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For waves described by the focusing nonlinear Schrödinger equation (FNLS), we present an effective
dispersion relation (EDR) that arises dynamically from the interplay between the linear dispersion and
the nonlinearity. The form of this EDR is parabolic for a robust family of “generic” FNLS waves and
equals the linear dispersion relation less twice the total wave action of the wave in question multiplied by the
square of the nonlinearity parameter. We derive an approximate form of this EDR explicitly in the limit of small
nonlinearity and confirm it using the wave-number-frequency spectral (WFS) analysis, a Fourier-transform based
method used for determining dispersion relations of observed waves. We also show that it extends to the FNLS
the universal EDR formula for the defocusing Majda-McLaughlin-Tabak (MMT) model of weak turbulence. In
addition, unexpectedly, even for some spatially periodic versions of multisolitonlike waves, the EDR is still a
downward shifted linear-dispersion parabola, but the shift does not have a clear relation to the total wave action.
Using WFS analysis and heuristic derivations, we present examples of parabolic and nonparabolic EDRs for
FNLS waves and also waves for which no EDR exists.
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I. INTRODUCTION

The dynamics of many wavelike systems, even those with
weak nonlinearities, tend to be turbulent and chaotic [1]. How-
ever, when the nonlinearity vanishes, the limiting dynamics
become regular and controlled by the system’s linear disper-
sion relation. This relation singles out a particular temporal
frequency (or a small set of them) corresponding to each
spatial wavelength or, equivalently, the phase velocity with
which waves with that particular wavelength travel [2]. When
a system’s nonlinearity is weak, it is not much of a surprise
that its linear dispersion relation still features prominently in
its dynamics; after all, such a system comprises a collection of
weakly coupled plane waves whose dynamics are governed by
this relation on short timescales and only modulate slowly in
response to the weak nonlinear coupling. There is no reason,
however, that a similar scenario should persist into the regime
of higher nonlinearities. Yet, in some cases, it does persist
in a statistical sense, provided we broaden our concept of
dispersion relation [3–6].

Nonlinear interaction of modes is known to give rise to a
nonlinear frequency shift [1]: rather than being governed by
the linear dispersion relation, the dynamics of a mode with
a particular wavelength (or wave number) at least approxi-
mately oscillate with an effective frequency, which depends on
this mode’s amplitude. A description of this phenomenon at
moderate to strong nonlinearities was provided in Refs. [3,4].
In these works, a renormalized, effective dispersion relation
(EDR) for the β-Fermi-Pasta-Ulam (FPU) chain and its cor-
responding renormalized Hamiltonian were established (see
also [7,8]). In [5], these concepts were extended to the one-
dimensional defocusing Majda-McLaughlin-Tabak (MMT)

model of wave turbulence [9–11]. In both cases, despite
the relatively strong nonlinearity, the respective system was
found to behave statistically as a weakly coupled collection
of linear plane waves, with the dynamical evolution of each
of these waves dominated by a frequency that depended on
its wave number as described by the corresponding EDR.
In [5], the form of the EDR was predicted for long waves
using the Zwanzig-Mori projection formalism, and confirmed
for all wavelengths using the wave-number-frequency spectral
(WFS) analysis. This analysis is a Fourier-transform based
method used to extract dispersion relations from satellite im-
ages of oceanic and atmospheric waves [12–15]. Furthermore,
EDRs were found using the same techniques for two systems
that include no linear dispersion at all: the double-well FPU
chain and the fully nonlinear MMT model [6].

In this paper, we study effective dispersion in a specific
case of the focusing MMT model, namely, the focusing non-
linear Schrödinger equation (FNLS),

iqt = qxx + α2|q|2q. (1)

In addition to being a ubiquitous model of important non-
linear natural phenomena [16–22], the nonlinear Schrödinger
equation stands out from the MMT family because it is com-
pletely integrable and thus has an infinite number of conserved
quantities [23] (see Appendix A). This contrasts with the
general MMT model which only has three [9]. Because the
infinity of conserved quantities strongly restricts the FNLS
dynamics, and also because of the presence of the highly
coherent soliton waves, one might expect that, even in their
most general features, the FNLS dynamics may deviate from
those of the more general MMT-model cases. Nevertheless,
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for the FNLS, as well, we find that a robust family of its waves
obeys the rather universal EDR form directly extended from
the defocusing MMT model [5], and derived in a mathemat-
ically rigorous manner for both the focusing and defocusing
nonlinear Schrödinger equations in a limit of small amplitudes
of the modes [24]. We also find, however, that other FNLS
wave families obey different forms of EDRs, or none at all.

We investigate effective dispersion in a robust family of
FNLS waves on a periodic domain using three different ap-
proaches. First, we exploit the modulational instability of the
FNLS plane and standing waves [25–27]. Under perturbation,
this instability is known to saturate into waves comprising
large collections of nonlinearly interacting modes. Second, we
evolve a spatial “white-noise” initial condition. Finally, we
use a set of overlapping solitonlike, sech-shaped waves as a
yet different initial condition. In all three cases, the resulting
waves are governed by the EDR extended from that of the
defocusing MMT model [5] and of the nonlinear Schrödinger
equation in the limit of small amplitudes of the modes [24]:
the quadratic linear dispersion relation, displaced downward
by twice the product of the total wave action of this wave and
the square of the nonlinearity parameter α. We compute this
EDR numerically using WFS analysis, and also derive it in the
limit of small nonlinearity.

The integrable structure of the FNLS gives us easy access
to coherent structures such as solitons. It is not clear that
waves containing such structures can have associated EDRs,
and, in fact, we find evidence that some do and some do not.
The EDR of a soliton can be derived in closed form, and is
represented by a straight line; WFS analysis confirms that
this EDR remains largely undisturbed for spatially periodic
FNLS waves with solitonlike initial conditions. Surprisingly,
for spatially periodic versions of well-separated multisolitons
with equal amplitudes, the EDR is again parabolic. However,
we find its downward shift from the linear dispersion relation
to differ from that expected from the case of the robust wave
family discussed in the previous paragraph. There also exist,
of course, FNLS waves with no effective dispersion relation,
such as the multi-breather-like waves emerging from specific
sech-like initial conditions [28], as the dynamics of the modes
composing these waves simply do not behave sinusoidally. In
other words, these waves are not families of weakly coupled
plane waves. Finally, we also find combinations of dispersive
waves with coherent structures, which again lack clearly
defined EDRs.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the idea of an EDR, first describing it as
a nonlinear analog to the dispersion relation for autonomous
linear wave systems in Sec. II A, and then describing how
to measure it using WFS analysis in Sec. II B. In Sec. III,
we discuss the EDRs, or the absence of an EDR, for a
number of different families of FNLS waves. In particular,
in Sec. III A, we explicitly derive the EDR in the case of
weak nonlinearity and confirm it for a robust family of waves
generated either from the saturation of weakly perturbed,
modulationally unstable plane waves or from noiselike spatial
initial conditions. In Sec. III B, we find some EDRs for waves
that comprise or contain coherent structures on a spatially pe-
riodic interval, such as a single “soliton”-like wave and well-
separated, equidistant periodic “multisoliton”-like waves. We

also display waves that possess no EDR, and waves containing
coherent structures for which the EDRs have unusual or
ambiguous shapes. We present conclusions in Sec. IV. In
Appendix A, we briefly outline the inverse scattering trans-
form used to find exact solutions of the FNLS equation.
In Appendix B, we give details of the EDR derivation for
weak nonlinearity. In Appendix C we outline the limit of
small amplitudes of the modes. In Appendix D, we review
the modulational instability of plane waves. In Appendix E,
we describe how we generate two types of random initial
conditions for FNLS waves. In Appendix F, we outline the
WFS analysis of the single soliton.

II. EFFECTIVE DISPERSION RELATION

In this section, we describe the concept of an EDR, as
well as a method used to measure it in an observation or a
numerical simulation.

A. Effective dispersion relation as a nonlinear analog of linear
dispersion relation

The dispersion relation in an autonomous linear wave
system relates the spatial wave number k and the temporal fre-
quency ω of the plane-wave modes, e−i(kx−ωt ), that compose
the dynamical states of such a system via linear superposition.
For example, for the linear Schrödinger equation describing
a free particle, iqt = qxx, substituting q ∼ e−i(kx−ωt ) yields
the dispersion relation ω = k2. In this case, since ω(k) is
real-valued for k real, the modes evolve as harmonic waves.
Since ω′′(k) �≡ 0, the evolution of these waves is dispersive
in the sense that different plane waves travel with different
velocities. The corresponding group velocity of wave packets
centered at the wave number k is Vg = ω′(k) = 2k [2].

Since nonlinear waves generally need not evolve as har-
monic superpositions of plane waves, the above linear picture
does not usually apply to them. Nevertheless, weakly nonlin-
ear waves typically act as collections of weakly coupled plane
waves. They evolve approximately according to the dispersion
relation of the limiting linear system on short timescales,
and their amplitudes are modulated by the coupling via the
nonlinearity on long timescales, inversely related to the size
of the nonlinearity.

For highly nonlinear wave systems (such as the FNLS
when the nonlinearity parameter α is large), even the above
weakly nonlinear scenario is implausible. Therefore, in this
case, one must be careful when discussing the possibility of a
dispersion relation at all: Although we can still decompose
nonlinear waves into spatial Fourier modes at any given
moment in time, these modes will not necessarily evolve
periodically in time with any particular frequency, nor will
their dynamics only be weakly coupled. Nevertheless, in a
statistical steady state, certain nonlinear wave systems do
generate dynamics that appear to behave effectively over
long timescales as weakly coupled collections of linear plane
waves, and our work suggests that the FNLS is one of these
systems. Of course, the linear dispersion relations of their lim-
iting weakly nonlinear systems cannot be expected to capture
these dynamics correctly. Instead, for each special nonlinear
wave in such a system, we need to consider a possible EDR
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that includes the contribution of the nonlinearity as well.
Moreover, one cannot expect that any plane-wave modes will
evolve periodically in time even in a system for which an
EDR exists; such a periodic evolution only manifests itself
statistically, on very long timescales, as a dominant temporal
frequency of a given mode’s dynamics. A definition of the
EDR which also serves as a way of measuring it in any wave
system is given next.

B. Measuring effective dispersion relation

Since we are looking for a relation between the spatial
wave numbers and the temporal frequencies, it makes sense to
study the Fourier transform of the wave under investigation in
both space and time. For linear waves, this would lead directly
to the dispersion relation. For nonlinear waves, there need not
exist a dominant temporal frequency ω = ω(k) for a given
wave number k even in a statistical steady state.

The wave-number-frequency spectral (WFS) analysis, an
experimental method typically used to extract dispersion rela-
tions from measured images of water or atmospheric waves
[12–15], can be used to investigate both the existence and
shape of EDRs. This method finds the peak frequency ω of
the power spectral density (PSD) for each wave number k:

ω(k) = arg max
ω

lim
T →∞

1

T

∣∣∣∣
∫ T

0
q̂(k, t )e−iωt dt

∣∣∣∣
2

, (2)

if such a peak exists, where

q̂(k, t ) =
∫ ∞

−∞
q(x, t )e−ikx dx (3)

is the spatial Fourier Transform of the wave q(x, t ). We
will use this method to compute the EDRs of all the waves
simulated numerically in this paper.

We remark that, in practice, the limit in Eq. (2) is ap-
proximated by averaging over a sequence of finite-duration
time windows, ( j − 1)Twin < t < jTwin, with j = 1, . . . , J ,
and some appropriately chosen window length Twin. The for-
mula in Eq. (2) is thus replaced by the approximate equation

ω(k) ≈ arg max
ω

1

JTwin

J∑
j=1

∣∣∣∣
∫ jTwin

( j−1)Twin

q̂(k, t )e−iωt dt

∣∣∣∣
2

. (4)

This approximation can be justified by the fact that the right-
hand-side of the FNLS in Eq. (1) contains no explicit time
dependence and by the ergodic hypothesis, and is employed
to improve the signal-to-noise ratio [29].

III. EFFECTIVE DISPERSION RELATIONS FOR WAVES
OF THE FOCUSING NONLINEAR SCHRÖDINGER

EQUATION

In this section, we present several EDRs for FNLS waves
on a periodic domain, so that the periodic boundary condition,

q(x + L, t ) = q(x, t ), (5)

holds for a fixed period L and for any solution q(x, t ) of
the FNLS model in Eq. (1). We derive EDRs for small
nonlinearities, and confirm their validity for a robust family

of numerically simulated waves using WFS analysis. We also
derive EDRs for periodic versions of solitons and some multi-
solitons, and display some waves for which no unambiguous
EDRs appear to exist.

We simulated FNLS waves numerically using both a
Fourier split-step method [26], which is first-order accurate in
t and accurate to machine error in x [30], and a pseudospec-
tral approach using Fourier transforms to evaluate spatial
derivatives [31] along with classical fourth-order Runge-Kutta
time stepping [32]. The results of these two methods were
indistinguishable for the results of this paper, so the figures
included here were obtained by the split-step method. In all
the figure captions to follow, we denote the total number of
spatial discretization intervals by Nx, their length by �x (=
L/Nx ), and the time step by �t .

A. Effective dispersion relation for a robust family of waves

In this section, we derive an approximate EDR for FNLS
waves in the limit of small nonlinearity, and extend its validity
to arbitrary nonlinearity values within a robust wave family.

1. Effective dispersion relation for weak nonlinearities

For illustration, we first derive an approximate EDR for
weakly nonlinear FNLS waves, i.e., for the case when the
nonlinearity parameter α in Eq. (1) is small. In the next
section, we show numerically that it holds for a robust class
of waves with arbitrary values of α as well.

For α 	 1, an FNLS wave can be expanded as

q(x, t ) =
∞∑

n=−∞
akn (t )e−iknx

=
∞∑

n=−∞
akn (0)

× e−i{knx−[k2
n−α2(2‖aκ (0)‖2

2−|akn (0)|2 )]t} + O(α2), (6)

where kn = 2πn/L is the wave number and

‖aκ (0)‖2
2 = ‖aκ (t )‖2

2 ≡
∞∑

m=−∞

∣∣akm (0)
∣∣2 =

∞∑
m=−∞

∣∣akm (t )
∣∣2

(7)
is the conserved total wave action. (For a derivation, see
Appendix B.) The expansion in Eq. (6) is valid on timescales
of O(α−2), and shows that the mode with the wave number kn

evolves in time with the effective frequency

ω(kn) ≈ k2
n − α2

(
2‖aκ (0)‖2

2 − ∣∣akn (0)
∣∣2

)
. (8)

Note that the mode amplitudes |akn (0)| are conserved on
O(α−2) timescales for small values of the nonlinearity param-
eter α, which is not the case for moderate or large α. (For a
comment on this fact, see Appendix B.)

If all the mode amplitudes in the EDR in Eq. (8) are small
compared to the total wave action, then this approximate EDR
reduces to

ω(k) ≈ k2 − 2α2‖aκ (0)‖2
2 = k2 − 2α2

L

∫ L/2

−L/2
|q(x, 0)|2dx,

(9)
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where

1

L

∫ L/2

−L/2
|q(x, 0)|2dx ≡ 1

L
‖q(x, 0)‖2

2

equals the second moment of the wave profile q(x, 0), and
‖q(x, 0)‖2

2 is the squared L2 norm of this profile. Because the
total wave action ‖aκ (t )‖2

2 = (1/L)‖q(x, t )‖2
2 is conserved in

time, the initial time t = 0 can be replaced by arbitrary time t
in the EDR in Eq. (9).

We remark that the EDR in Eq. (9) is the FNLS analog
of the EDR expression derived in Ref. [5] for the general
defocusing MMT model using the Zwanzig-Mori [33] theory.
This latter derivation is valid for long waves, i.e., small wave
numbers k. The same EDR expression was also derived in
a mathematically rigorous fashion for waves of both the
focusing and defocusing nonlinear Schrödinger equations in
the limit of small amplitudes of the modes [24], which, after
some transforming, can be seen to include the limit of weak
nonlinearity discussed here. Details of the relation between
the two limits are presented in Appendix C.

As we will see next, numerical simulations strongly indi-
cate that the EDR in Eq. (9) in fact holds for all values of the
nonlinearity in a robust class of FNLS waves.

2. Effective dispersion relation for moderate and large
nonlinearities

We sample a robust family of FNLS waves in two different
ways. First, we exploit the modulational-instability saturation
of the FNLS plane and standing waves. Second, we evolve
spatial-white-noise-like initial conditions. Using the WFS
analysis, we numerically compute the EDRs of the resulting
waves. We comment on the robustness of this family at the
end of this section.

A plane wave,

q(x, t ) = Ae−i[γ x−(γ 2−A2α2 )t], (10)

is an exact solution of the FNLS model in Eq. (1), which
exhibits modulational instability [25–27], as discussed in
Appendix D. A special case is the standing wave when γ =
0. As mentioned above, perturbations of the plane waves
in Eq. (10) give rise to a robust class of spatiotemporally
disordered solutions, which we will use to confirm the validity
of the EDR in Eq. (9) for broad ranges of wave numbers and
different values of the nonlinearity parameter α.

When an initial plane wave with amplitude A and nonlin-
earity parameter α is propagated in the spatial interval |x| <

L/2, the number of modes that will experience exponential
growth due to the FNLS modulational instability is 2N + 1,
where N is the largest integer such that

1 � N �
√

2|A|αL

2π
(11)

(see Appendix D). This growth saturates due to the conserva-
tion of the total wave action, typically into a wave disordered
in space and time. When |A|αL is large, we use WFS analysis
to compute that this wave’s EDR is a parabola, which extends
throughout the wave-number range of the associated unstable
modes. This result is illustrated in Figs. 1 and 2, where both
waves were generated from an initial condition of a weakly

perturbed standing wave with amplitude A = 72 on the spatial
domain with L = 2π . We used the initial condition

q0(x) = A

(
1 +

N∑
−N

εne2π inx/L

)
, (12)

where εn are randomly generated from a uniform distribution
on the interval |εn| < 10−4, and where N is as before and in
Eq. (11).

In both Figs. 1 and 2 (and in most other figures), panel (a)
depicts the space-time profiles of the wave, panel (b) depicts
the wave at t = 0 (red) and at a later time (blue) in x space
and panel (c) the same in k space, panel (d) depicts the PSD
dependence on the wave number k and frequency ω, and panel
(e) depicts the EDR obtained using WFS analysis by finding
the peak-frequency ω values for each wave number k of the
PSD in panel (d). Here, all the peaks of the PSD within a given
percentage of the global peak value at every k were marked
with a blue dot. The percentage is selected to maximize
the signal-to-noise ratio in depicting the EDR, and is listed
in each figure caption. The wave in Fig. 1 was computed
with nonlinearity parameter α2 = 1/16, leading to about 50
unstable modes, while the wave in Fig. 2 was computed with
α2 = 256, leading to about 3200 unstable modes. The dots
extending beyond the parabola for large |k| in panel (e) of
both plots are numerical artifacts; in these regions no single
frequency dominates, but the power is also extremely small
[O(10−2) compared with O(102) around k = 0]. In principle,
according to Eq. (2), increasing the computational time T
would yield a smooth parabolic EDR (blue) in panel (e) and
eliminate the noise. What is of particular interest here is
that in both cases (weak and strong nonlinearity), the WFS
analysis produces a parabola—the exact parabola predicted in
Eq. (9)—for which our derivation was only valid for small
nonlinearity α.

An alternative way to find spatially disordered waves is to
consider those that initially appear white-noise-like in space.
(See Appendix E for details.) Such a wave is illustrated in
Fig. 3, where the nonlinearity parameter was α2 = 1/16. The
spatiotemporal profile of the wave in Fig. 3 appears similar
to its counterparts in Figs. 1 and 2, but the distribution of the
mode amplitudes in the wave-number space is significantly
broader. In fact, all the modes in the available (periodic)
range of wave numbers appear to be excited. Nevertheless, the
corresponding EDR is again the parabola predicted in Eq. (9).

We remark that not all the waves discussed in this section
are closely related to the waves in the limit of small nonlin-
earity whose EDR we derived explicitly in Sec III A. In par-
ticular, waves in the limit of small nonlinearity, approximated
by Eq. (6), cannot grow and do not result from any kind of an
instability. If we make the assumption that a linear mode will
become unstable at the latest when its amplitude would trigger
the modulational instability of equal-size traveling wave in
Eq. (10), then we see that for waves approximated by Eq. (6)
to exist in the assumed form, the nonlinearity parameter α

must satisfy the inequalities

α 	
√

2π

L
∣∣akn (0)

∣∣ (13)
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(a)

(d)

(b)

(e)

(c)

FIG. 1. FNLS wave generated from an initial perturbed standing wave with amplitude A = 72, using α2 = 1/16, leading to approximately
50 unstable modes. The computational domain uses L = 2π with Nx = 210, �t = �x2/2π , and a final time T = 6π . (a) Three-dimensional
space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t )|. To avoid diagnosing initial transient,
the wave is depicted from time t = π/2 to t = π . (b) The initial spatial wave profile of a perturbed standing wave in Eq. (12) at t = 0 (red),
and an example of the evolved wave profile at a t = π (blue). (c) The wave-number dependence of the wave’s Fourier amplitude, |q̂(k, t )|
defined in Eq. (3), in logarithmic scale at t = 0 (red) and at t = π (blue). According to Eq. (12), the initial wave-number dependence of the
wave consists of the standing wave at k = 0 and plane-wave perturbations within the k-interval of width

√
2|A|α. [cf. Eq. (11)]. Note that the

initial random perturbation is masked in the logarithmic scale. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand
side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color axis. (e) EDR obtained according to the WFS analysis by finding the
peak frequency ω values for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value
at every k were marked with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red).
Panels (d) and (e) were computed using the argument in Eq. (4) and employed averaging over 24 windows of width Twin = π/4.

for all integer n, which follow from Eq. (11). Nevertheless,
weakly nonlinear waves approximated by Eq. (6) may result
from small spatial white-noise-like initial conditions.

We should also remark that the derivation of the EDR in
Eq. (9), as carried out in Sec III A, should easily generalize
to the defocusing nonlinear Schrödinger model, and even
the defocusing MMT model. This is because waves in these
models do not experience modulational instability [26], and
thus no restrictions on the nonlinearity parameter α of the sort
discussed in the previous paragraph are needed. Nevertheless,
we should recall that, in all cases, the derivation assumes
asymptotically small values of α.

We finally remark that the exact solutions of the FNLS with
periodic boundary conditions are given in terms of Riemann
theta functions associated with Riemann surfaces of arbi-
trarily high and even infinite genus [34,35]. These solutions
can be probed numerically by perturbing plane and standing
waves and exploiting the modulational instability [36–39]. In
this way, using not necessarily infinitesimal perturbations, it
should be possible to access robust solution families of the

FNLS with spatially periodic boundary conditions, although
any rigorous justification of this claim is far beyond the scope
of this paper. We believe the same should hold for spatial
white-noise-like initial waves.

B. Effective dispersion relations for waves containing
coherent structures

FNLS waves on the infinite line can be described exactly
using the inverse scattering transform, and shown to com-
prise solitons and radiation [17,18,20,22,23], with the former
deemed to be coherent structures. Mathematically, solitons
correspond to the (time-conserved) discrete eigenvalues of
the scattering problem associated with the FNLS and the
corresponding norming constants, and the radiation arises
from its continuous spectrum and the corresponding reflection
coefficient. (Details are reviewed in Appendix A.)

In this section, we consider several (multi)solitonlike
FNLS waves, and other FNLS waves containing or com-
prising coherent structures, on periodic domains. For a
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(c)

(b)

(d) (e)(d)(d)

FIG. 2. FNLS wave generated from an initial perturbed standing wave with amplitude A = 72, using α2 = 256, leading to approximately
3200 unstable modes. The computational domain uses L = 2π with Nx = 216, �t = �x2/2π , and a final time T = 3π/211. (a) Three-
dimensional space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t )|. To avoid diagnosing
initial transient, the wave is depicted from time t = π/216 to t = π/215. Note that in this figure, the spatial domain has been restricted to
x ∈ [−π,−7π/8] to more clearly indicate the increased density of wave crests, in comparison with Fig. 1(a). (b) The initial spatial wave profile
of a perturbed standing wave in Eq. (12) at t = 0 (red), and an example of the evolved wave profile at a t = π/212 (blue). (c) The wave-number
dependence of the wave’s Fourier amplitude |q̂(k, t )|, defined in Eq. (3), in logarithmic scale at t = 0 (red) and at t = π/212 (blue). According
to Eq. (12), the initial wave-number dependence of the wave consists of the standing wave at k = 0 and plane-wave perturbations within the
k-interval of width

√
2|A|α. [cf. Eq. (11).] Note that the initial random perturbation is masked in the logarithmic scale. (d) The spatiotemporal

PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color axis. (e) EDR
obtained according to the WFS analysis by finding the peak frequency ω values for each wave number k of the PSD in panel (d). Here, all the
peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting EDR (blue) is compared with the
theoretically predicted parabolic EDR in Eq. (9) (red). Panels (d) and (e) were computed using the argument in Eq. (4) and employed averaging
over 24 windows of width Twin = π/214.

single-soliton-like wave, we find a straight-line EDR. For
one multisoliton family, we find an EDR that is again a
shifted quadratic parabola. We also display multisolitonlike
waves that clearly possess no EDR. Finally, we discuss waves
containing coherent structures for which the existence of an
EDR is ambiguous.

1. Effective dispersion relation of a single “soliton”

A single FNLS soliton is described by the formula

q(x, t ) =
√

2A

α
ei[(V 2−A2 )t−V x+ψ] sech [A(x − 2V t − δ)],

(14)
and corresponds to a single eigenvalue

ζ = V + iA

2
(15)

of the scattering problem associated with the FNLS, described
in Appendix A. Carrying out the WFS method in Eq. (2) ex-
plicitly on this soliton by taking both its spatial and temporal
Fourier transforms results in the expression for the PSD under
the limit in Eq. (2) being equal to

PSD(k) = 2π2

α2T
sech2 π (V + k)

A

sin2[((k) + ω)T/2]

((k) + ω)2/4
,

(16)
where

(k) = A2 + V 2 + 2V k. (17)

(Details are given in Appendix F.) For a given wave number
k and any final time T , this expression is clearly the largest
when the frequency satisfies the equation ω = −(k), which
gives the straight-line EDR

ω(k) = −(A2 + V 2) − 2V k. (18)
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(a) (b)

(d) (e)

(c)

FIG. 3. FNLS wave generated from an initial condition of spatial “white noise.” The nonlinearity parameter is α2 = 1/16, the compu-
tational domain uses L = 2π , Nx = 212, �t = �x2/2π , and a final time T = π/4. (a) Three-dimensional space-time profile of the wave at
constant-time slices, where color indicates the wave amplitude |q(x, t )|. The wave is depicted from time t = π/8 to t = π/4. (b) The initial
spatial wave profile of “white noise” at t = 0, generated as described in Appendix E. (c) The wave-number dependence of the wave’s Fourier
amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. Note that neither the spatial profile or Fourier spectrum of the evolved wave are shown since
they appear similar to the initial profile (in contrast to Figs. 1 and 2). (d) The spatiotemporal PSD of the wave, i.e., the argument on the
right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color axis. (e) EDR obtained according to the WFS analysis by
finding the peak frequency ω values for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global
peak value at every k were marked with a blue dot. The theoretically predicted parabolic EDR in Eq. (9) is nearly indistinguishable from the
observed EDR for this case. Panels (d) and (e) were computed using the argument in Eq. (4) and employed averaging over 4 windows of width
Twin = π/16.

When we numerically evolve an initial condition of a
single-soliton-like wave in Eq. (14), restricted to the spa-
tial interval −L/2 < x < L/2, the pulse travels at first like
the soliton, until it reaches an end of the spatial interval
at x = L/2 or x = −L/2, and then the numerical solution
reappears at the opposite end to continue propagation. This
is illustrated in Fig. 4, where A = 32, V = 2, δ = ψ = 0, and
nonlinearity parameter α = 1. A fit to the bright line in the
results of the WFS method in Eq. (2), displayed Fig. 4(b),
indicates the straight-line EDR ω(k) = −4k − 1028, which
is exactly the line in Eq. (18) with A = 32 and V = 2. In
Fig. 4(c), the two lines appear to be indistinguishable.

Features that do not directly pertain to the EDR also appear
in the spectrum of the numerical solution [Fig. 4(b)]. For
example, one can observe faint parabolalike curves in addition
to the straight line. All these features repeat periodically in
ω, and only a single period is plotted. (The periodicity in ω

is an artifact of the temporal Discrete Fourier Transform.)
In this example, when |k| is small, the parabolalike curve
approaches the true parabola ω = k2. However, when |k| is
large, this curve approaches the true parabola ω = k2 − 40.63,

which exactly corresponds to Eq. (9): 2α2‖aκ (0)‖2
2 = 40.66.

This parabolalike curve in Fig. 4(b) is present because of the
boundary effects affecting the “soliton” wave and corresponds
to parts of the wave that are radiationlike.

2. Waves without effective dispersion relation

Not every FNLS wave has an EDR associated with it.
For special amplitude values of a single, stationary, sech-like
pulse initial condition, the resulting “breather”-type waves do
not have an EDR. For some other multisoliton-type waves,
WFS analysis also results in collections of curves that clearly
indicate the absence of an EDR.

As one example, alluded to in the preceding paragraph, we
look at the FNLS wave satisfying the initial condition

q(x, 0) =
√

2AM

α
sech(Ax). (19)

As shown in Ref. [28], for positive-integer values of the pa-
rameter M, this wave comprises M solitons and no radiation,
with each soliton corresponding to one of the M distinct
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(a)
(b) (c)

FIG. 4. Single “soliton” wave of Eq. (14), with parameters: A = 32, V = 2, δ = 0, ψ = 0, and α = 1. The computational domain was
L = 2π with Nx = 29, �t = �x2/2π , and final time T = π/2. (a) Color contour plot of the wave where the color indicates the magnitude of
the wave amplitude |q(x, t )|. (b) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS
analysis, plotted using a logarithmic color scale. (c) EDR obtained according to the WFS analysis by finding the peak frequency ω values for
each wave number k of the PSD in panel (b). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with
a blue dot. A least-square fit line to this data is ω = −4k − 1028, which corresponds to the expected EDR from Eq. (18). Note that the PSD
along the faint parabola visible in panel (b) is four orders of magnitude smaller that that along the line near k = 0. Panels (b) and (c) were
computed using the argument in Eq. (4) over a single time window of length Twin = T .

eigenvalues ζ j = iA( j − 1/2), j = 1, 2, . . . , M, of the scat-
tering problem associated with the FNLS. This wave is called
a multi-“breather,” and changes its shape periodically in time
but remains centered about the origin [28], as displayed in
Fig. 5(a). The fact that this wave remains in the same location
can also be gleaned from Eqs. (14) and (15) and the fact that
the eigenvalues ζ j are pure imaginary, from which one can see
that its constituent solitons have vanishing velocities.

For the single soliton in Eq. (14), we could write the
EDR in Eq. (18) in terms of the corresponding discrete
eigenvalue ζ = (V + iA)/2 in Eq. (15) as ω(k) = −|2ζ |2 −
2(ζ + ζ ∗)k. This form of the EDR would suggest that in
the WFS analysis of the M-soliton wave emerging from the
initial wave in Eq. (19), we might see M horizontal lines
corresponding to the frequencies ω j = −[2A( j − 1/2)]2. In-
deed, when A = 4 and M = 4, as shown in Fig. 5, we see
ω = −16,−144,−400,−784 (though in this case we also
see many other multiples of 128 away from −16, which may
be harmonics). In this case, we cannot find a single-valued
function ω(k) signifying a dominant effective frequency for
any given mode in the respective waves. Clearly, these waves

are composed of modes whose temporal harmonics appear to
be as prominent as their fundamental frequencies, and so they
do not undergo time-harmonic motion.

More generally, the computation of even just the initial
conditions for exact multisoliton waves becomes increasingly
poorly conditioned with the increasing number of solitons
[40]. Alternatively, however, if the pulses are sufficiently far
apart at t = 0, a sum of single-soliton-like pulses provides
a reasonable approximation to such an initial wave when
propagated numerically in time. Typically, the pulses seem to
each contribute a linear piece to the wave-number-dependent
PSD, reminiscent of the lines we would expect from the
individual pulses in Eq. (18), as is illustrated in Fig. 6. Again,
we see that the collection of waves depicted in this figure does
not have a well-defined associated EDR.

3. Effective dispersion relations of special multisolitonlike waves

From the discussion at the end of the previous section,
at first, it may seem unlikely that any multisolitonlike peri-
odic wave could generate a parabolic EDR, since the lines

(a) (b) (c)

FIG. 5. Multi-“breather”-type wave generated from Eq. (19) with M = 4, A = 4, and α = 1. The computational domain was L = 2π , with
Nx = 212, �t = �x2/2π , and a final time T = π/2. (a) Surface plot of the wave, displayed here at an angle to more clearly highlight the
behavior of the breather, with color indicating the magnitude of the wave amplitude |q(x, t )|. (b) The spatiotemporal PSD of the wave, i.e., the
argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted using a logarithmic color scale. (c) Peak-frequency ω values for
each wave number k of the PSD in panel (b). Here, all the peaks of the PSD within 90% of the global peak value at every k were marked with
a blue dot. These peaks (blue) are compared with the relevant theoretically predicted parabolic EDR in Eq. (9) (red). Panels (b) and (c) were
computed using the argument in Eq. (4) and employed averaging over 4 windows of width Twin = π/8.
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(a) (b) (c)

FIG. 6. FNLS wave consisting of five distinct pulses, with parameters (A,V, δ) = (20,−4, −π/2), (24, 5, −π/4), (16, 16, 0),
(32,−2, π/4), (28, −8, π/2), and with α = 1. The computational domain was L = 2π with Nx = 211, �t = �x2/2π , and a final time T = π .
(a) Color contour plot of the solution with color indicating the magnitude of the wave amplitude |q(x, t )|. (b) The spatiotemporal PSD of the
wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (c) Peak-frequency
ω values for each wave number k of the PSD in panel (b). In contrast to previous examples, here we have used a blue dot to mark each peak
of the PSD which is at least 10 times as high as its nearest local minimum value at every k. This is done so that all five pulses are diagnosed.
In this example, the pulses, respectively, each contribute a line to the spectrum, where fitting these lines to ω = −(A2 + V 2) − 2V k result in
(A,V ) = (20.06, −3.92), (24.02, 5.004), (16.42, 16.26), (31.98, −2), (27.99, −8.005), respectively. Panels (b) and (c) were computed using
the argument Eq. (4) and employed averaging over 8 windows of width Twin = π/8.

corresponding to its individual constituent solitonlike pulses
appear quite robust. Yet we can construct multisolitonlike,
spatially periodic FNLS waves that do have parabolic EDRs.

In particular, if we take a number of single-soliton-like pulses,
initially spaced sufficiently far apart, and restrict them to all
have the same peak amplitude A, while their velocities are

(a) (b)

(d) (e)

(c)

FIG. 7. FNLS wave consisting of 15 pulses, which are evenly distributed and well-separated across the spatial domain, as well as widely
distributed in wave-number space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α = √

2A, δ j =
±13L j/210, V� = ±32�. Pulse velocities were sorted randomly so Vj need not correspond to δ j . The computational domain was L = 8π with
Nx = 212, �t = �x2/2π , and a final time T = π . (a) Three-dimensional space-time profile of the wave at constant-time slices, where color
indicates the wave amplitude |q(x, t )|. (b) The initial spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s Fourier
amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2),
used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency
ω values for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were
marked with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). Panels (d) and
(e) were computed using the argument in Eq. (4) and employed averaging over 4 windows of width Twin = π/4.
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(a) (b)

(d) (e)

(c)

FIG. 8. FNLS wave consisting of 15 pulses, which are evenly distributed and well-separated across the spatial domain, but now narrowly
distributed in wave-number space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α = √

2A, δ j =
±13L j/210, V� = ±2�. Pulse velocities were sorted randomly so Vj need not correspond to δ j . The computational domain was L = 8π with
Nx = 212, �t = �x2/2π , and a final time T = π . (a) Three-dimensional space-time profile of the wave at constant-time slices, where color
indicates the wave amplitude |q(x, t )|. Notice the difference in timescales between panel (a) of this figure and panel (a) of Fig. 7. (b) The initial
spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s Fourier amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The
spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color
scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each wave number k of the PSD in panel
(d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting EDR (blue) is
compared with the theoretically predicted parabolic EDR in Eq. (9) (red). Panels (d) and (e) were computed using the argument in Eq. (4) and
employed averaging over 4 windows of width Twin = π/4.

picked randomly from the uniform distribution on a chosen
interval, the EDR lines of these pulses are in fact tangent to a
parabola, and their PSDs have their highest intensities at the
points of tangency.

To explain the claim made in the previous paragraph, we
notice that a straight-line EDR of a single FNLS soliton with
amplitude A and velocity 2V , given by ω(k) = −(A2 + V 2) −
2V k in Eq. (18), is tangent to a parabola ω(k) = k2 − C
precisely when C = A2, and tangency occurs at k = −V .
Moreover, for this soliton, the PSD in Eq. (16) along the
straight line EDR in Eq. (18) has sech-like intensity, centered
at k = −V , i.e., at the tangency point between this line and
the parabola k2 − A2.

Now, consider an initial group of N solitonlike pulses, all
with the same peak amplitude A, equally spaced far enough
from one-another so that they do not overlap and can thus
evolve as a multisolitonlike wave. Let their velocities 2Vj ,
j = 1, . . . N , also be equally spaced over the interval −V0 <

Vj < V0, but assigned randomly to different pulse locations.
Then, the EDR of the resulting wave comprises a collection
of segments of the straight lines ω j (k) = −(A2 + V 2

j ) − 2Vjk,
centered around k = −Vj , for j = 1, . . . , N , which are all

tangent to the parabola k2 − A2. In other words, this parabola
is their envelope. For large N , the lengths of the segments
shrink, and their parabolic envelope thus becomes indistin-
guishable from the EDR of the corresponding multisoliton
solution, i.e., this EDR becomes

ω(k) = k2 − A2. (20)

Therefore, in this case, the EDR is indeed again a parabola,
but now k2 shifted downward by the square of the common
peak amplitude of the wave’s constituent solitonlike pulses.

Two different examples of such EDRs are illustrated in
Figs. 7 and 8. In both cases, we use an initial condition of
15 spatially distinct pulses, all with the same peak ampli-
tude parameter A = 32. Both spectra indicate straight lines
corresponding to each pulse, with each line accurately corre-
sponding to the appropriate EDR in Eq. (18). Clear parabolas
are emerging as envelopes of these lines in each case. Note
that neither of these is, however, the parabola of Eq. (9),
since the corresponding waves are well approximated by
multisolitonlike pulses. Instead, the EDRs of these waves are
described by Eq. (20), as discussed in the previous paragraph.
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(a) (b)

(d)

(c)

(e)

FIG. 9. FNLS wave consisting of 15 pulses, which are evenly distributed and narrowly separated across the spatial domain, but widely
distributed in wave-number space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α = √

2A, δ j =
±13L j/210, V� = ±256�. Pulse velocities were sorted randomly so Vj need not correspond to δ j . The computational domain was L = π/4
with Nx = 210, �t = �x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where
color indicates the wave amplitude |q(x, t )|. (b) The initial spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s
Fourier amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of
Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak
frequency ω values for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every
k were marked with a blue dot. Individual lines contained in the blue data were fit to equations of the type ω(k) = ω j,0 − 2Ṽjk using least
squares. A least-squares fit to the tangency points (k j = −Ṽj, ω j = ω j,0 + 2Ṽ 2

j ), as discussed in the text in Sec. III B 3, yields the parabolic
EDR fit ω = k2 − 5521, which is compared with the theoretically predicted parabolic EDR in Eq. (9) ω = k2 − 4857 (shown in red). These
two curves are indistinguishable on the scale of the plots in panels (d) and (e). See discussion in Sec. III B 3 for additional comments about
panel (e). Panels (d) and (e) were computed using the argument in Eq. (4) and employed averaging over 4 windows of width Twin = π/64.

In Fig. 7, the constituent pulses’ velocities 2Vj are distributed
over a wide interval, so that the their corresponding straight-
line EDRs in Eq. (18) are tangent to the parabolic EDR in
Eq. (20) over a wide interval of wave numbers k. In Fig. 8,
the pulses have a smaller range of values for the velocities
2Vj , and so the tangencies of their straight-line EDRs to the
parabola in Eq. (20) take place over a narrower range of wave
numbers k. Note that the waves in Figs. 7 and 8 are very
similar in appearance; however, note also that they evolve
on quite different timescales due to their disparate velocity
ranges.

We should remark that, in contrast to Figs. 7 and 8,
where the initial pulses were sufficiently separated in space,
when we choose the opposite extreme of overlapping initial
pulses, a significant amount of radiationlike behavior is intro-
duced because this initial profile is merely a sum of single-
solitonlike pulses rather than a true exact multisolitonlike

shape. Two different examples of this scenario are illustrated
in Figs. 9 and 10. Again, in both cases we use an initial con-
dition of 15 pulses, with the same peak amplitude parameter
A = 32, but here the x-interval is a fraction of what it was in
Figs. 7 and 8. Again, in Fig. 9, the pulses have a wide range
of velocities 2V and in Fig. 10, the range for V is small.

With the wide range of values for V in Fig. 9, the spectrum
indicates line segments that are distinct in wave number k,
similar to the case shown in Fig. 7. However, these segments
no longer correspond to the pulse parameters according to
Eq. (18). Instead, as seen from panel (e) of Fig. 9, the seg-
ments are shifted vertically so as to be tangent to the parabola
of Eq. (9), evidently because of the “radiation” introduced in
the overlap between the initial pulses. In particular, they have
the correct V , the slope that corresponds to the velocity of the
pulse, but different A, the vertical intercept that corresponds
to the amplitude of the pulse. With a smaller range of V
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(a) (b)

(c)

(d) (e)

FIG. 10. FNLS wave consisting of 15 pulses, which are evenly distributed and narrowly separated across the spatial domain, and also
narrowly distributed in wave-number space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α = √

2A,
δ j = ±13L j/210, V� = ±32�. Pulse velocities were sorted randomly so Vj need not correspond to δ j . The computational domain was L = π/4
with Nx = 210, �t = �x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where
color indicates the wave amplitude |q(x, t )|. (b) The initial spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s
Fourier amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of
Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak
frequency ω values for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every
k were marked with a blue dot. A least-squares fit to the blue data yields ω = k2 − 5227, which is compared with the theoretically predicted
parabolic EDR in Eq. (9) ω = k2 − 4762 (red). These two curves are indistinguishable on the scale of the plots in panels (d) and (e). Panels
(d) and (e) were computed using the argument in Eq. (4) and employed averaging over 4 windows of width Twin = π/64.

shown in Fig. 10, we do not even see the EDR lines of the
initial pulses any more; all that remains is the parabola of
Eq. (9), likely because the wave now appears to be dominated
by “radiation.” This scenario is also reflected in Figs. 9(a)
and 10(a): the wave depicted in Fig. 9 still contains traces of
the initial pulses, whereas the initial pulses in Fig. 10 have
all but disappeared in a sea of what looks like dispersive
ripples.

Waves that evolve from overlapping initial pulses, such as
those discussed in the preceding two paragraphs, thus appear
to belong to the robust family of waves studied in Sec. III A 2,
or at least exhibit the same EDRs as waves that belong to this
family. The two examples discussed in these two paragraphs
also suggest that waves in that robust family can be thought
of as dominated by “radiation,” or at least as containing a
substantial “radiation” component.

4. Waves and coherent structures with ambiguous EDRs

One last type of waves for which we seek an EDR com-
prises one or more coherent structures riding on top of a set of

dispersive waves. For the first such wave, we choose the initial
wave form composed of equidistant but overlapping soliton-
shaped pulses shown in Fig. 9, and superimpose a soliton-
shaped wave on top of it that is four times taller and narrower
than the rest of the pulses. A tall coherent structure, traces
of smaller pulses, and dispersive radiation waves are clearly
visible in the resulting evolution. In the corresponding mode-
dependent PSD of Fig. 11, a parabola satisfying Eq. (9) can be
seen; however, its intensity is not uniform, and many straight
lines are also present. The dominating straight line has the
slope V corresponding to the superimposed narrow soliton-
shaped pulse, but its intercept A is shifted. The parabola is
also shifted slightly from the position described by Eq. (9).
Both these curves appear to be moved due to the interaction
of the pulse with the radiation components and possibly the
smaller pulses contained in the wave. No single pronounced
maximum of the PSD emerges for many wave numbers k, and
so there appears to be no EDR. However, if we nonetheless
take the location of the largest value of the PSD for each
wave number k, then an EDR composed of straight-line and
parabolic segments would emerge.

022215-12



EFFECTIVE DISPERSION IN THE FOCUSING … PHYSICAL REVIEW E 100, 022215 (2019)

(a) (b)

(c)

(d) (e)

FIG. 11. FNLS wave generated from an initial condition of 15 equal size, identically spaced solitonlike pulses plus one tall, narrow
solitonlike pulse. The parameters of the 15 pulses are the same as those used to compute Fig. 9. The additional pulse has the form given in
Eq. (14), with parameters A = 128, ψ = 0, α = 32

√
2, δ = ±13π/1680, V = 128. The computational domain was L = π/4 with Nx = 210,

�t = �x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where color indicates
the wave amplitude |q(x, t )|. (b) The initial spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s Fourier amplitude
|q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the
WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values
for each wave number k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked
with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). The EDR predicted by
Eq. (9) is ω = k2 − 6189. The least-squares parabolic fit for small k, not including the line segments, gives the EDR of ω = k2 − 8205. The
parabolic fit for large k [of the periodically repeated parabola pieces on either side of panels (d) and (e)] gives EDR of ω = k2 − 8740. The fit
for the dominant straight line, using all three line segments in the blue data, gives A = 147 and V = 128 in Eq. (18). Panels (d) and (e) were
computed using the argument in Eq. (4) and employed averaging over 4 windows of width Twin = π/64.

Finally, we look at a wave evolved from an initial con-
dition of a periodic, spatial random-walk-like wave form.
(See Appendix E.) The amplitude values of the initial condi-
tion in different subregions of the interval |x| < L/2 dictate
how many modes in that subregion become unstable, and
the change of phase dictates the velocities of these unstable
modes. This random initial wave evolves into a maze of
meandering coherent structures, as seen in Fig. 12. The PSD
computed for the WFS analysis, as displayed in Fig. 12(e),
reveals the presence of a parabola satisfying Eq. (9), as well
as line segments corresponding to a soliton. This wave again
appears not to possess an unambiguous EDR. However, if, as
in the previous example, we take the location of the largest
value of the PSD for each wave number k, then the resulting
EDR would again be discontinuous and follow the parabola
for larger values of k, but other parts of it would appear
linear.

IV. CONCLUSIONS

In this article, we studied EDRs for different types of
FNLS waves. The main result is that, for a robust family of
waves, we found the parabolic EDR in Eq. (9), which equals
the linear dispersion relation shifted downward by twice the
total wave action of the wave multiplied by the square of the
nonlinearity parameter. This EDR appears to have a universal
form parallel to that predicted for long wave-modes and ver-
ified numerically for the general defocusing MMT model in
Ref. [5], which includes the defocusing nonlinear Schrödinger
equation.

That the general defocusing MMT form of the EDR is
valid for waves of the nonlinear Schrödinger equation is a bit
surprising, since this equation is an integrable system. That
the same form of the EDR holds for a robust family of FNLS
waves is still more surprising, since the FNLS additionally
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(a) (b)

(d) (e)

(c)

FIG. 12. FNLS wave generated from an initial condition of a (smoothed) periodic spatial random walk, as described in Appendix E.
The nonlinearity parameter was α = 8 and the computational domain was L = 2π with Nx = 212, �t = �x2/2π and a final time T = π .
(a) Three-dimensional space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t )|. (b) The initial
spatial wave profile at t = 0. (c) The wave-number dependence of the wave’s Fourier amplitude |q̂(k, t )|, defined in Eq. (3), at t = 0. (d) The
spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic
color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each wave number k of the PSD
in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting EDR
(blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). The EDR predicted by Eq. (9) is ω = k2 − 489; the fit of
the parabolic part of the blue data for |k| > 60 gives EDR of k2 − 487. Panels (d) and (e) were computed using the argument in Eq. (4) and
employed averaging over 4 windows of width Twin = π/4.

exhibits instabilities and generates coherent structures such as
(multi)solitons. Yet, clearly, our derivation of this EDR in the
case of small nonlinearity and its derivation in Ref. [24] in the
case of small amplitudes of the modes, as well as its numerical
confirmation in example FNLS waves obtained using a variety
of techniques from a variety of initial-condition families, give
strong evidence in favor of extending the validity of the
predictions in Ref. [5] also to the focusing regime and the
exceptional integrable structure of the FNLS.

Nevertheless, the integrable structure of the FNLS and the
presence of coherent structures do exhibit their effects, as the
FNLS gives rise to both waves with no EDR at all, waves with
EDRs other than a quadratic function of the wave number, as
well as a family of waves with a quadratic EDR which equals
neither that in Eq. (9) nor the linear dispersion relation. In
particular, why the form of this latter EDR should still be a
quadratic, although we have been able to derive it explicitly
for a specific type of multisolitonlike wave trains, remains a
bit of a mystery.

Examples of observed or experimentally measured EDRs
range over fields as diverse as surface gravity [41] and

gravity-capillary waves [42], nonlinear springs [43],
ionization waves [44], and graphene sheets [45]. Reference
[42] presents a particularly striking example of an EDR
with several distinct branches whose number depends on the
amount of power injected into the waves. While none of these
measurements have addressed EDRs for the FNLS discussed
here, experimental data yielding these EDRs may perhaps be
obtained from observations and measurements of random and
rogue waves in wave tanks [46,47] and optics [48]. These are
approximately described by the FNLS, and our results may
apply to them.

One remaining open theoretical problem is to extend the
mathematically rigorous result of Ref. [24] from the limit
of small amplitudes of the modes to at least some of the
more general cases described here using numerical simula-
tions. Another concerns the precise role of integrability in the
existence and form of the EDR in Eq. (9). Perhaps the Fourier
representation of the theta-function FNLS solutions may help
in this regard [49].

Finally, as mentioned in the Introduction, the existence of
an EDR for a wave of the FNLS signifies that this wave is,
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statistically, a collection of weakly nonlinearly coupled plane
waves whose long-term time-evolution is dominated by this
EDR. Therefore, for such a wave, splitting either the FNLS
equation or its total energy into effective linear and nonlinear
parts based on this EDR should result in minimizing the latter
part. In addition, the question arises as to what the relative
sizes of the two effective parts are, and which part dominates
for large values of the nonlinearity parameter. We will address
these issues in a subsequent publication.
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APPENDIX A: SOLUTION OF THE FNLS VIA
INVERSE-SCATTERING TRANSFORM

In this Appendix, we give a brief, heuristic review of the
inverse scattering transform applied to the FNLS to obtain
waves comprising solitons and radiation. In our exposition, we
largely follow the exposition in Ref. [22]. Classic references
are Refs. [17,18,20]. We took the notation from Ref. [50]. We
purposely ignore any questions of analyticity.

The FNLS in Eq. (1), with the dependent variable q
rescaled so that α = √

2, is the compatibility condition for the
Lax Pair

φx = (ikσ3 + Q)φ, (A1a)

φt = (2ik2σ3 + H )φ, (A1b)

where

σ3 =
[

1 0
0 −1

]
, Q =

[
0 q
r 0

]
, (A1c)

H = iQ2σ3 + iQxσ3 + 2kQ, (A1d)

and r = −q∗. Equation (A1a) is called the scattering equation
and Eq. (A1b) is the evolution equation.

The scattering equation in Eq. (A1a) has eigenfunction
solutions that satisfy asymptotic boundary conditions:

φ±(x, t, k) ∼ eikσ3x, x → ±∞. (A2)

Because the eigenfunctions φ± are both fundamental matrix
solutions of Eq. (A1a), we can write a “scattering” relation

between them in the form

φ+(x, t, k) = φ−(x, t, k) S(t, k), (A3)

where S is the 2 × 2 scattering matrix with elements si j . One
can show that the coefficients of the scattering matrix satisfy
the symmetry

s22(t, k) = s∗
11(t, k∗), s12(t, k) = −s∗

21(t, k∗), (A4)

which implies that S is unitary for real values of the spectral
parameter k. One can also show that the element s11(t, k) of
the scattering matrix is time-independent. The coefficients in
the asymptotic expansion of ln s11(t, k) in terms of 1/k give
an infinite number of conserved quantities.

In terms of the individual columns, φ±
1 and φ±

2 of the
matrix eigenfunctions φ±, Eq. (A3) can be rewritten as

φ+
1 = s11φ

−
1 + s21φ

−
2 , φ+

2 = s12φ
−
1 + s22φ

−
2 . (A5)

If, for real k, we rewrite the first equation in Eq. (A5) in the
form

φ+
1

s11
= φ−

1 + b(k, t ) φ−
2 ,

where b(t, k) = s21/s11, then we arrive at the interpretation
in which φ−

1 represents a right-moving incoming wave and
b(t, k) φ−

2 the corresponding reflected wave as x → −∞, and
φ+

1 /s11 represents the transmitted wave as x → ∞. Because
of this interpretation, b(k, t ) is referred to as the reflection co-
efficient. [The same interpretation is obtained from the second
equation in Eq. (A5) due to the symmetries in Eq. (A4).]

Likewise, for complex values ζ j = Reζ j + i Imζ j of k
in the upper half-plane such that s11(0, ζ j ) = 0, and there-
fore s11(t, ζ j ) = 0 for all times t , we find a proportionality,
φ+

1 (x, t, ζ j ) = c j (t )φ−
2 (x, t, ζ ). In other words, we obtain an

eigenfunction that decays exponentially at the rate e−Imζ |x| at
both x → ±∞ and corresponds to the discrete eigenvalue ζ j

of the scattering equation in Eq. (A1a). In particular, if the
decay rate as x → ∞ is exactly e−Imζ j x, it is c j (t )eImζ j x as
x → −∞, and so c j (t ) is referred to as the corresponding
norming constant.

Using the asymptotics of the evolution equation in
Eq. (A1b), we obtain the time evolution of the reflection
coefficients and norming constants as

b(t, k) = e−4ik2t b0(k), c j (t ) = e−4iζ 2
j t c j (0). (A6)

Typically, we assume that there is a finite number J of zeros
k = ζ j of s11(0, k) and that none of them lie on the real axis.

We reconstruct the FNLS wave q(x, t ) using the func-
tions μ±(x, t, k) = φ±(x, t, k)e−ikσ3x. In particular, q is
expressed as

q(x, t ) = lim
k→∞

2ikμ−
12(x, t, k). (A7)

Using the techniques from the theory of Riemann-Hilbert
problems, we can find equations for the entries μ−

11 and μ−
12.

If we assume that the zeros of s11(0, k) at all the eigenvalues
k = ζ j are simple, and write Cj = c j (0)/s′

11(ζ j ), then these
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equations are

μ−
11(x, t, k) = 1 +

J∑
j=1

Cje
−2iζ j x−4iζ 2

j tμ−
12(x, t, ζ j )

k − ζ j

+ 1

2π i

∫ ∞

−∞

b0(λ)e−2iλx−4iλ2tμ−
12(x, t, λ)

λ − (k − i 0)
dλ,

(A8a)

μ−
12(x, t, k) = −

J∑
j=1

C∗
j e2iζ ∗

j x+4iζ ∗2
j tμ−

11(x, t, ζ ∗
j )

k − ζ ∗
j

+ 1

2π i

∫ ∞

−∞

b∗
0(λ)e2iλx+4iλ2tμ−

11(x, t, λ)

λ − (k + i 0)
dλ.

(A8b)

Here, ±i 0 indicates the indentation direction of the integra-
tion path around the singularity at λ = k.

Using Eq. (A7), we obtain from Eqs. (A8) the wave q. After
rescaling back to the original variables of the FNLS equation
in Eq. (1), we find

q(x, t ) = − 2i
√

2

α

⎡
⎣ J∑

j=1

C∗
j e2iζ ∗

j x+4iζ ∗2
j tμ−

11(x, t, ζ ∗
j )

− 1

π

∫ ∞

−∞
b∗

0(λ)e2iλx+4iλ2tμ−
11(x, t, λ)dλ

⎤
⎦. (A9)

We obtain (multi)soliton solutions when the reflection co-
efficient vanishes, i.e., when b0(k) ≡ 0. In particular, for the
single soliton, when J = 1 and ζ1 = (V + iA)/2, Eqs. (A8)
and (A9) yield the wave in Eq. (14). In general, the discrete
sum in Eq. (A9) corresponds to the solitons, and the integral
to the continuous radiation.

APPENDIX B: EFFECTIVE DISPERSION RELATION FOR
WEAK NONLINEARITY

In this Appendix, we apply the method of multiple scales
to derive the EDR when the FNLS nonlinearity parameter α is
small. We first transform the FNLS to the wave-number space
by letting

q(x, t ) =
∞∑

n=−∞
akn (t )e−iknx, (B1)

with kn = 2πn/L, in Eq. (1). We thus obtain the infinite set of
ordinary differential equations

iȧkn (t ) = − k2
nakn (t )

+ α2
∞∑

p,q,r=−∞
akp (t )akq (t )a∗

kr
(t )δkp+kq−kr−kn,0 (B2)

for the wave modes akn (t ), where δ j,l is the Kronecker δ.
The solution of Eq. (B2) assumes the wave-mode time

form akn (t ) = bkn (α2t )eik2
n t + α2akn,1, where bkn (α2t ) satisfy

the solvability condition

i∂α2t bkn =
∞∑

p,q,r=−∞
bkpbkq b∗

kr
ei(k2

p+k2
q−k2

r −k2
n )t

× δkp+kq−kr−kn,0 δk2
p+k2

q−k2
r −k2

n ,0. (B3)

It is well known that the equations

kp + kq − kr − kn = 0,

k2
p + k2

q − k2
r − k2

n = 0

can only be solved if p = r and q = n or p = n and q = r [9].
Therefore, Eq. (B3) becomes

∂α2t bkn =
(

2
∞∑

m=−∞

∣∣bkm

∣∣2 − ∣∣bkn

∣∣2

)
bkn . (B4)

Because
∞∑

m=−∞

∣∣bkm

∣∣2 =
∞∑

m=−∞

∣∣akm

∣∣2 = ‖aκ‖2

is the conserved total wave action, the solution to Eq. (B4)
equals

bkn = akn (0)ei(2‖aκ‖2−|akn (0)|2 )α2t ,

which gives Eq. (6). The second equality in Eq. (9) is a
consequence of Parseval’s equality [51].

Here, we also comment on the remark made in Sec. III A 1
after Eq. (8) about the mode amplitudes |akn (0)| being con-
served on O(α−2) timescales for small α. This is connected to
the complete integrability of the FNLS equation [17,18,20,22]
(see Appendix A), whose consequence is that waves com-
posed of modes with sufficiently small amplitudes, so as to
avoid the modulational instability [cf. Eq. (13)], should be
representable in terms of action-angle coordinates (cf. Refs.
[17–19,35,39]). In particular, the actions should reduce to the
mode amplitudes |akn (0)| in the limit of small nonlinearity,
and the frequencies of the angles to the frequencies in Eq. (8).
In this respect, intuitively, both the results of Sec. III A 1 as
well as those of Ref. [24] should be expected. To our knowl-
edge, however, a rigorous proof of the results of Ref. [24] via
action-angle variables is yet to be developed.

APPENDIX C: THE LIMIT OF SMALL AMPLITUDES OF
THE MODES

In this Appendix, we describe the connection between our
results and those obtained in Ref. [24] in the small-wave-
amplitude limit.

In Ref. [24], the FNLS is scaled so that the factor 2 appears
in Eq. (1) in place of the nonlinearity size α2. In this case,
our limit of weak nonlinearity, discussed in Sec. III A 1 and
Appendix B, can be replaced by the limit of small amplitude,
which we again denote by α. In this limit, the expansion
in Eq. (6) must be replaced by one that acquires an overall
factor proportional to α, but otherwise remains the same. The
necessary validity condition for this new expansion, i.e., the
condition that none of its modes become modulationally un-
stable, is a reinterpretation of the weak-nonlinearity condition
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in Eq. (13) in the form that all the mode amplitudes should be
much smaller than π/L.

If we define the wave-modes akn (t ) as in Eq. (B1), then
the condition for the small-wave-amplitude limit considered
in Ref. [24] states that all the initial wave-modes be small,

akn (0) = O(α), (C1)

where α is again a small parameter. In this limit, the L2

norm of the difference between the evolving FNLS wave
q(x, t ) and the linear wave evolving according to the effective
dispersion relation k2 − (4/L)‖q(x, 0)‖2

2 in Eq. (9) (with the
scaling of Ref. [24]) was shown to remain within O(α2) for
short times t and O(tα2) for long times. This result appears
much stronger than what we claim to see numerically in the
more general case, and states that the FNLS wave and its
linear approximation using the EDR in Eq. (9) remain close
on timescales shorter than O(α−2). However, these waves
are probably not uniformly close nor have they close spatial
slopes. Our claim, in turn, is only that the dynamics of each
mode in a more general FNLS wave is dominated by a single
frequency obeying the EDR in Eq. (9).

We should comment that the condition in Eq. (C1) certainly
includes the small-amplitude limit, and thus, after a rescaling,
also the weak-nonlinearity limit, but that it is more general.
In particular, by containing an increasing number, O(1/α2),
of nondecaying modes of size O(α), a wave satisfying this
condition may retain a total wave action, and thus L2 norm, of
size O(1).

The result of Ref. [24] was proven in a mathematically
rigorous manner using the Poincaré-Birkhoff normal form
[52], a perturbation method formally equivalent to the method
of multiple scales but more suitable for rigorous proofs
[53,54]. Our numerical results show that the weaker, statistical
interpretation of the EDR in Eq. (9) extends far beyond its
proven validity in Ref. [24]. In particular, this EDR is valid
for numerous waves with mode sizes of O(1), including those
resulting from modulational instability. We suspect that this
instability may present a hard obstacle for the near-identity
transformations leading to the normal form, and that any
future rigorous proofs of the EDR form in Eq. (9) holding
for waves with mode sizes of O(1) may have to use different
techniques.

APPENDIX D: LINEAR-STABILITY ANALYSIS
OF PLANE WAVES

In this Appendix, we apply linear stability analysis to the
single plane wave solution of the FNLS, seeking to understand
the behavior of its small perturbations [25–27]. We con-
sider a perturbed wave q(x, t ) =◦

q (x, t )[1 + ε(x, t )], where
◦
q (x, t ) = Ae−i[γ x−(γ 2−|A|2α2 )t] is a plane wave in Eq. (10) and
|ε|2 	 1 is a small perturbation. We insert this ansatz into the
FNLS and neglect higher-order terms in ε to obtain a partial
differential equation for ε:

i(εt + 2γ εx ) = εxx + |A|2α2(ε + ε∗). (D1)

We substitute plane-wave solutions

ε(x, t ) = ρei(kx−ωt ) + σe−i(kx−ω∗t ) (D2)

into Eq. (D1), noting that the frequency ω could be real
(giving bounded, oscillating solutions) or complex (giving
exponentially growing or decaying solutions).

Substituting the plane waves in Eq. (D2) into Eq. (D1),
separately collecting terms with ei(kx−ωt ) and e−i(kx−ω∗t ), and
taking the complex conjugate of the coefficients multiplying
e−i(kx−ω∗t ) leads to the homogeneous linear algebraic system
of equations for the coefficients ρ and σ ∗,

(ω − 2γ k + k2 − |A|2α2)ρ − |A|2α2σ ∗ = 0, (D3a)

|A|2α2ρ + (ω − 2γ k − k2 + |A|2α2)σ ∗ = 0. (D3b)

For this system to have nonzero solutions ρ and σ ∗, its
determinant of coefficients must vanish, resulting in the fol-
lowing quadratic equation for ω:

ω2 − 4γ kω + 4γ 2k2 − k2(k2 − 2|A|2α2) = 0. (D4)

When kn = 2πn/L, we compute the following expressions for
the two corresponding frequencies:

ω±n = 2γ kn ± kn

√
k2

n − 2|A|2α2. (D5)

The frequencies in Eq. (D5) contain nonzero imaginary
parts corresponding to an unstable mode precisely when
|kn| <

√
2|A|α. An initial plane wave with amplitude A prop-

agating in spatial domain |x| < L/2 with nonlinearity param-
eter α will thus give rise to 2N + 1 unstable Fourier modes,
where N is as stated in Eq. (11). Note that the case N = 0 is
excluded by the conservation of the total wave action.

APPENDIX E: RANDOM SPATIAL INITIAL CONDITIONS

We generate spatially random, noiselike initial conditions
in such a way that they appear disordered on O(1) spatial
scales, but are smooth on O(�x) spatial scales, where �x is
the size of the spatial discretization interval used in our FNLS
simulations. This is so that these initial conditions can be used
in our simulations and not destroy the order of accuracy of the
algorithms.

To generate an initial wave-form of (smoothed) spatial
“white noise,” at each spatial discretization point x j , we define
two normally distributed random variables ρ j and φ j , j =
1, . . . , Nx, where Nx is the number of spatial discretization
points. We take for the initial wave-form the expression
q(x j, 0) = a(x j ) + ib(x j ), where

a(x j ) = 16
j+4∑

n= j−4

ρn, b(x j ) = 16
j+4∑

n= j−4

φn.

Here, we assume the periodicity � ± Nx ≡ �.
To simulate a spatially periodic, (smoothed) “random-

walk”-like initial wave-form, we again begin with two
normally distributed random sequences ρ j and φ j , j =
−J, . . . , J , j �= 0, and define the initial condition as [55]

q(x, 0) = q0

⎡
⎢⎣ J∑

j=−J
j �=0

ρ j + iφ j

j
e2π i jx/L + ρ0 + iφ0

⎤
⎥⎦,

where q0 is the overall amplitude, and ρ0 + iφ0 is chosen to
determine the average value of q(x, 0). To preserve smooth-
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ness on the spatial discretization scale, O(�x), we must take
Nx � 2J . For our example in Sec. III B 4 and Fig. 12, we
took q0 = 1/

√
2, ρ0 + iφ0 = −0.6909 − 1.4166 i, L = 2π ,

J = 28, and Nx = 212.

APPENDIX F: POWER-SPECTRAL DENSITY
OF ONE SOLITON

To derive the wave-number dependence of the PSD for the
single soliton q(x, t ) in Eq. (14), we first calculate its spatial
Fourier transform q̂(k, t ) via Eq. (3). Using the well-known
formula ∫ ∞

−∞
sech ξe−iκξ dξ = π sech

(πκ

2

)
,

we evaluate q̂(k, t ) to be

q̂(k, t ) = A(k)e−i(k)t , (F1)

where

A(k) =
√

2π

α
sech

π (V + k)

A
ei[ψ−(V +k)δ], (F2)

and (k) is given in Eq. (17).
The finite-interval temporal Fourier transform of the mode

in Eq. (F1) equals

∫ T

0
q̂(k, t )e−iωt dt

= iA(k)e−i[(k)+ω]T/2 sin[((k) + ω)T/2]

((k) + ω)/2
,

which, together with Eqs. (F2) and (17) makes the expression
for the PSD inside the argument on the right-hand side of
Eq. (2) equal to that in Eq. (16).
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