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Effect of system energy on quantum signatures of chaos in the two-photon Dicke model
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We have studied entanglement entropy and Husimi Q distribution as a tool to explore chaos in the quantum
two-photon Dicke model. With the increase of the energy of a system, the linear entanglement entropy of a
coherent state prepared in the classical chaotic and regular regions becomes more distinguishable, and the
corresponding relationship between the distribution of time-averaged entanglement entropy and the classical
Poincaré section has clearly been improved. Moreover, Husimi Q distribution for the initial states corresponding
to the points in the chaotic region in the higher-energy system disperses more quickly than that in the
lower-energy system. Our results imply that higher system energy has contributed to distinguishing between
the chaotic and regular behavior in the quantum two-photon Dicke model.
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I. INTRODUCTION

It is well known that classical chaos is a complex mo-
tion with a high sensitivity to initial conditions. It appears
in nonlinearly dynamical systems and can usually be de-
tected by such methods as Poincaré surfaces of section and
Lyapunov characteristic exponents. However, the chaos in
quantum mechanics has become more intriguing and chal-
lenging because there is no general quantum counterpart of
classical phase-space trajectories due to the uncertainty prin-
ciple [1–4]. Moreover, the scalar product between two nearby
states with different initial conditions remains a constant
for all time rather than an exponential divergence because
of the unitary time-evolution operator. Therefore, it is very
important to explore and explain the signatures of chaos in
a quantum system, as it could help us to understand further
the quantum dynamics itself and the correspondence principle
between classical and quantum mechanics.

With the random matrix theory, Wigner et al. [5,6] an-
alyzed statistical properties at different energy levels in a
quantum chaos state, and they found that the distribution of
spacings between adjacent energy levels for quantum chaos
states obeys Wigner distributions governed by the Gaussian
ensemble of matrices rather than the usual Poisson distribu-
tion. Moreover, the study of entanglement entropy indicates
that, in general, chaotic systems tend to have larger entangle-
ment entropy than regular systems [7–11]. However, the cor-
responding relationship between entanglement entropy and
chaos does not always hold because there are certain cases in
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which the entanglement entropy for the initial state prepared
in the regular region is higher than that in the chaotic region
[12–14]. The intrinsic physics is still uncertain and needs to
be investigated further. Recently, Ruebeck et al. [14] studied
the entangling quantum kicked top and divided the infinite-
time-averaged entanglement entropy SQ into two parts, IQ

and RQ, which come, respectively, from the “diagonal” and
“off-diagonal” matrix elements of the angular momentum
operators obtained by the Floquet eigenstates of the system.
They found that IQ and SQ were correlated with a quantity Ic

that is not equivalent to classical chaos. In the quantum kicked
top model, Piga et al. [15] also found that by increasing the
number of qubits, the entanglement entropy of the initial states
in the classical regular and chaotic regions becomes more dis-
tinguishable, which leads to a clearer correspondence between
the entanglement entropy and the classical features of the
phase space. Moreover, they also found that there are certain
similar behaviors between low entanglement entropy tori and
Kolmogorov-Arnol’d-Noser (KAM) tori, which implies that
entanglement could play an important role in quantum KAM
theory. Efforts have been devoted to developing a quantum
analog of KAM theory in Refs. [16–19]. Other quantum
sources, such as spin squeezing [20], quantum discord [21],
and an out-of-time ordered correlator [22–24], have been
applied as signatures to explore chaos in quantum systems.

In this paper, we will focus on the two-photon Dicke
model in which N identical two-level atoms couple to a
bosonic mode through two-photon interaction. Such a two-
photon interaction has been commonly applied to describe the
second-order process in physical devices including quantum
dots [25,26], trapped ions, and Rydberg atoms in microwave
superconducting cavities [27,28]. Compared with the standard
Dicke model [29], the presence of two-photon interaction
results in some new properties appearing in this quantum sys-
tem. For example, the discrete system spectrum collapses into
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FIG. 1. Parts (a)–(c) correspond to the classical phase spaces for the two-photon Dicke model with system energy E = 1, 5, and 10,
respectively. Points A1, A3, B2, B3, C2, and C3 are in classical chaotic regions, but points A2, A4, B1, and C1 are in classical regular regions. Parts
(d)–(i) present the evolution of linear entanglement entropy S(t ) with time t for these points, respectively. A comparison of (d)–(f) or (h),(i)
shows that as one increases the energy of the system, the linear entanglement entropies of the points between these chaotic and regular regions
become more distinguishable. Here, we set ω = ω0/2 = 1, j = 5, and g = 0.3.

a continuous band for a specific value of the coupling strength
[30–32]. In the transition from the strong to the ultrastrong
coupling regime, a continuous symmetry breaks down into a
fourfold discrete symmetry described by a generalized-parity
operator [33]. Moreover, a superradiant phase transition [34]
also occurs in the two-photon Dicke model due to coherent
radiation of the atoms. The behavior of finite-size scaling
functions [35] in the two-photon Dicke model indicates that
the superradiant phase transition has the same scaling features
as in the standard Dicke model. Since two-photon coupling is
a nonlinear interaction, the chaos phenomenon would appear

in such dynamical systems. However, quantum signatures
of chaos and the correspondence between entanglement and
classical chaos are still open in the two-photon Dicke model.
Moreover, in addition to increasing the particle number N as
in the quantum kicked top model, there may be other ways to
improve the correspondence between chaos and entanglement
entropy. This is very interesting and it should be investi-
gated further in a quantum system. The main motivation in
this paper is to study entanglement entropy and Husimi Q
distribution and to probe further the relationship between
entanglement and classical chaos. We find that with higher
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FIG. 2. Parts (a)–(c) correspond to the classical phase spaces for the two-photon Dicke model with the coupling parameter g = 0.1, 0.25,
and 0.4, respectively. Parts (d)–(f) denote the corresponding time-averaged entanglement entropy distribution for the two-photon Dicke model
with the coupling parameter g = 0.1, 0.25, and 0.4, respectively. Here, we set ω = ω0/2 = 1, j = 5, and E = 1.

system energy, the values of linear entanglement entropy of
the points between chaotic and regular regions become more
distinguishable for the two-photon Dicke model. Meanwhile,
the higher system energy clearly improves the corresponding
relationship between the distribution of time-averaged entan-
glement entropy and the classical Poincaré section in this
model.

The paper is organized as follows. In Sec. II, we intro-
duces briefly the two-photon Dicke model and its properties.
In Sec. III, we study the effects of system energy on the
correspondence between the distribution of time-averaged
entanglement entropy and the classical Poincaré section in the
two-photon Dicke model. In Sec. IV, we analyze the Husimi Q
distribution and further probe the effects of system energy on
quantum signatures of chaos in this model. Finally, we present
results and a brief summary.

II. THE TWO-PHOTON DICKE MODEL

Let us now briefly introduce the two-photon Dicke model
in which N two-level identical atoms interact with a single
bosonic mode through a two-photon interaction. The system
Hamiltonian can be expressed as [29]

Ĥ = ωâ†â + ω0Ĵz + g

N
(Ĵ+ + Ĵ−)(â2 + â†2), (1)

where â and â†, respectively, are the annihilation and creation
operators of the single-mode cavity with frequency ω. Here,
ω0 is the atomic transition frequency and g is the collec-
tive coupling strength of the two-photon interaction. Ĵz =∑N

n=1 σ̂ (i)
z /2 is the two-level atomic inversion operator, and

Ĵ+ = ∑N
n=1 σ̂

(i)
+ /2 and Ĵ− = ∑N

n=1 σ̂
(i)
− /2 are the collective

atomic raising and lowing operators. The operators Ĵz, Ĵ+, and
Ĵ− form the SU(2) Lie algebra, which obeys the commutation
relations

[Ĵ+, Ĵ−] = 2Ĵz, [Ĵz, Ĵ±] = ±Ĵ±. (2)

Compared with the usual standard Dicke model, the Hamil-
tonian in the two-photon Dicke model has a generalized Z4

parity operator
∏ = (−1)N ⊗N

n=1 σ̂ n
z eiπ â†â/2 with four eigen-

values (i.e., ±1 and ±i) rather than the Z2 parity in the
standard Dicke model [36,37].

To study the relationship between entanglement and clas-
sical chaos in the two-photon Dicke model, we take the
initial states to be coherent states since they correspond to the
minimum uncertainty wave packets centered in the classical
phase space. As in Refs. [8,36–38], we choose the initial
quantum states as

|ψ (0)〉 = |τ 〉 ⊗ |β〉 ≡ |τβ〉, (3)
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FIG. 3. Parts (a)–(c) correspond to the classical phase spaces for the two-photon Dicke model with the coupling parameter g = 0.1, 0.25,
and 0.4, respectively. Parts (d)–(f) denote the corresponding time-averaged entanglement entropy distribution for the two-photon Dicke model
with the coupling parameter g = 0.1, 0.25, and 0.4, respectively. Here, we set ω = ω0/2 = 1, j = 5, and E = 10.

where |τ 〉 and |β〉 are the atomic and bosonic coherent states,
respectively. The coherent states |τ 〉 and |β〉 have the forms

|τ 〉 = (1 − ττ ∗)− jeτ Ĵ+|J,−J〉,
|β〉 = e−ββ∗/2eβâ† |0〉, (4)

with

τ = q1 + ip1√
4 j − q2

1 − p2
1

, β = 1√
2

(q2 + ip2). (5)

Here |J,−J〉 denotes the state with spin J and Ĵz = −J , and
|0〉 is the bosonic field ground state. The quantity j is set to
j = N/2 and the variables q1, p1, q2, p2 describe the phase
space of the system. The indices 1 and 2 denote the atomic and
field subsystems, respectively. With the standard procedure
[38], one can obtain the corresponding classical Hamiltonian
for the two-photon Dicke model (1),

Hcl ≡ 〈τβ|Ĥ |τβ〉 = ω0

2

(
q2

1 + p2
1 − 2 j

) + ω

2

(
q2

2 + p2
2

)

+
q1

√
4 j − q2

1 − p2
1

(
q2

2 − p2
2

)
g

2 j
. (6)

It is then easy to obtain Hamilton’s canonical equations,

q̇1 = ω0 p1 + gq1 p1
(
p2

2 − q2
2

)
2 j

√
4 j − q2

1 − p2
1

,

q̇2 = ωp2 −
gq1 p2

√
4 j − q2

1 − p2
1

j
,

ṗ1 = −ω0q1 + g
(
4 j − 2q2

1 − p2
1

)(
p2

2 − q2
2

)
2 j

√
4 j − q2

1 − p2
1

,

ṗ2 = −ωq2 −
gq1

√
4 j − q2

1 − p2
1

j
. (7)

For the two-photon Dicke model, there is a spectral collapse at
gcollapse = ω

2 , which yields that the energy levels of the system
collapse into a continuum as g � ω

2 and then the ground state
of Hamiltonian (1) is no longer defined in this regime. There-
fore, we will focus on the strong-coupling regime, where g is
smaller than but comparable to ω/2. For the sake of simplicity,
we limit our consideration to the resonant case ω0 = 2ω in
which the transition between two energy levels occurs only
if the atom absorbs (or emits) two photons. The presence of
the two-photon interaction yields that the equation of motion
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FIG. 4. The correspondence between classical dynamics and quantum entanglement entropy for the two-photon Dicke model with the
fixed ratio E/N = 1.1. Part (a) is the classical Poincaré section, and (b)–(d) denote the corresponding time-averaged entanglement entropy
distribution for the two-photon Dicke model with E = 5.5, N = 5; E = 16.5, N = 15; and E = 33, N = 30, respectively. Here we rescale
q1 → q1/

√
j, p1 → p1/

√
j, and we set the coupling parameter g = 0.3 and ω = ω0/2 = 1.

(7) in the classical correspondence is not variable-separable,
which means that the corresponding motion could be chaotic.
In Figs. 1(a)–1(c), we present the Poincaré section for certain
parameters and initial values, which show that there is chaos
for the system described by the classical Hamiltonian (6)
corresponding to the two-photon Dicke model (1).

III. EFFECTS OF ENERGY OF A SYSTEM ON THE
QUANTUM SIGNATURES OF CHAOS IN THE

TWO-PHOTON DICKE MODEL

In this section, we will investigate how the system energy
improves the quantum signatures of chaos in the two-photon
Dicke model via linear entanglement entropy, which is a

FIG. 5. The correspondence between classical dynamics and quantum entanglement entropy for the two-photon Dicke model with fixed
particle number N = 10 and coupling constant g = 0.3. Parts (a)–(c) correspond to the classical phase spaces for the two-photon Dicke model
with system energy E = 7, 12, and 17, respectively. Parts (d)–(f) denote the time-averaged entanglement entropy for the two-photon Dicke
model with system energy E = 7, 12, and 17, respectively. Here we set ω = ω0/2 = 1.
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FIG. 6. The correspondence between classical dynamics and quantum entanglement entropy for the two-photon Dicke model with fixed
system energy E = 12 and coupling constant g = 0.3. Parts (a)–(c) correspond to the classical phase spaces for the two-photon Dicke model
with particle number N = 4, 15, and 30, respectively. Parts (d)–(f) denotes time-averaged entanglement entropy for the two-photon Dicke
model with particle number N = 4, 15, and 30, respectively. Here we set ω = ω0/2 = 1.

common tool to explore chaos in quantum systems including
the Dicke model [8] and the kicked top model [11]. The linear
entanglement entropy is defined as

S(t ) = 1 − Tr1ρ1(t )2, (8)

with the reduced-density matrix

ρ1(t ) = Tr2|ψ (t )〉〈ψ (t )|, (9)

where Tri is a trace over the ith subsystem (i = 1, 2), and
the vector |ψ (t )〉 is the quantum state of the full system that
evolved in time under the action of Hamiltonian (1). The
quantity S(t ) describes the degree of purity of the subsystems
and the degree of decoherence. In Figs. 1(d)–1(i), we show the
evolution of linear entanglement entropy with time t for the
different initial states, which correspond to different points in

FIG. 7. The correspondence between classical dynamics and quantum entanglement entropy for the one-photon Dicke model with the fixed
ratio E/N = 0.4. Part (a) is the classical Poincaré section, and (b)–(d) denote the time-averaged entanglement entropy for the one-photon Dicke
model in the cases with E = 2, N = 5; E = 6, N = 15; and E = 12, N = 30, respectively. Here we rescale q1 → q1/

√
j, p1 → p1/

√
j, and

we set the coupling parameter g = 0.5 and ω = ω0 = 1.
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FIG. 8. The correspondence between classical dynamics and quantum entanglement entropy for the single-photon Dicke model with fixed
particle number N = 10 and coupling constant g = 0.5. Parts (a)–(c) correspond to the classical phase spaces for the one-photon Dicke model
with system energy E = 1, 4, and 7, respectively. Parts (d)–(f) denote the time-averaged entanglement entropy for the one-photon Dicke model
with system energy E = 1, 4, and 7, respectively. Here we set ω = ω0 = 1.

the classical phase spaces. The points A1, A3, B2, B3, C2, and
C3 are in the classical chaotic region, but the points A2, A4, B1,
and C1 are in the classical regular region. As the energy of the
system E = 1, from Figs. 1(d) and 1(g) it seems that the linear
entanglement entropy increases more rapidly for the initial
states corresponding to these points in the classical chaotic
region. However, the values of linear entanglement entropy
for the points A1–A4 are so close that they sometimes overlap,
which means that it is actually difficult to distinguish classical
chaotic and regular behaviors by using the linear entanglement
entropy in this case. With the increase of the energy of system
E , one can obtain that the linear entanglement entropies of
the points in the chaotic and regular regions become more
distinguishable. As E = 10, from Figs. 1(f) and 1(i), we
find that with time the linear entanglement entropy tends to
different limit values for different initial states. The limit value
of linear entanglement entropy for the states corresponding
to the points (C2, C3) in the chaotic regions is much higher
than that of the points (C1) in the regular regions. This means
that higher energy of a system can enhance the availability of
entanglement entropy as a tool to explore quantum chaos in
the two-photon Dicke model.

Now, we adopt the time-averaged entanglement entropy
to investigate the correlation between classical dynamics and

quantum entanglement in the two-photon Dicke model for
different system energies. The time-averaged entanglement
entropy is defined by

Sm = 1

T

∫ T

0
S(t )dt, (10)

where T is the total time of evolution. In Figs. 2(a)–2(c), we
present the classical phase space for the two-photon Dicke
model with system energy E = 1 for fixed coupling parameter
g = 0.1, 0.25, and 0.4, respectively. The corresponding time-
averaged entanglement entropy Sm with T = 30 is plotted in
Figs. 2(d)–2(f) for the initial states related to the points in the
whole classical phase space. In Fig. 2, comparing part (a) [or
(c)] with part (d) [or (f)], it seems that there is a correspon-
dence between the classical phase space and the distribution
of time-averaged entanglement entropy, i.e., the initial state
located in the chaotic region in classical phase space has high
time-averaged entanglement entropy, and the initial state in
the regular region has lower entanglement entropy. However,
we also note that the time-averaged entanglement entropy for
certain points that lie in the regular region is higher than that
in the chaotic region. Actually, this behavior of time-averaged
entanglement entropy in the few-particle regime is also found
in the quantum kicked top model [39]. It is shown that in
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FIG. 9. The correspondence between classical dynamics and quantum entanglement entropy for the one-photon Dicke model with the fixed
system energy E = 4 and coupling constant g = 0.5. Parts (a)–(c) correspond to the classical phase spaces for the single-photon Dicke model
with particle number N = 5, 15, and 30, respectively. Parts (d)–(f) denote the time-averaged entanglement entropy for the one-photon Dicke
model with particle number N = 5, 15, and 30, respectively. Here we set ω = ω0 = 1.

the quantum kicked top system, the semiclassical limit is
approached by increasing the particle number N , and then the
correspondence between the classical phase space and the dis-
tribution of time-averaged entanglement entropy is improved.
For the two-photon Dicke model, from Figs. 2(b) and 2(e), we
can find directly that the corresponding relationship between
the classical phase space and the time-averaged entanglement
entropy does not hold in the few-particle case as the system
energy is set to E = 1. In Fig. 3, we present the classical
phase space and the time-averaged entanglement entropy for
the two-photon Dicke model with the same parameters as in
Fig. 2 except the system energy E = 10. Comparing Figs. 2
and 3, it is obvious that in the few-particle case (N = 10),
higher system energy improves the correspondence between
the classical phase space and the distribution of time-averaged
entanglement entropy, which could be attributed to the fact
that at high system energy a quantum state would expect
thermalization to a “classical” high-temperature state.

It is well known that in the kicked top model, the structure
of classical phase space does not depend on the number of
particles N [11], thus it is convenient to compare the correla-
tion between classical dynamics and quantum entanglement
for systems with different N . However, in the two-photon
Dicke model, one can find from Fig. 1 that the system energy

affects the structure of the classical phase space. Actually,
the structure of the classical phase space in the Dicke model
does not change if the ratio E/N is fixed. In Fig. 4, we
present the correspondence between classical dynamics and
quantum entanglement for the two-photon Dicke model with
a fixed ratio E/N = 1.1. We find that the correspondence is
improved by increasing the energy E and the particle number
N of the system at the same time. However, it is unclear which
factor (the energy E or the particle number N) is responsible
for this improvement. Thus, in order to probe the effects of the
system energy E on the correspondence between classical dy-
namics and quantum entanglement entropy, as in the previous
discussion, we have to change the system energy E and fix the
particle number N in the two-photon Dicke model, although
it will change the structure of the classical phase space.
Actually, we can compare the degree of similarity between
the classical Poincaré section and the distribution of quantum
entanglement in the cases with different system energy and
then probe further their correspondence. In Fig. 5, we present
the correspondence between classical dynamics and quantum
entanglement entropy for the two-photon Dicke model with
a fixed particle number N = 10 and a coupling constant g =
0.3. It is obvious that the increase of E enhances the similarity
between the classical Poincaré section and the distribution of
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FIG. 10. Change of Husimi Q distribution with time for fixed coupling parameter g = 0.3 and system energy E = 1. Parts (a)–(f) denote
the case in which the initial coherent state corresponds to point A4 in the regular region in Fig. 1. Parts (g)–(l) denote the case in which the
initial coherent state corresponds to point A1 in the chaotic region in Fig. 1.

quantum entanglement entropy. Moreover, we find that with
the increase of E , the time-averaged entanglement entropy
for the initial state near the boundary in the classical phase
space, which is in the chaotic region, becomes gradually
higher than that for the initial state in the regular region. In
Fig. 6, we find that the increase of the particle number N also
improves the correspondence between classical dynamics and
time-averaged entanglement entropy, which is similar to those
obtained in the kicked top model [11]. To make a comparison,
in Figs. 7–9, we plot the correspondence between classical
dynamics and quantum entanglement entropy for the one-
photon Dicke model. It is easy to find that the effects of the
system energy E and the particle number N in the one-photon
Dicke model are similar to those in the two-photon Dicke
model. This also further supports the idea that an increase
in the system energy E can improve the correspondence
between classical dynamics and time-averaged entanglement
entropy.

IV. HUSIMI Q DISTRIBUTION IN THE TWO-PHOTON
DICKE MODEL

Husimi Q distribution is a quasiprobability distribution,
which can provide a visualization of high-dimensional quan-
tum states and demonstrates the dynamical evolution of the
quantum state with time. It is shown that Husimi Q distribu-
tion displays a rapid dispersion over the phase space as the
initial coherent state is in the classically chaotic region. Thus,
with Husimi Q distribution, one can diagnose chaotic behavior
in a quantum system [40]. For a coherent state, the Husimi Q
function is defined as

Q(q1, p1) = 1

π
〈q1, p1|ρ̂1|q1, p1〉, (11)

where |q1, p1〉 is a coherent state and ρ1 is the reduced-
density matrix of the first subsystem. In Figs. 10 and 11,
we present the change of Husimi Q distribution in phase
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FIG. 11. Change of Husimi Q distribution with time for fixed coupling parameter g = 0.3 and system energy E = 10. Parts (a)–(f) denote
the case in which the initial coherent state corresponds to point C1 in the regular region in Fig. 1. Parts (g)–(l) denote the case in which the
initial coherent state corresponds to point C3 in the chaotic region in Fig. 1.

space for the quantum system with energy E = 1 and 10,
respectively. Figures 10(a)–10(f) and 10(g)–10(l) demonstrate
the dynamical evolution of the coherent state with the initial
state corresponding to point A4 in the regular region and point
A1 in the chaotic region in Fig. 1(a), respectively. The Husimi
Q function has almost the same dispersion rate in the phase
space for these two different states, which indicates again
that it is difficult to distinguish classical chaotic and regular
behaviors in the two-photon Dicke model with system energy
E = 1. However, for the case with system energy E = 10, as
shown in Fig. 11, one can find that the Husimi Q function
for the initial state corresponding to point C3 in the chaotic
region disperses more quickly than that of the corresponding
point C1 in the regular region. Moreover, in Fig. 12 we present
the variance of Husimi Q distribution for the quantum system
with the same parameters as in Figs. 10 and 11. It shows that
the variance of Husimi Q distribution for the initial state in
the regular region decreases at almost the same rate in both

cases E = 1 and 10. However, the variance in the chaotic
region in the case E = 10 decays more quickly than that
in the case E = 1. This means that the difference of the
variance of Husimi Q distribution between in the chaotic and
regular regions is more distinct in the case with higher system
energy. Therefore, the change of Husimi Q distribution also
supports the idea that higher system energy has contributed
to distinguishing between chaotic and regular behavior in the
quantum two-photon Dicke model.

Finally, we make a brief comparison of our results with
other related studies. In the quantum kicked top model, it is
found that the correspondence between the classical phase
space and the distribution of time-averaged entanglement
entropy can be improved by increasing the particle number
N [11,15,39], which is totally understandable since as N
(or j) tends toward infinite, the behavior of the quantum
system indeed converges to that in the classic limit. In the
one-photon and two-photon Dicke models, we find that the
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FIG. 12. Change of the variance in Husimi Q distribution with time for fixed coupling parameter g = 0.3 and ω = ω0/2 = 1. In the left
panel, the dashed blue and red lines correspond to the initial coherent states located at point A4 in the regular region and point A1 in the chaotic
region, respectively, in Fig. 1(a) with the system E = 1. In the right panel, the dashed blue and red lines correspond to the initial coherent
states located at point C1 in the regular region and point C3 in the chaotic region, respectively, in Fig. 1(c) with the system E = 10.

high system energy can improve the correspondence between
classical phase space and the distribution of time-averaged
entanglement entropy, which is not found elsewhere. This
could be attributed to the fact that at high system energy, a
quantum state would expect thermalization to a “classical”
high-temperature state. Moreover, we also studied the effect
of the particle number N in the Dicke model on the corre-
spondence between chaos and entanglement entropy, and we
found some similar results obtained in the quantum kicked top
model. Therefore, our results indicate that the corresponding
chaos and entanglement entropy can be improved by increas-
ing both the particle number N and the system energy in the
Dicke models.

V. SUMMARY

We have studied entanglement entropy and Husimi Q
distribution in the two-photon Dicke model. It is shown that
in the cases with higher system energy, the increasing rate of
linear entanglement entropy becomes more rapid for the initial
states corresponding to these points in the classical chaotic
region. With the increase of the energy of the system, the
values of linear entanglement entropy of the points in these
chaotic and regular regions become more distinguishable.
Moreover, there is an obvious improvement in the correspond-
ing relationship between the distribution of time-averaged
entanglement entropy and the classical Poincaré section in

the cases with higher system energy. Finally, we also present
Husimi Q distribution for a coherent state in the two-photon
Dicke model with different system energies, and we find that
Husimi Q distribution for the initial state corresponding to
the point in the chaotic region in the higher-energy system
disperses more quickly than that in the lower-energy system.
This implies that higher system energy has contributed to
distinguishing between the chaotic and regular behavior in
the quantum two-photon Dicke model. Moreover, our results
indicate that in the Dicke model, the correspondence between
chaos and entanglement entropy can be improved by increas-
ing both the particle number N and the system energy E .
It would be of interest to study further whether there exists
an inherent connection between these two different methods,
and whether there are other quantities that might improve the
corresponding chaos and entanglement entropy, which could
help us to obtain a deeper understanding of the chaos in the
quantum system.
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