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Wave-shape profiles in a coupled inductor-capacitor network with nonlinear dispersion
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In this work, the qualitative structures of traveling waves are investigated in a bidimensional inductor-capacitor
network with quadratic nonlinear dispersion. Applying the continuum limit approximation, we show that the
dynamics of small-amplitude signals in the network can be governed by a (2 + 1)-dimensional partial differential
equation. Using a simple transformation, we reduce the given equation to a nonlinear ordinary differential
equation. By means of the phase plane analysis and depending on the wave velocity of the signals that are
to propagate in the lattice, we present all phase portraits of the dynamical system. Parametric representations
for solitary-wave solutions corresponding to the various phase portrait trajectories under different parameter
conditions are derived. The results of our study demonstrate that the nonlinear dispersion in the network leads to
a number of interesting solitary-wave profiles, e.g., bright-dark solitons and gray-gray solitons, which have not
been observed for the same model when the dispersion is assumed linear. The two-dimensional graphics of all
the solutions obtained in this paper are given.
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I. INTRODUCTION

Nonlinear transmission lines (NLTLs) are now well estab-
lished as potential models for the study of the behavior of
nonlinear excitations inside dispersive media. This is due to
both their applications in signal processing in the microwave
range and their capability to support solitons, which are
localized disturbances which act somewhat as particles [1].
Consequently, many theoretical and experimental studies have
been envisaged to analyze the dynamics of different models
of NLTLs. Comte and Marquié used a model of NLTLs to
experiment on the propagation of compactonlike kinks in a
diffusion-reaction chain [2]. Pelap et al. studied the dynamics
and properties of modulated waves in a modified Noguchi
electrical transmission line [3]. The same model with nearest-
neighbor interactions has been used to show that two bright
solitary signals or a bright and a dark solitary signal may
simultaneously propagate at the same frequency through the
network [4]. Recently, Deffo et al. studied the dynamics of
a nonlinear two-dimensional discrete electrical lattice [5].
They showed that the dynamics of the small-amplitude signals
in the network can be governed by a (2 + 1)-dimensional
generalized modified Zakharov-Kuznetsov equation. Several
other models of NLTLs have also been examined in the
literature [6,7].

Despite this great interest in NLTLs and their wide range
of applications, we note that very few investigations have
been done on the dynamics of nonlinear excitations in the
NLTLs with nonlinear dispersion [8–10]. Nevertheless, in real
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physical systems, nonlinear dispersion can be introduced in
order to improve the understanding of some physics phe-
nomena such as the dispersion of particles in suspension, the
migration of magma, the formation of liquid drops, and the
thermodynamic properties of anharmonic lattices [8].

In this respect, we set out in the present paper to undertake
the investigation of a two-dimensional NLTL that includes
nonlinear dispersion. We are interested in particular in the sin-
gle and two solitary-wave solutions for this NLTL. The paper
is organized as follows. Section II presents a brief description
of our model and its dynamics equation. In Sec. III we discuss
the bifurcations of phase portraits of the dynamical system as
a function of the wave velocity υ0. In Sec. IV we determine
the parametric representations for solitary wave solutions of
the characteristic network equation. We also present here
the two-dimensional graphical profiles of these solutions. In
Sec. V we summarize and state the main conclusion of this
paper.

II. MODEL DESCRIPTION AND DYNAMIC EQUATION

We consider a nonlinear network in which there are many
identical lines transversely or longitudinally coupled to one
another by an inductor L2 or L1 and a capacitor C2 or C1

mounted in parallel, as shown in Fig. 1. The nodes in the
system are labeled with two discrete coordinates n and m,
where n specifies the nodes in the direction of propagation of
the pulse and m labels the lines in the transverse direction. The
standard nonlinearity is introduced in the network by a vari-
cap diode with differential capacitance C(Vb + Vn,m) = dQn,m

/dVn,m, which is a nonlinear function of the voltage Vn,m.
For low voltages around the dc bias voltage Vb, the de-
pendence of Qn,m(Vn,m) at the (n, m)th node can be ap-
proximated by [11] Qn,m = C0(Vn,m − αV 2

n,m), where C0 is

2470-0045/2019/100(2)/022214(9) 022214-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.022214&domain=pdf&date_stamp=2019-08-19
https://doi.org/10.1103/PhysRevE.100.022214


DEFFO, YAMGOUÉ, AND PELAP PHYSICAL REVIEW E 100, 022214 (2019)

a characteristic capacitance and α is a positive nonlinear
parameter of the electrical stored charge. The capacitance-
voltage relationship in the series branch is Taylor expanded
to first order as [1,12] Ci(Vn,m) = C0i(1 − 2δiVn,m) with i =
1, 2. For δi = 0, Ci leads to a linear dispersion parameter
Ci(Vn,m) = C0i; henceforth, C0i will be called the linear dis-
persion parameter of the network. Assuming that such ca-
pacitors can actually exist, we can discuss the fundamental
characterization of the network of Fig. 1 and investigate

the dynamics of its traveling waves. We apply Kirchhoff
laws to the circuit loop of Fig. 1 and obtain the circuit

equation as L1
dI1

n,m

dt = Vn,m − Vn+1,m, L2
dI2

n,m

dt = Vn,m − Vn,m+1,
I1
n,m − I1,1

n,m = C01
d
dt [(Vn−1,m − Vn,m) − δ1(Vn−1,m − Vn,m)2],

I2
n,m − I2,1

n,m = C02
d
dt [(Vn,m−1 − Vn,m) − δ2(Vn,m−1 − Vn,m)2],

and dQn,m

dt = I1
n−1,m − I1

n,m + I2
n,m−1 − I2

n,m. It therefore follows
that the differential equations governing the dynamics of
signals in the network are

d2Vn,m

dt2
− α

d2V 2
n,m

dt2
= u2

01(Vn+1,m + Vn−1,m − 2Vn,m) + u2
02(Vn,m+1 + Vn,m−1 − 2Vn,m) + Cr1

d2

dt2
(Vn−1,m + Vn+1,m − 2Vn,m)

+ Cr2
d2

dt2
(Vn,m−1 + Vn,m+1 − 2Vn,m) − η1

d2

dt2
[(Vn−1,m − Vn,m)2 − (Vn,m − Vn+1,m)2]

− η2
d2

dt2
[(Vn,m−1 − Vn,m)2 − (Vn,m − Vn,m+1)2], (1)

with n = 1, 2, . . . , N ; m = 1, 2, . . . , M; u2
01 = 1/L1C0; u2

02 =
1/L2C0; Cr1 = C01/C0; Cr2 = C02/C0; η1 = δ1Cr1; and η2 =
δ2Cr2. Here N and M correspond to the number of cells con-
sidered in the n and m directions, respectively. Equation (1)
has been used to describe the dynamics of transverse solitary
waves in the specific case where the capacitor Ci in the series
branch is linear, that is, for δi = 0 with i = 1, 2 [11]. In this
study, the following characteristic network parameters will be
considered [1,4,11]:

Vb = 2 V, C0 = 320 pF, α = 0.21 V−1,

C01 = C02 = 96 pF, L1 = L2 = 0.47 mH,

δ1 = δ2 = 0.21 V−1. (2)

As in previous work [11], we use the continuum limit approxi-
mation. This continuity assumption is valid only if the excited
wavelengths are much longer than the cell sizes and the pertur-
bation voltage represented by V is sufficiently small compared
with its value in the equilibrium state. We suppose that the

FIG. 1. Schematic representation of a part of the bidimensional
transmission line with quadratic nonlinear dispersion. Each cell
contains the nonlinear capacitor C(V ) in the shunt branch which
induces the standard nonlinearity, while in the series propagation and
transverse branches, we have the linear inductors L1 and L2 and the
nonlinear capacitors C1 and C1.

spacing between two adjacent sections in the n direction is
h1 and h2 in the m direction. Letting Vn,m(t ) −→ V (n′, m′, t )
with n′ = nh1 and m′ = mh2, we obtain from Eq. (1) the
following two-dimensional partial differential equation for the
perturbed voltage V :

∂2

∂t2
(V − αV 2) − u2

01h2
1
∂2V

∂n′2 − u2
02h2

2
∂2V

∂m′2

− Cr1h2
1

∂2

∂t2

(
∂2V

∂n′2

)
− 2η1h3

1
∂2

∂t2

(
∂2V

∂n′2
∂V

∂n′

)

− Cr2h2
2

∂2

∂t2

(
∂2V

∂m′2

)
− 2η2h3

2
∂2

∂t2

(
∂2V

∂m′2
∂V

∂m′

)
= 0. (3)

Introducing new variables x = n′/h1 and y = m′/h2, Eq. (3)
becomes

∂2

∂t2
(V − αV 2) − u2

01
∂2V

∂x2
− u2

02
∂2V

∂y2

− Cr1
∂2

∂t2

(
∂2V

∂x2

)
− 2η1

∂2

∂t2

(
∂2V

∂x2

∂V

∂x

)

− Cr2
∂2

∂t2

(
∂2V

∂y2

)
− 2η2

∂2

∂t2

(
∂2V

∂y2

∂V

∂y

)
= 0. (4)

Equation (4) is the equation governing the propagation of the
wave in the nonlinear electrical transmission line. To find its
traveling-wave solution, we introduce the wave variable [13]

V (x, y, t ) = V (z), z = k1x + k2y − υ0t, (5)

where υ0 is the speed of the traveling wave and ki with i = 1, 2
are arbitrary real constants. Accordingly, after two successive
integrations, Eq. (4) leads to the ordinary differential equation
(ODE)

d2V

dz2
+ c

d2V

dz2

dV

dz
− aV + bV 2 = 0, (6)
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this by assuming that the integration constants are equal to
zero. The expressions of the various coefficients of (6) are

a = υ2
0 − ū2

01 − ū2
02

υ2
0 (C̄r1 + C̄r2)

, b = α

C̄r1 + C̄r2
, c = 2(η̄1k1 + η̄2k2)

C̄r1 + C̄r2
,

(7)

with ū2
01 = u2

01k2
1 , ū2

02 = u2
02k2

2 , C̄r1 = Cr1k2
1 , C̄r2 = Cr2k2

2 ,
η̄1 = η1k2

1 , and η̄2 = η2k2
2 . Traveling-wave solutions such

as (6) strongly depend on the sign of the coefficients a, b, and
c. From their expressions (7), the following remarks can be
made.

(i) The sign and the value of the linear coefficient a
depends on the magnitude of the traveling-wave speed υ0.
It is negative, absent, and positive, respectively, if υ2

0 < u2
0,

υ2
0 = u2

0, and υ2
0 > u2

0, with u2
0 = ū2

01 + ū2
02.

(ii) The coefficient b is always positive and is induced by
the classic nonlinearity of the capacitor C in the shunt branch
of Fig. 1.

(iii) The presence of the nonlinear dispersion term pro-
portional to c in the ODE (6) is the contribution of the
nonlinear component considered in the capacitance-voltage
relationship in the series branch. Its sign still depends on
the free parameters ki with i = 1, 2. Thus, according to the
magnitude and sign of this parameters, c can take any value
and any sign. Recently, a bifurcation of the solutions of Eq. (6)
has been investigated in the specific case where c = 0, which
corresponds to δi = 0 with i = 1, 2. Taking the nonlinearity of
any of the capacitors in the series branches into account fun-
damentally modifies the governing equation. Thus, it becomes
important to study the effect of this quadratic dispersion on the
behavior of the traveling-wave solutions of Eq. (6).

III. PHASE PLANE ANALYSIS

Equation (6) can be reduced to a two-dimensional dynam-
ical system

dV

dz
= W,

dW

dz
= V (a − bV )

1 + cW
. (8)

We note that if c �= 0, Eq. (8) is a singular traveling-wave
system. It has a singular straight line defined by W = −1/c.
To avoid this line temporarily, we consider the transformation
dz = (1 + cW )dξ under which the system (8) becomes

dV

dξ
= W (1 + cW ),

dW

dξ
= V (a − bV ). (9)

These two systems have the same Hamiltonian defined as

H (V,W ) = 1
2 (W 2 − aV 2) + 1

3 (cW 3 + bV 3) = h, (10)

where h is a constant. This Hamiltonian can be obtained by
integrating Eq. (6) after multiplying it by dV

dz and then setting
dV
dz = W in the result.

We observe that the system (9) has many fixed points or
stationary states depending on the value of its three coeffi-
cients a, b, and c. We notice first that A0(0, 0) is always an
equilibrium point of Eq. (9) independently of the parameters’
values. If c = 0, that is, for the linear capacitor C1 and C2,
Eq. (9) has one additional equilibrium point [11]. When c �= 0,
two relevant cases can be distinguished: For a = 0, Eq. (9) has

one additional equilibrium point A1(0,−1/c), while for a �=
0, Eq. (9) has three additional equilibrium points A1(0,−1/c),
A2(a/b, 0), and A3(a/b,−1/c).

Let M(Vj,Wj ) be the coefficient matrix of the lin-
earized system (7) at an equilibrium point (Vj,Wj ) and
J (Vj,Wj ), the associated Jacobian determinant. Also denote
by Tr(M(ψ j,Wj )) the trace of the matrix M(ψ j,Wj ). Thus,
we have

J0 = J (0, 0) = −a, J1 = J (0,−1/c) = a,

J2 = J (a/b, 0) = a, J3 = J (a/b,−1/c) = −a. (11)

By the theory of planar dynamical systems [14–16], we know
that for an equilibrium point of a planar integrable system, if
J < 0, then the equilibrium point is a saddle point; if J > 0
and Tr(M(ψ j,Wj )) = 0, then it is a center point; if J > 0 and
[Tr(M(ψ j,Wj ))]2 − 4J (ψ j,Wj ) � 0, then it is a node point;
if J = 0 and the Poincaré index of the equilibrium point is 0,
then this equilibrium point is a cusp.

Hereafter, we use the definitions

h0 = H (0, 0) = 0, h1 = H (0,−1/c) = 1/6c2,

h2 = H (a/b, 0) = −a3/6b2,

h3 = H (a/b,−1/c) = (b2 − a3c2)/6b2c2, (12)

in which H (V,W ) designates the first integral defined in
Eq. (10). We then note that for given values of the sys-
tem’s parameters h3 = h0 = 0 and h1 = h2, respectively, if
the front velocity υ0 takes the critical values υ0c− and υ0c+.
In fact, based on Eq. (12), these conditions are satisfied if
a = (b/c)2/3 and a = −(b/c)2/3, respectively. Thus, using the
expressions of a, b, and c given by Eq. (7), we obtain

υ2
0c± = u2

0

1 ± Cr (α/2η)2/3
, (13)

with η = η̄1k1 + η̄2k2 and Cr = C̄r1 + C̄r2. By using the above
information, we can easily do a qualitative analysis of the
systems (8) and (9). It is really important to specify that
the phase orbits defined by the system (9) will determine
all traveling-wave solutions of Eq. (6). In particular, each
trajectory of the phase portraits of the system (8) represents
a solution of Eq. (6). Hence, with a view to clearly see the
effect of the quadratic nonlinear dispersion, which was not
considered in [11], on the bifurcation of these solutions, we
take in this work δi �= 0 (i = 1, 2). According to the value
of the traveling-wave speed, different phase portraits of the
system (9) are presented in Figs. 2 and 3.

For the phase portrait given by Fig. 2, υ0 = u0 and k1 =
k2 = 1. In this case, we have a = 0 and the system (9) has two
equilibrium points, namely, A0(0, 0) and A1(0,−1/c), which
are the cusps.

For the phase portrait given by Fig. 3, υ0 �= u0 and k1 =
k2 = 1. In this case, we have a �= 0 and the system (9) has
four equilibrium points at A0(0, 0), A1(0,−1/c), A2(a/b, 0),
and A3(a/b,−1/c). For υ0 < u0, that is, a < 0, A0 and A3 are
centers and A1 and A2 are saddle points. On the other hand, if
υ0 > u0, that is, a > 0, A0 and A3 become saddle points while
A1 and A2 are centers.

From the above qualitative results, some conclusions
can be made. First, the velocity υ0 plays a major role in

022214-3



DEFFO, YAMGOUÉ, AND PELAP PHYSICAL REVIEW E 100, 022214 (2019)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

V

W

FIG. 2. Bifurcations of phase portraits of the system (9) in the
(V,W ) phase plane with the parameters (2) and υ0 = u0 and k1 =
k2 = 1.

the determination of the type of traveling waves propa-
gating in our network. Next, the system (9) admits sev-
eral kinds of traveling-wave solutions, namely, periodic
waves, solitary waves, and breaking waves, which corre-
spond to homoclinic orbits, periodic orbits, and hetero-
clinic orbits or arch curves of the phase portraits, respec-
tively. Finally, the number of equilibrium points of the sys-
tem (9) and their nature are independent of the sign of the
coefficient c.

Note that, with fixed values of the network parameters,
the signs of ki, with i = 1, 2, do not play a crucial role in
obtaining qualitatively different phase portraits of the system.
In other words, we could vary ki with fixed values of network
parameters, but this does not give us any significantly different
qualitative results. In fact, reversing the sign of ki (ki < 0), the

sign of the coefficient c in Eq. (6) also changes (c < 0). In this
case, the different corresponding phase portraits are deduced
from Figs. 2 and 3 through a simple symmetry about the
horizontal axis, that is, V = 0. Hence, the dynamical behavior
of the system is not affected by the sign of ki. In addition,
by reversing the sign of both ki and z, the system remains
invariant.

IV. SOLITARY PROFILE SOLUTIONS OF EQ. (6)

In this section we focus our attention on the computation
of the exact parametric representations of the traveling-wave
solutions of the characteristic ordinary differential equation
of the system which is modeled by Eq. (1). We restrict
ourselves, for simplicity, to the solitary-wave solutions which
correspond to homoclinic orbits or heteroclinic orbits of the
system (8). These are defined by H (V,W ) = h j , where h j

(with j = 0, 1, 2, 3) are given by Eq. (12). Notice that the
points A1(0,−1/c) and A3(a/b,−1/c) are not the equilibrium
points of the system (8). We begin by introducing the variables

V = V̄ + Vj, W = W̄ + Wj, (14)

with Vj and Wj the coordinates of equilibrium point Aj . For
example, if j = 0, we have V0 = 0 and W0 = 0, which are the
coordinates of equilibrium A0. In this specific case, V = V̄
and W = W̄ . Using Eq. (14), the system (9) becomes

dV̄

dξ
= W̄ (ε′

j + cW̄ ),
dW̄

dξ
= V̄ (aε j − bV̄ ) (15)

and has the Hamiltonian

H (V̄ ,W̄ ) − h j = 1
2 (ε′

jW̄
2 − aε jV̄

2) + 1
3 (cW̄ 3 + bV̄ 3) = 0,

(16)
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FIG. 3. Bifurcations of phase portraits of the system (9) in the (V,W ) phase plane with the parameters (2) and k1 = k2 = 1: (a) 0 < υ0 <

υ0c+, (b) υ0 = υ0c+, (c) υ0c+ < υ0 < u0, (d) u0 < υ0 < υ0c−, (e) υ0 = υ0c−, and (f) υ0 > υ0c−.
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FIG. 4. Shape of the single solitary waves of (6) with the parameters (2) and k1 = k2 = 1: (a) bright soliton (25) for υ0 = 3.934 × 106 rad/s
and (b) gray soliton (28) for υ0 = 3.387 × 106 rad/s.

with j = 0, 1, 2, 3. Here ε′
j and ε j can be either +1 or −1

depending on the equilibrium point. For instance, at point A0,
ε′

0 = ε0 = 1; at point A1, ε′
1 = −ε1 = −1; at point A2, ε′

2 =
−ε2 = 1; and at point A3, ε′

3 = ε3 = −1. Now, to investigate
the solitary-wave solutions of this system, we use the polar
coordinates

V̄ = ρ cos(θ ), W̄ = ρ sin(θ ) (17)

and system (15) and the first integral (16) become,
respectively,

dρ

dξ
= ρ2 cos(θ ) sin(θ )(c sin(θ ) − b cos(θ ))

+ρ cos(θ ) sin(θ )(aε j + ε′
j ), (18a)

dθ

dξ
= −ρ(b cos3(θ ) + c sin3(θ ))

+aε j cos2(θ ) − ε′
j sin2(θ ), (18b)

and

H (ρ, θ ) − hj = 1
2ρ2(ε′

j sin2(θ ) − aε j cos2(θ ))

+ 1
3ρ3(c sin3(θ ) + b cos3(θ )) = 0. (19)

From the Hamiltonian values defined by (19) it follows that

ρ(θ ) = 3

2

aε j cos2(θ ) − ε′
j sin2(θ )

c sin3(θ ) + b cos3(θ )
. (20)

Setting μ(ξ ) = tan[θ (ξ )], Eq. (20) can be put in the form

ρ(ξ ) = 3

2 cos(θ )

aε j − ε′
jμ(ξ )2

b + cμ(ξ )3
. (21)

According to Eq. (17), we find the following parametric rep-
resentation for the solutions V̄ (ξ ) and W̄ (ξ ) of the system (9):

V̄ (ξ ) = 3

2

aε j − ε′
jμ(ξ )2

b + cμ(ξ )3
, (22)

W̄ (ξ ) = 3μ(ξ )

2

aε j − ε′
jμ(ξ )2

b + cμ(ξ )3
. (23)

From (18b) we have

ξ = −2
∫ θ

θ0

1 + tan2(θ )

aε j − ε′
j tan2(θ )

dθ =
∫ μ

μ0

−2

aε j − ε′
jμ

2
dμ.

(24)

The exact solutions of Eq. (8) given by Eqs. (22) and (23)
are definitively obtained from the results of the integral in
Eq. (24). These kinds of results depend on both the relative
magnitudes of the system’s parameters and the value of the
velocity υ0 as discussed below.

A. Bright and gray solitary waves of Eq. (8): υ0c+ < υ0 < u0 and
u0 < υ0 < υ0c−

When the speed of the traveling wave υ0 belongs to
]u0, υ0c−[ and ]υ0c+, u0−[, the phase portrait of the dynami-
cal system (9) possesses some homoclinic orbits [Figs. 3(c)
and 3(d)].

(i) Corresponding to the orbit of the system (9) that is ho-
moclinic to A0, defined by H (V,W ) = h0 = 0 and enclosing
the equilibrium point A2 [red dashed curve in Fig. 3(d)], there
exists a bright solitary-wave solution of the system (8). By
using (24), one has μ(ξ ) = √

a tanh(−
√

a
2 ξ ). Hence, Eqs. (22)

and (23) lead to, respectively,

V (ξ ) = 3a

2

1 − tanh2
( −

√
a

2 ξ
)

b + a3/2c tanh3
( −

√
a

2 ξ
) (25)

and

W (ξ ) = 3a3/2 tanh
( −

√
a

2 ξ
)

2

1 − tanh2
( −

√
a

2 ξ
)

b + a3/2c tanh3
( −

√
a

2 ξ
) .

(26)
Since dz = (1 + cW )dξ , we have

z(ξ ) = ξ + c
∫ ξ

0
W (ξ )dξ, (27)

with W (ξ ) given by Eq. (26). Equations (25) and (27) con-
stitute the parametric representations of the solutions of the
characteristic ODE (6) of the system.
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FIG. 5. Typical graph of the single bright and gray solitary waves of (6) in terms of the wave variable z, with the same parameters as in
Fig. 4. The initial values for the triplet (V,W, z) are (a) (4 × 10−8, 0, −40) and (b) (a/b, 5 × 10−9,−40), with a and b computed from the
parameters using Eq. (7).

(ii) Corresponding to the orbit of the system (9) de-
fined by H (V,W ) = h2, which is homoclinic to A2 and
encloses the equilibrium point A0 [red dashed curve in
Fig. 3(c)], there exists a gray solitary-wave solution of the
system (8). In this case, it follows from Eq. (24) that μ(ξ ) =√−a tanh(−

√−a
2 ξ ). Thus, from (22) and (23) we obtain the

parametric representation of the gray solitary-wave solution
of Eq. (6) as

V (ξ ) = −3a

2

1 − tanh2
( −

√−a
2 ξ

)
b + √−a3c tanh3

( −
√−a

2 ξ
) + a

b
, (28)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ )dξ, (29)

with

W (ξ ) = −3
√−a3 tanh

( −
√−a

2 ξ
)[

1 − tanh2
( −

√−a
2 ξ

)]
2b + 2

√−a3c tanh3
( −

√−a
2 ξ

) .

The graphical representations of these solutions (25) and (28)
are shown in Fig. 4 with the network parameters (2) and for a
suitable value of the wave velocity υ0.

Note that Eqs. (27) and (29) exhibit a complex depen-
dence on the expression W (ξ ). This complexity prevents the
determination of the explicit analytical expression of the
solutions of Eq. (6) in terms of the wave variable z. Nev-
ertheless, typical graphs of these solutions can be obtained
numerically by integrating the system consisting of Eq. (9)
and dz/dξ = (1 + cW ). For instance, the graphical represen-
tations of bright (25) and gray (28) solitary waves in terms
of the wave variable z are shown in Fig. 5 with the same
parameters as in Fig. 4.

B. N-shape> wave profile consisting of three breaking waves of
Eq. (8): 0 < υ0 < υ0c+ and υ0 > υ0c−

For small as well as high values of the wave speed, that
is, υ0 belonging to ]0, υ0c+[ and υ0 > υ0c−, there exist homo-
clinic orbits of the dynamical system (9) [Figs. 3(a) and 3(f)].
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FIG. 6. The N-shape solitary wave of (6) with the parameters (2) and k1 = k2 = 1: (a) Eq. (30) for υ0 = 4.298 × 106 rad/s and (b) Eq. (32)
for υ0 = 3.123 × 106 rad/s.
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FIG. 7. Shape wave profile of (6) with the parameters (2) and k1 = k2 = 1: (a) Eq. (34) for υ0 = 4.180 × 106 rad/s, (b) Eq. (36) for
υ0 = 4.180 × 106 rad/s, (c) Eq. (38) for υ0 = 3.279 × 106 rad/s, and (d) Eq. (40) for υ0 = 3.279 × 106 rad/s.

(i) Corresponding to the homoclinic orbit of the sys-
tem (9) at A0, defined by H (V,W ) = h0 = 0 and enclosing
the equilibrium point A1 [blue dashed curve in Fig. 3(f)],
there exist three breaking-wave solutions of the system (8).
Based on Eq. (24), the function μ(ξ ) can be written as
μ(ξ ) = √

a coth( −√
a

2 ξ ). Hence, we obtain from (22) and (23)
that

V (ξ ) = 3a

2

1 − coth2
( −

√
a

2 ξ
)

b + a3/2c coth3
( −

√
a

2 ξ
) , (30)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ ) dξ, (31)

where

W (ξ ) = 3a3/2 coth
( −

√
a

2 ξ
)

2

1 − coth2
( −

√
a

2 ξ
)

b + a3/2c coth3
( −

√
a

2 ξ
) .

(ii) Corresponding to the homoclinic orbit of the sys-
tem (9) at A2, defined by H (V,W ) = h2 and enclosing
the equilibrium point A3 [blue dashed curve in Fig. 3(a)],
there exist three breaking-wave solutions of the system (8).
Based on Eq. (24), the function μ(ξ ) can be written as

μ(ξ ) = √−a coth( −√−a
2 ξ ). Hence, we obtain from (22)

and (23) that

V (ξ ) = 3a

2

−1 + coth2
( −

√−a
2 ξ

)
b + (−a)3/2c coth3

( −
√−a

2 ξ
) + a

b
, (32)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ ) dξ, (33)

where

W (ξ ) = 3(−a)3/2 coth
( −

√−a
2 ξ

)[ − 1 + coth2
( −

√−a
2 ξ

)]
2b + 2c(−a)3/2 coth3

( −
√−a

2 ξ
) .

The graphical representations of the different profiles of
breaking waves defined by Eqs. (30) and (32) are shown in
Fig. 6 with the network parameters (2).

C. Other shape wave profiles of Eq. (8): υ0 = υ0c+ and υ0 = υ0c−

(i) Corresponding to the two heteroclinic orbits of (9)
[green dashed curves in Fig. 3(e)] connecting the equilibrium
points A0 and A3 and defined by H (V,W ) = h0 = h3 = 0,
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there are breaking-wave solutions of the system (8). Based
on Eq. (24), the function μ(ξ ) can be written as μ(ξ ) =√

a tanh( −√
a

2 ξ ) and μ(ξ ) = √
a coth( −√

a
2 ξ ) for the lower and

upper heteroclinic orbits, respectively. By using Eqs. (22)
and (23), respectively, complete calculations yield

V (ξ ) = 3a

2b

1 − tanh2
( −

√
a

2 ξ
)

1 + tanh3
( −

√
a

2 ξ
) , (34)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ )dξ, (35)

with

W (ξ ) = 3a3/2 tanh
( −

√
a

2 ξ
)

2b

1 − tanh2
( −

√
a

2 ξ
)

1 + tanh3
( −

√
a

2 ξ
) ,

for the bottom heteroclinic orbit and

V (ξ ) = 3a

2b

1 − coth2
( −

√
a

2 ξ
)

1 + coth3
( −

√
a

2 ξ
) (36)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ ) dξ, (37)

where

W (ξ ) = 3a3/2 coth
( −

√
a

2 ξ
)

2b

1 − coth2
( −

√
a

2 ξ
)

1 + coth3
( −

√
a

2 ξ
) ,

for the top heteroclinic orbit.
(ii) Corresponding to the two heteroclinic orbits of (9)

[green dashed curves in Fig. 3(b)] connecting the equilibrium
points A1 and A2 [Fig. 3(b)] and defined by H (V,W ) = h1 =
h2 = 0, there are breaking-wave solutions of the system (8).
Based on Eq. (24), the function μ(ξ ) can be written as μ(ξ ) =√−a tanh( −√−a

2 ξ ) and μ(ξ ) = √−a coth( −√−a
2 ξ ) for the

bottom and top heteroclinic orbits, respectively. By using
Eqs. (22) and (23), respectively, complete calculations yield

V (ξ ) = −3a

2b

1 − tanh2
( −

√−a
2 ξ

)
1 + tanh3

( −
√−a

2 ξ
) + a

b
, (38)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ )dξ, (39)

with

W (ξ ) = −3
√−a3 tanh

( −
√−a

2 ξ
)[

1 − tanh2
( −

√−a
2 ξ

)]
2b

[
1 + tanh3

( −
√−a

2 ξ
)] ,

for bottom heteroclinic orbit and

V (ξ ) = 3a

2b

−1 + coth2
( −

√−a
2 ξ

)
1 + coth3

( −
√−a

2 ξ
) + a

b
, (40)

z(ξ ) = ξ + c
∫ ξ

0
W (ξ )dξ, (41)

where

W (ξ ) = 3(−a)3/2 coth
( −

√−a
2 ξ

)[ − 1 + coth2
( −

√−a
2 ξ

)]
2b

[
1 + coth3

( −
√−a

2 ξ
)] ,

for top heteroclinic orbit. The different profiles of these break-
ing waves defined by Eqs. (34), (36), (38), and (40) are shown
in Fig. 7 with the network parameters (2).

V. CONCLUSION

We have investigated the qualitative structures of traveling
waves in a bidimensional model of an inductor-capacitor
network with nonlinear dispersion. This model is different
from the models discussed in the literature by consider-
ing the contribution of the quadratic nonlinear limit in the
capacitance-voltage relationship in the series branch. For am-
plitude signals lower than the dc bias voltage and using the
continuum limit approximation, we reduced the differential
equations governing the propagation of the signal voltage
in the network to a (2 + 1)-dimensional partial differential
equation. Through a simple change of variables, we trans-
formed the latter to an ODE. The existence of traveling-wave
solutions including the solitary-wave profiles of the obtained
equation has been proved by means of the bifurcation method
of dynamical systems. We have remarked that the values of
wave speed influence considerably the type of wave solution
in the system. The exact parametric representations of these
wave solutions corresponding to some particular orbits of the
system were derived and their two-dimensional graphics were
given.

From the interesting results obtained in this work, we see
clearly that the nonlinear dispersion plays a significant role
in the model of the coupled inductor-capacitor network and
can be used to obtain various solitary-wave profile solutions.
Among these profiles, only the bright and gray solitary type
were obtained in [11] for physically realistic parameters of
the network. Others profiles are solutions in the context of the
coupled nonlinear transmission lines. The stability of these
solutions and the integrability of Eq. (4) are important subjects
that should be considered in future investigations.
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