six self-consistent stationary solutions to
the GGPE for χ = 0.05. These solutions all lie on the upper branch
of Fig. 1, i.e., ψn(θ ; χ,ℵ = 1) where n ∈ {0, 1, 2, 3, 4, 5}. Note that
even for moderately small values of χ the first few stationary states
are quite well localized, and upon a Galilean transformation to finite
velocity can be interpreted as solitary wave solutions. All states are
periodic with period 2π .

generally have smaller values of q and are less localized than
their attractive interacting counterparts.

The first two solutions, ψ0 and ψ1, have only a single
branch and are shown in Fig. 2. For weak interactions (χ  1)
ones finds that q is zero so that the self-consistent Hartree
cosine potential is zero. These solutions then correspond to
ordinary sine waves (although, as shown in Fig. 4, for χ >

√
2

the energy eigenvalue or chemical potential corresponding to
ψ0 takes the value μ = 0, and thus this is a trivial solution
corresponding to an infinite wavelength, i.e., a flat density
profile). However, at a critical value of χ , which is different
for each solution, the Hartree potential switches on and the
solutions evolve continuously into Mathieu functions. For
ψ0 this occurs at χ = √

2 [116], and for ψ1 it occurs at
χ = 1/

√
3. The higher solutions behave differently, as can be

seen from Fig. 1. In their case each solution again switches
on below a critical value χ , but q takes on a finite value at
the point each solution appears (and which immediately splits
into two branches).

With the knowledge of the dependence of the qn’s upon χ

depicted in Fig. 1 we can straightforwardly obtain physical
quantities such as the chemical potentials and magnetizations

1

2

Μ0

Μ1

Μ2

Μ3

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Χ

1.0

0.8

0.6

0.4

0.2

0.0

0.2
Μ

FIG. 4. The eigenvalues μ of the GGPE as a function of χ for the
first four stationary solutions. μ0 and μ1 abruptly appear at critical
values of χ = √

2 and χ = 1/
√

3, respectively; for larger values of
χ the self-consistent Hartree cosine potential is zero (i.e., q = 0),
and the solutions ψ0 and ψ1 are ordinary sine waves so we have not
plotted that portion of their eigenvalues. Like in Fig. 1, ℵ = 1 and
ℵ = 2 label the two branches of the higher solutions.
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FIG. 5. The magnetization M as a function of χ for the first four
stationary solutions. With the exception of the two lowest states, the
solutions have two branches labeled by ℵ = 1 and ℵ = 2 like in
the earlier figures. Treating the magnetization as an order parameter
signifying a clustering or ordering phase transition which breaks the
angular symmetry of the system, we see that this transition is second
order (continuous), at least in the lowest two states. The fact that a
phase transition occurs in a 1D system is a special feature of LRI.

of all the stationary states. These are plotted in Figs. 4 and
5, respectively. Each chemical potential μn = ∂En/∂N gives
the change in energy of its respective state En = 〈ψn|H |ψn〉
when a particle is added to the system. From Fig. 4 we
see that the gaps between the different μn vanish linearly
as χ → 0, so that all μn tend to the common value of −1.
However, the rate at which they approach this limit is higher
the higher the state so that the largest gap is between μ0

and μ1.
Although the chemical potential is sensitive to the clus-

tering or ordering phase transition that occurs at the critical
value of χ , it is the magnetization which is usually taken
as the order parameter for the transition [88]. In particular,
examining the behavior of the magnetization M0 of the lowest
state in Fig. 4, we see that when the coupling is weak (χ  1)
the magnetization is zero but at the critical value χ = √

2
it begins to take on finite values indicating a second order
(continuous) phase transition. Similar behavior is found for
M1. However, the behavior of the magnetization of the higher
states is more complicated; nevertheless the ℵ = 1 branches
of these states, which correspond to bright solitons, tend to full
magnetization M = 1 in the strong coupling regime χ � 1.

The results given in this section generalize those obtained
by Chavanis [116] for the ground state of the quantum HMF
model. In particular, the approach described above allows one
to classify all possible stationary states of the GGPE. They
are labeled by their number of nodes n, and their depth pa-
rameter qn(χ ; ℵ). Furthermore, while the approach followed
in Ref. [116] gives an expansion for the small q properties of
the ground state ψ0(θ ; χ ), as well as the leading order result
in the strong-coupling regime χ � 1, the approach followed
here is valid for all values of χ and, upon computation of
qn(χ ), provides an analytic expression for ψn(θ ). The stan-
dard large and small q asymptotics of the Mathieu functions
[122] can then be used to obtain analytic approximations for
qn(χ ; ℵ = 1).

The fact that the GGPE admits a tower of stationary
solutions ψn(θ ; χ,ℵ), each labeled by its number of nodes n

and branch ℵ, is quite distinct from the case of the local GPE
where there is only a single stationary bright soliton solution,
i.e., the nodeless fundamental soliton given in Eq. (4). In par-
ticular, the GGPE’s tower of stationary solutions should not
be confused with the so-called “higher order solitons” found
in the local GPE which can display multiple peaks and nodes
at certain instants of time [6,11,139]. These higher order
solitons are time-dependent combinations of the fundamental
and do not correspond to the individual stationary solutions
we describe above. Indeed, as famously shown by Zakharov
and Shabat [140], the inverse scattering transform method can
be applied to the local GPE and in general gives rise to a
nonlinear superposition of multiple fundamental solitons and
continuous waves (see p. 21 in Ref. [9] and p. 245 in Ref. [11]
for a summary of these results).

IV. BOOSTED SOLUTIONS

The same solutions as already described for the stationary
case can be transformed to traveling waves with velocity v by
performing a Galilean boost:

ψn(θ )e−iμnτ/χ → ψn(θ − vτ )eivθ/χ e−i(μn+v2/2)τ/χ . (14)

In order that these wave functions still satisfy the periodic
boundary conditions we require that v/χ = n with n ∈ Z.
The existence and classification of these wave functions is the
main result of our work. In the next section we will see when
they can be considered to be solitary waves.

V. EMERGENCE OF SOLITONS AT STRONG COUPLING

Having established the existence of nontrivial stationary
and traveling waves we will now argue that the crucial soli-
tonic property of localization emerges in the strong-coupling
regime χ � 1. Finally, we show how in this same limit an
explicit asymptotic series for the depth parameter qn(χ ) can
be obtained.

A. Localization in the strong-coupling regime

In the limit of strong coupling the Hartree mean-field
potential is deep relative to the kinetic energy, and the mag-
netization can be expected to saturate to unity. It then follows
via the relation q = 4M/χ2 that this limit corresponds to large
values of q, and we will see that this is indeed the case.

As q → ∞ the eigenvalues, A and B, of the Mathieu
equation display the well-known asymptotic behavior as a
function of q [122],

An(q)

Bn+1(q)

}
∼ −2q

[
1 − 1√

q
(2n + 1) + O

(
1

q

)]
, (15)

from which we can identify that the low-lying states are bound
within a deep well3 whose minimum is spontaneously chosen

3The spectrum is that of a harmonic oscillator with anharmonic
corrections occurring at O(1/q).
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around the ring. There are two classical turning points:

θ±
turn ∼ ± (4n + 2)1/2

q1/4
+ O

(
1

q1/2

)
. (16)

At distances |θ | � 2θ+
turn the wave function is exponentially

suppressed and consequently the state is localized in a region
around the mean-field potential’s minimum (as can be seen
in Fig. 3). The size of this region shrinks with q and shows
that localized stationary states emerge in the strong-coupling
regime, and, by Galilean invariance, so too do finite-velocity
traveling solitons. Thus, we identify the solutions as solitary
waves because they can be arbitrarily localized and their shape
is determined by a competition between quantum dispersion
and a classical mean-field potential, , which is the source of
the nonlinearity in Eq. (5).

We may quantify the regime in which soliton-like solutions
appear by estimating a critical value q(c)

n above which the sta-
tionary state is sufficiently narrow to be considered localized
relative to the spatial extent of the unit circle. Demanding that
θ+

turn < π/4 implies that for q satisfying

q � qc(n) = 64

π4
(2n + 1)2 ≈ 2

3
(2n + 1)2, (17)

or equivalently4 for χ satisfying

χ � π2/8

2n + 1
≈ 1.23

2n + 1
, (18)

the stationary states discussed above are well localized.
From Eq. (16) we see that for fixed n the stationary states’

widths tends to zero and are localized within an interval
of size �θ ∼ O(1/q1/4) centered about the minimum of the
mean-field potential. This suggests approximating the cosine
potential as a quadratic potential well, and a thorough analysis
reveals that this can be done provided the turning point
structure of the problem is preserved. The stationary solutions
in this regime are parabolic cylinder functions [141–144]:

ψn(θ ; q) ∼
[ √

q

2π (n!)2

]1/4{Dn(ζ ) n even

cos
(

1
2θ
)
Dn(ζ ) n odd

, (19)

where ζ = 2q1/4 sin(θ/2) [see Eqs. (A4) and (A5) for a more
extensive discussion].

B. Magnetization and Hartree potential depth
in the strong coupling regime

We seek to compute the magnetization

M(qn) =
∫ π

−π

dθ |ψn(θ ; q)|2 cos θ (20)

in the strong coupling regime. Expanding the wave function in
terms of parabolic cylinder functions, and changing variables
to ζ = 2q1/4 sin(θ/2), we obtain

M(q) =
∫ 2q1/4

−2q1/4

dζ

q1/4

⎡⎣ 1 − ζ 2

2
√

q√
1 − ζ 2

4
√

q

⎤⎦|ψn(ζ ; q)|2. (21)

4Taking M ∼ O(1) as q → ∞.

A Taylor expansion of (1 − ζ 2

2
√

q )/
√

1 − ζ 2

4
√

q and knowledge

of integrals of the form

I (k)
n,m =

∫ ∞

−∞
dζ Dn(ζ )Dm(ζ )ζ k (22)

allows one to compute asymptotic expressions for the magne-
tization as a function of q, the details of which can be found
in Appendix A. We find

M(qn) ∼ 1 − 1√
q

[
2n + 1

2

]
+ O

(
1

q3/2

)
. (23)

This equation applies to the branches of solutions labeled by
ℵ = 1 in Fig. 1.

With this result we may now compute χn(q) = √
4M/q,

which can subsequently be inverted yielding

qn(χ ; ℵ = 1) ∼ 4

χ2

[
1 − 2n + 1

4
χ − (2n + 1)2

32
χ2

]
, (24)

where, again, ℵ = 1 denotes the branch of qn(χ ) to which our
asymptotic analysis applies.

The above asymptotic analysis is only sensible provided
that χ is sufficiently small such that dispersive effects are
weak relative to the mean-field Hartree potential. Quantita-
tively we require that Eq. (18) is satisfied; for n = 0 and n = 1
this occurs for values of χ � 1.

C. Energy in the strong coupling regime

An analytic expression for the energy of a solitary wave can
also be obtained in the small-χ limit. The energy functional
(i.e., Hamiltonian) for the HMF model is

E =
∫

ψ∗
[
−1

2
χ2∂2

θ

]
ψ dθ − 1

2
M[ψ]2

= μn + 1

2
M[ψn]2, (25)

where in the second equality we have used Eq. (9). The small-
χ behavior of the magnetization M is given by Eqs. (23) and
(24),

M ∼ 1 − 2n + 1

4
χ, (26)

while the chemical potential’s behavior can be found by using
the large-q asymptotics of an ∼ −2q + (4n + 2)

√
q, which,

when written in terms of χ , gives

μn = χ2

8
× an ∼ χ2

2
[−2q(χ ) + (4n + 2)

√
q(χ )]

∼ −1 + 3

4
(2n + 1)χ. (27)

Thus we have

En ∼ −1

2
+ 2n + 1

4
χ, (28)

such that the energy increases linearly with n at leading order
in χ ; a nonperturbative graph of the energy’s n dependence
can be obtained by combining the curves plotted in Figs. 4
and 5.
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VI. LINEAR STABILITY ANALYSIS

In order to understand whether the solitary waves analyzed
in the previous two sections are stable, we study their lin-
earized equations of motion in the soliton’s rest frame. Since
we identify these solutions as being solitary waves in the
limit that χ → 0, and since for n � 2 the solutions exist only
for small values of χ , we restrict our analysis to the ℵ = 1
branch of solutions in the limit that χ → 0 such that a large-q
expansion is justified.

We consider stability of the soliton solutions with respect
to perturbations of the Bogoliubov form

�(θ, τ ) = [ψn(θ ) + δψn(θ, τ )]e−iμτ/χ , (29)

δψn(θ, τ ) =
∑

α

Uα (θ )e−iωατ/χ + V ∗
α (θ )eiω∗

ατ/χ , (30)

which have real frequencies if the unperturbed solution is
stable, and complex frequencies if it is dynamically unstable
[32]. Substituting this ansatz into Eq. (5), working to first
order in Uα and V ∗

α , and collecting terms varying in time
as e−iωατ/χ and eiω∗

ατ/χ , respectively, one finds the following
coupled equations for the normal modes:

ωU (θ ) = (Ĥn − μn)U (θ ) − (θ )ψn(θ ), (31)

−ωV (θ ) = (Ĥn − μn)V (θ ) − (θ )ψn(θ ), (32)

where we have used the reality of the soliton, ψ∗
n = ψn (since

we are in the rest frame of the solitary wave). The subscript α

has been left implicit, Ĥn = − 1
2χ2∂2

θ − M[ψn] cos θ , and we
define the linearized mean-field potential as

(θ ) =
∫ π

−π

[U (θ ′) + V (θ ′)]ψn(θ ′) cos(θ − θ ′) dθ ′. (33)

It is convenient to decompose both U (θ ) and V (θ ) in terms of
the set of Mathieu functions orthogonal to ψn, which we will
denote by {φm}. Note that these solutions are complete and
satisfy the linear equation

Ĥnφm = − 1
2χ2φ′′

m + M[ψn] cos(θ ) φm = λmφm, (34)

where λm is related to the eigenvalue am of Eq. (10) via
λm = χ2am/8 [cf. Eq. (12)]. Importantly, M[ψn] is the mag-
netization induced by the soliton solution ψn and is inde-
pendent of φm. Explicitly, we have U (θ ) = ∑

m umφm(θ ) and
V (θ ) = ∑

m vmφm(θ ) where um and vm are c-numbers and
m �= n. This final condition ensures that our linear operator
is diagonalizable [145].

To find the frequencies {ωα}, we take Eqs. (31) and (32)
and operate on both sides with

∫
dθφm(θ ). By virtue of the

orthogonality relations
∫

φmφ� dθ = δm� and
∫

φmψn dθ = 0,
this projects out the mth element of {φm} and allows us to
express Eq. (31) in terms of the coefficients u� and v� via

ωum = (λm − μn)um −
∑
� �=n

Fm�(u� + v�), (35a)

−ωvm = (λm − μn)vm −
∑
� �=n

Fm�(u� + v�), (35b)

where the quantity Fm� is defined as

Fm� = IC
�,nIC

m,n + IS
�,nIS

m,n, (36)

and where the integrals IC
�,n and IS

�,n are defined in terms of
the mean-field solutions via

IC
m,n =

∫ π

−π

φm(θ )ψn(θ ) cos θ dθ, (37a)

IS
m,n =

∫ π

−π

φm(θ )ψn(θ ) sin θ dθ. (37b)

We may interpret Fm� as a matrix operator acting on the vector
(u + v)� such that the equations can be cast in the form

ωn

(
u
v

)
= 1√

q

(
Dn − Fn −Fn

Fn −(Dn − Fn)

)(
u
v

)
. (38)

Here Dn is a diagonal matrix with Dm,m
n = √

q(λm − μn)
along the diagonal, while the matrix elements of F are re-
lated to those of F via Fm� = √

qFm�. Physically, Dn tells
us whether an orthogonal Mathieu function φm has a larger
or smaller eigenvalue (chemical potential) as compared to
the soliton ψn. The matrix Fn is the mode-to-mode coupling
induced indirectly by the soliton.

Explicit expressions for the matrix elements Fm� and Dm,m
n

can be obtained in the large-q (i.e., small-χ ) regime. As
outlined in Appendix B, by making large-q expansions of the
integrals IC

m,n and IS
m,n, then at O(1/

√
q) only IS

m,n contributes
to Fm� with the explicit (leading order) formula being

IS
m,n ∼ 1

q1/4
(
√

n + 1δm,n+1 + √
nδm,n−1). (39)

Higher order terms connect states with m = n ± 2, m = n ±
3, etc. Likewise, to find the large-q behavior of Dn, we can
use the large-q asymptotic formula for the eigenvalues of the
Mathieu equation [122]:

μn ∼ χ2(qn)

8

{
−2q + 2(2n + 1)

√
q + 1

8
[(2n + 1)2 + 1]

}
,

(40)

λm ∼ χ2(qn)

8

{
−2q + 2(2m + 1)

√
q + 1

8
[(2m + 1]2 + 1)

}
.

(41)

Notice that both λm and μn are multiplied by the same value
of χ2, which corresponds to the soliton’s self-consistent depth
parameter qn. At leading order this implies that Dm,�

n ∼ 2(m −
n)δ�,m, and that all of Fn’s nonvanishing entries are contained
within a 2×2 block composed of �, m = n ± 1 (unless n = 0)
given by (

n
√

n(n + 1)√
n(n + 1) n + 1

)
. (42)

This implies that in the strong-coupling regime the pertur-
bations about the soliton are weakly interacting, with the
exception of the two Mathieu modes whose eigenvalues are
closest to the soliton’s chemical potential. These two modes
actually couple with a strength that is O(n) such that solitons
with a higher number of nodes mediate stronger interactions
than those with fewer nodes. By contrast, if n = 0 (i.e., if
we are perturbing around the lowest energy soliton), then
intermode coupling does not exist at O(1/

√
q) and Fn is

diagonal at leading order, having all vanishing entries except
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for F11
n = 1. We focus now on n � 1 after which we will

return to n = 0 as a special case.
By rewriting Eq. (38) in terms of u + v and u − v, it can be

easily seen that the eigenvalues of the above matrix equation
are determined by the condition that

Det
[
qω2

n1 − (
D2

n − 2FnDn
)] = 0. (43)

The spectrum of D2
n − 2FnDn is the same as that of D2

n except
for the two eigenvalues that are determined (for n � 1) by the
2×2 matrix (

4n + 4 −4
√

n(n + 1)
4
√

n(n + 1) −4n

)
, (44)

whose eigenvalues are independent of n and given by λ1=0
and λ2 = 4. We thereby find that the entire spectrum is
positive, indicating stability, except for one entry which is
marginal at this order, being neither positive nor negative.

To elucidate the stability of the mode corresponding to
λ1 we must calculate subdominant corrections to IS , and
λm − μn. This can be achieved using first-order perturbation
theory for which we need the eigenvector corresponding to λ1

at leading order, which is given by

v1 = (
√

n/(2n + 1),
√

(n + 1)/(2n + 1))T . (45)

If we denote the subdominant corrections as δDn and δFn

(such that Dn → Dn + q−1/2δDn and Fn → Fn + q−1/2δFn)
then, the first-order perturbative correction to the eigenvalue
is given by

λ1 ∼ 1√
q
vT

1 [{Dn, δDn} − 2(δFnDn + FnδDn)]v1, (46)

where the curly braces denote an anticommutator. Using
Eqs. (40) and (41) we find for δDn

δDn =
(

1
4 (10n + 4) 0

0 1
4 (−6 − 10n)

)
. (47)

The relevant matrix elements of F are F�m with �, m = n ± 1
which can be represented as a 2×2 matrix

δF =
(

− 3
4 n2 − 3

8

√
n(n + 1)(2n + 1)

− 3
8

√
n(n + 1)(2n + 1) − 3

4 (1 + n)2

)
(48)

such that

λ1 ∼ 1√
q

× n(1 + n)

2n + 1
for n � 1. (49)

Thus, for n � 1 all of the eigenvalues λ are positive definite,
such that ωm is always real, and the solitons are dynami-
cally stable. The typical frequencies are given by ωm ∼ 2√

q

|m − n| ∼ χ |m − n|, while the smallest frequency is paramet-
rically smaller being given by ω1 = ±√

λ1/q ∼ O(χ3/2).
As mentioned above, the case of the n = 0 is different.

Here the zeroth eigenvector is v1 = (1, 0)T , and it turns out
that its eigenvalue is small λ1 ∼ O(1/q), If we define the
matrix M = D2

n − 2FnDn, then we have that

M =
⎛⎝M11 0 M13

0 M22 0
M31 0 M33

⎞⎠, (50)

where the zeros stem from the fact that IC
0,m = 0 if m is odd.

As we will soon see, M13 and M31 are both O(1/
√

q) while
M33 is O(1), and we can therefore calculate the correction to
λ1 within second-order perturbation theory

λ1 ∼ M11 + M13M31

M11 − M33
+ O(q−3/2) for n = 0. (51)

Explicit formula for M11, M13, and M31 in terms of IS
0,m and

�m = λm − μ0 are given by

M11 = q�2
1 − 2q�1IS

0,1IS
0,1, (52)

M13 = −2q�3IS
0,1IS

0,3, (53)

M31 = −2q�1IS
0,1IS

0,3, (54)

M33 = q�2
3 − 2q�3IS

0,3IS
0,3. (55)

The large q behavior of �m can be found by using Eq. (28.8.1)
of Ref. [122] and the next-to-next-to leading order expression
for χ (qn) given in Eq. (A18). To compute IS

0,m we make use of
Eqs. (28.8.3) to (28.8.7) from [122] at next-to-next-to leading
order accuracy. At the level of accuracy required to compute
λ1 the results are

q1/4IS
0,1 ∼ 1 − 3

8
√

q
− 19

256q
, (56)

q1/4IS
0,3 ∼ −3

√
3/2

8
√

q
, (57)

√
q�1 ∼ 2 − 3

2
√

q
+ 3

16q
, (58)

√
q�3 ∼ 6. (59)

Substituting these expressions into Eqs. (52) to (55) we find

M11 ∼ 13

32q
+ O

(
1

q3/2

)
, (60)

M13 ∼ 9
√

3/2

2
√

q
+ O

(
1

q

)
, (61)

M31 ∼ 3
√

3/2

2
√

q
+ O

(
1

q

)
, (62)

M33 ∼ 36 + O

(
1

q1/2

)
. (63)

Then, using Eq. (51), we arrive at

λ1 ∼ 1

8q
for n = 0. (64)

Thus, the n = 0 soliton is also stable (as it must be since it is
the lowest energy stationary state). Curiously, while all of the
other solitons’ smallest normal mode frequencies are O(χ3/2),
the ground state’s lowest lying normal mode frequency is
actually O(χ2) since ω1 = √

λ1/q ∼ O(χ2).

VII. CONCLUSIONS

We have shown that the GGPE for the HMF model ad-
mits exact solutions in the form of Mathieu functions com-
plemented by a self-consistency condition on the depth of
the Hartree potential they generate. These solutions can be
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boosted to finite speeds (providing the phase associated with
the flow satisfies the periodic boundary conditions). In the
strong coupling regime (χ � 1) the solutions can be arbi-
trarily highly localized, and thus we interpret them as bright
solitons. A linear stability analysis in the same strong coupling
regime shows that they are stable against perturbations when
the interactions are attractive.

The fact that the solutions: (1) arise in a periodic potential,
(2) are localized, and (3) come in towers with increasing
numbers of nodes, means that they have properties in common
with gap solitons [137]. However, the periodic potential in
the HMF case is self-generated, whereas in the standard
gap soliton case the periodic potential is imposed externally.
Furthermore, in contrast to the bright soliton solutions of the
standard GPE which are stabilized by a |ψ |2ψ nonlinearity,
the HMF model’s solitons are stabilized by a nonlocal non-
linearity [ψ](θ ) = M[ψ] cos θ , where the depth is given by
the magnetization M[ψ]; see Eq. (5b).

The approach followed in this work not only allows us to
identify solitary wave solutions, but also to find and classify
all possible stationary states for both attractive and repulsive
interactions at arbitrary coupling strength (we focused on the
attractive case). Furthermore, in the strong coupling limit the
self-consistency condition can be developed analytically in
an asymptotic series so as to provide a completely explicit
analytic solution. Given that exact solutions of nonlinear
models are few and far between, this illustrates once again that
the HMF model is rather special even though it is not thought
to be integrable.

One possible reason for the existence of a richer family
of solutions (i.e., the tower of solutions) in comparison to
the standard short-range attractive system, where the GPE
supports a single nodeless bright soliton [i.e., the fundamental
soliton given in Eq. (4)], is that the self-consistency condition
in the latter case is much more restrictive: both the depth
and shape must match. By contrast, in the HMF case the
mean-field potential is generated by the coherent addition of
the microscopic cosine (XY) interactions and thus inherits a
cosine form where only the depth needs to be self-consistently
determined. We conjecture that this coherent addition across
the sample is a generic feature of LRIs and suggests that such
systems deserve closer examination as a potential setting for
solitons.

An interesting future direction of research would be to
study collisional properties of the bright solitons (solitary
waves) identified in this work and to determine if they are
true solitons (i.e., do they collide elastically). As sketched in
the introduction, systems with LRI can be expected to behave
similarly to integrable systems. A numerical study of soliton
dynamics in the HMF model would be a natural testing ground
for this idea.

Another extension of the present work concerns the quan-
tum phase transition predicted by the HMF model’s GGPE
due to a spontaneous breaking of translational invariance at
the critical value of χ = √

2 [116]. The GGPE does not
include the effects of quantum fluctuations, and these may
inhibit this spontaneous symmetry breaking. However, our
exact solutions can serve as the building blocks of more
sophisticated quantum states that are required for studying the

role of quantum fluctuations. These effects will be discussed
elsewhere [146].

ACKNOWLEDGMENTS

We thank Dmitry Pelinovsky, Robert Dingwall, Wyatt
Kirkby, and Thomas Bland for helpful discussions. This re-
search was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Government
of Ontario. Support is also acknowledged from the Perimeter
Institute for Theoretical Physics. Research at the Perimeter
Institute is supported by the Government of Canada through
the Department of Innovation, Science and Economic Devel-
opment and by the Province of Ontario through the Ministry
of Research and Innovation.

APPENDIX A: ASYMPTOTIC ANALYSIS OF
THE SELF-CONSISTENT MAGNETIZATION

We are interested in calculating the magnetization

Mn(χ ) =
∫ π

−π

dθ |ψn(θ ; χ )|2 cos θ

=
∫ π

−π

dθ |ψn(θ ; χ )|2
(

1 − 2 sin2 θ

2

)
= 1 − 2

∫ π

−π

dθ |ψn(θ ; χ )|2 sin2 θ

2

in the strong coupling regime where χ � 1. We must consider
the cases of n even and n odd separately due to their definition
in terms of either even or odd Mathieu functions, which we
repeat here for convenience:

ψn(θ ; χ,ℵ) = 1√
π

{
cen

[
θ−π

2 ; qn(χ ; ℵ)
]

n even

sen+1
[

θ−π
2 ; qn(χ ; ℵ)

]
n odd.

(A1)

The strong coupling regime is equivalent to q  1 in the
conventional Mathieu equation. When applied to the HMF
model, this means that one can study the regime in which
q  1, compute the magnetization and by extension χ (q) =√

4M(q)/q, and then invert this expression to find how q
depends on χ .

Consequently, it is convenient for computational purposes
to consider q, rather than χ as a fixed parameter, and later
invert the relationship between them as described above.
Integrals such as Eq. (A1) are conveniently analyzed by
transforming to the coordinate ζ = 2q1/4 sin θ

2 ; doing so we
find [as in Eq. (21)]

Mn(q) = 1 − 1

2
√

q

∫ 2q1/4

−2q1/4

dζ

q1/4
|ψn(ζ ; q)|2 ζ 2√

1 − ζ 2

4
√

q

. (A2)

For the purposes of obtaining an asymptotic series in 1/
√

q
we can extend the limits of integration to ±∞,

Mn(q) ∼ 1 − 1

2
√

q

∫ ∞

−∞

dζ

q1/4
|ψn(ζ ; q)|2 ζ 2√

1 − ζ 2

4
√

q

, (A3)

where ∼ denotes an asymptotically small error as q → ∞
[122]. We can then expand the square root in the denominator
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FIG. 6. Comparison of the n = 4 exact solitary wave ψn(θ, q) for
q = 2

3 (2n + 1)2 = 54. LO denotes the leading-order Sips expansion
Eqs. (A4) and (A5), and NLO denotes the approximation including
next-to-leading order terms. As we can see, the Sips expansion
becomes accurate even at only moderately large values of q. For
q = (2n + 1)2 = 81 the exact and NLO curves become virtually
indistinguishable.

in a Taylor series and use the large-q behavior of the stationary
solutions ψn(ζ ; q).

In the limit of large q both cen(z; q) and sen(z; q)
can be expanded in terms of parabolic cylinder functions
[122,141–144]. This is easy to understand, since for n fixed
and q → ∞ the classical turning points coalesce at the min-
imum of the cosine potential. Therefore the states are con-
strained to live arbitrarily close to the potential’s minimum
and a harmonic approximation is justified. To ensure that the
turning point structure is maintained the expansion is carried
out using ξ = 2q1/4 cos z rather than the naive choice of z −
π/2. Explicitly, Sips’s expansion of the Mathieu functions in
terms of parabolic cylinder functions assumes the form [122]

cen(z; q) ∼ Ĉn(q)[Ûn(ξ ; q) + V̂n(ξ ; q)], (A4)

sen−1(z; q) ∼ Ŝn(q) sin(z)[Ûn(ξ ; q) − V̂n(ξ ; q)], (A5)

where Um(ξ ; q) and Vm(ξ ; q) are given at next-to-leading order
[i.e., suppressing terms of O(q)] by

Ûn(ξ ; q) ∼ Dn(ξ ) + 1

64
√

q

[
n!

(n − 4)!
Dn−4(ξ ) − Dn+4(ξ )

]
,

(A6)

V̂n(ξ ; q) ∼ 1

16
√

q
[n(1 − n)Dn−2(ξ ) − Dn+2(ξ )], (A7)

where Dn = Dn(ξ ) are the parabolic cylinder functions of
order n, and the normalization constants are given by

Ĉn(q) ∼
[

π
√

q

2(n!)2

]1/4[
1 + (2n + 1)

8
√

q
+ O

(
1

q

)]−1/2

, (A8)

Ŝn(q) ∼
[

π
√

q

2(n!)2

]1/4[
1 − (2n + 1)

8
√

q
+ O

(
1

q

)]−1/2

. (A9)

The accuracy of the Sips expansion even for relatively modest
values of q is illustrated in Fig. 6.

Since we have a series solution to ψn(ζ ; q) in terms of
parabolic cylinder functions, and we are interested in comput-
ing integrals

∫ |ψn|2ζ kdζ , we ultimately require knowledge
of integrals of the form

I (k)
m,n =

∫ ∞

−∞
Dm(ξ )Dn(ξ )ξ kdξ . (A10)

Then using the recursion relation [144]

I (k)
m,n = I (k−1)

m+1,n + I (k−1)
m,n+1 − (k − 1)I (k−2)

m,n , (A11)

we arrive at the following identities:

I (0)
m,n = n!

√
2π × δm,n, (A12)

I (1)
m,n = n!

√
2π × [(n + 1)δm,n+1 + δm+1,n], (A13)

I (2)
m,n = n!

√
2π × [(n + 2)(n + 1)δm,n+2

+ (2n + 1)δm,n + δm+2,n], (A14)

I (4)
n,n = n!

√
2π × 3(2n2 + 2n + 1). (A15)

Armed with these details, we may now attack the integral
in Eq. (A3). First, we note that by Eq. (A1) that in using
Eqs. (A4) and (A5) we must make the substitution z → (θ +
π )/2, which in turn implies that ξ → ζ = 2q1/4 sin(θ/2) and
sin z → cos(θ/2). Expressing all functions in terms of ζ and
then performing a Taylor expansion yields

Mn(q) ∼ 1 −
∫ ∞

−∞

dζ

q1/4

[
1√
π

]2

[Ûn(ζ ) ± V̂n(ζ )]2

[(
π

√
q

2(n!)2

)1/4
]2(

1 ∓ 2n + 1

8
√

q

)
×
(

1

2
√

q
ζ 2 ± 1

16q
ζ 4

)
, (A16)

where the upper sign corresponds to n even and the lower sign to n odd. Using Eqs. (A12) to (A14), the integral may then be
expressed in terms of I (k)

m,n as

Mn(q) ∼ 1 − 1

n!
√

2π

{
1

2
√

q
I (2)
n,n ± 1

16q

[
I (4)
n,n + n(1 − n)I (2)

n,n−2 − I (2)
n,n+2 − (2n + 1)I (2)

n,n

]}+ O

(
1

q3/2

)
= 1 − 1

2
√

q
[2n + 1] ∓ 1

16q
[3(2n2 + 2n + 1) + n(1 − n) − (n + 1)(n + 2) − (2n + 1)2] + O

(
x

1

q3/2

)
= 1 − 1

2
√

q
[2n + 1] + O

(
1

q3/2

)
. (A17)
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Having obtained the magnetization in terms of the auxiliary
parameter q, we now compute χ (q) and find at next-to-next-to
leading order

χ (qn) =
√

4Mn(q)

q
∼ 2√

q

[
1 − 1√

q

2n + 1

4
− 1

q

(2n + 1)2

32

]
,

(A18)

which may in turn be inverted to find

qn(χ ; ℵ = 1) ∼ 4

χ2

[
1 − 2n + 1

4
χ − (2n + 1)2

32
χ2

]
(A19)

as claimed in the main text. The branch labeled by ℵ = 1 is
the appropriate one since we took the auxiliary variable q to
be large.

APPENDIX B: DEFINITION AND ASYMPTOTICS
OF THE INTEGRALS IC

m,n AND IS
m,n

The following integrals appear in Eq. (36):

IC
m,n =

∫ π

−π

φm(θ )ψn(θ ) cos θ dθ, (B1)

IS
m,n =

∫ π

−π

φm(θ )ψn(θ ) sin θ dθ, (B2)

where ψn is the stationary state [given by a Mathieu function
with depth parameter q(χ )] around which fluctuations take
place, and φm is a Mathieu function orthogonal5 to ψm.

Note that both ψn and ψm, being Mathieu functions, are
strictly even or odd, and so IC

m,n = 0 identically if m + n is
odd, while IS

m,n = 0 identically if m + n is even. We can com-
pute these integrals order-by-order in 1/

√
q by re-expressing

them in terms of ζ = 2q1/4 sin θ
2 . For the sine integral we find

IS
m,n =

∫ 2q1/4

−2q1/4

⎡⎣ dζ

q1/4
(
1 − ζ 2

4
√

q

)
⎤⎦φm(ζ ; q)ψn(ζ ; q)

×
[

ζ

q1/4

√
1 − ζ 2

4
√

q

]
. (B3)

5The functions {ψm} satisify the (rescaled) linear Mathieu equation
− χ2

2 φ′′
m − M[ψn] cos θφm = λmφm.

Next, using the asymptotic formulas for Mathieu functions,
Eqs. (A4) and (A5), and working at leading order in 1/

√
q we

find

IS
m,n ∼

∫ 2q1/4

−2q1/4
dζ

ζ√
q

{
1√
π

[
π

√
q

2(n!)2

]1/4

Dn(ζ )

}

×
{

1√
π

[
π

√
q

2(m!)2

]1/4

Dm(ζ )

}

= 1

q1/4

1√
2πm!n!

I (1)
n,m

= 1

q1/4
[
√

n + 1δm,n+1 + √
nδm+1,n], (B4)

where we have made use of Eq. (A13) to move between the
second and third equalities. For Eq. (48) we require IS

m,n with
m = n ± 1 at next-to-leading order, to calculate δF . These are
given by

IS
n+1,n = q1/4

[√
n + 1 − 3(n + 1)

8
√

q

]
, (B5)

IS
n−1,n = q1/4

[
n − 3n

8
√

q

]
. (B6)

Next, turning our attention to the cosine integral we find

IC
m,n =

∫ 2q1/4

−2q1/4

⎡⎣ dζ

q1/4
(
1 − ζ 2

4
√

q

)
⎤⎦φm(ζ ; q)ψn(ζ ; q)

×
[

1 − ζ 2

2
√

q

]
. (B7)

When re-expressed in terms of parabolic cylinder functions,
we see that the O(1) piece vanishes (

∫
DmDn dζ = 0 for

m �= n), and the remaining integral (
∫

DmDnζ
2/

√
q dζ ) is

O(1/
√

q). This implies that

IC
m,n ∼ O

(
1√
q

)
. (B8)

This is subdominant to the sine integral IS
m,n ∼ O(1/q1/4) and

so can be neglected at leading order as claimed in the main
text.
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