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Various systems in the real world can be nonlinear and stochastic, but because nonlinear time series analysis
has been developed to distinguish nonlinear deterministic systems from linear stochastic systems, there have
been no appropriate methods developed so far for testing the nonlinear stochasticity for a given system. Thus,
here we propose a set of two hypothesis tests, one for the nonlinearity and one for the stochasticity, independent
of each other. The test for the linearity is based on Fourier-transform-based surrogate data with a nonlinear
test statistic, while the test for determinism depends on the theory of ordinal patterns or permutations recently
developed intensively. We demonstrate the proposed set of tests with time series generated from toy models. In
addition, we show that both a foreign exchange market and a temperature series in Tokyo could be nonlinear and
stochastic, as well as sometimes with determinism beyond pseudoperiodicity.
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I. INTRODUCTION

Time series analysis is the first step for modeling a given
system. At the beginning of the modeling, we would like to
know the following properties for properly choosing a class
of such a model (Fig. 1): (i) whether a system is stationary
or nonstationary, (ii) whether a system is deterministic or
stochastic, and (iii) whether a system is linear or nonlinear.
If the underlying dynamics is fixed throughout measurements,
we call the underlying dynamics stationary; otherwise, we call
it nonstationary. If the future state is defined as a function of
the current state and/or the past states without probabilistic
components, then the underlying dynamics is deterministic;
otherwise, we call it stochastic. Namely, when the underlying
dynamics is stochastic, there is at least a deviation between
such a function and the future state due to some probabilistic
component(s). In addition, we call the underlying system with
determinism beyond pseudoperiodicity if one rejects the null
hypothesis that a time series is a periodic signal perturbed by
uncorrelated noise. If such a function is linear in terms of the
current and/or past states, we call the underlying dynamics
linear. Otherwise, we call it nonlinear.

For specifying a class of such a model rigorously sta-
tistically, hypothesis testing is necessary. In such a process,
we should be aware of the difference between a statistic
and a test [1]: A statistic is obtained from a dataset as a
value characterizing a certain aspect of the dataset. A test
has additionally a function of whether a null hypothesis, or
a hypothesis in question, is likely to be satisfied or not by
comparing the statistic with its distribution generated when
we assume the null hypothesis. If the statistic deviates much
from the distribution assuming the null hypothesis, we reject
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the null hypothesis. Otherwise, we cannot reject the null
hypothesis. See Appendixes A and B for various hypothesis
testings and other related analysis, respectively, in nonlinear
time series analysis.

Suppose that a given time series is stationary, meaning
that the underlying dynamics is fixed throughout the measure-
ments. (If the time series is not stationary, we can detect the
nonstationarity using the method of Ref. [1] or identify how
the parameters for the underlying dynamics change during the
measurements by using the methods described in Refs. [2,3],
for example.) There are many methods characterizing non-
linear deterministic systems against linear stochastic systems
using surrogate data [4—6] (compare region 1 with region 2 in
Fig. 2; see also Appendix A for more surrogate data analysis).
However, this main approach in the past cannot test nonlinear
stochastic systems (region 3 in Fig. 2) because the test for
linearity has been normally evaluated by using a test statistic
characterizing the determinism.

Here, we propose to separate the test for linearity from the
test for determinism so that the rejections for both tests imply
that the underlying dynamics is nonlinear and stochastic. For
the test for determinism, we use ordinal patterns [7,8] by
extending the ideas in Refs. [9,10]. For the test for linearity,
we use Fourier-transform-based surrogate data [4] with a
nonlinear test statistic which is not directly linked with the
deterministic properties. Therefore, the class of systems that
we can identify is a subset of nonlinear and stochastic systems
(region 3) as shown in the blue region in Fig. 2. By using
pseudoperiodic surrogates together, we will add some depth
to the results in our analysis.

II. PROPOSED METHODS

In this section, we propose a test for determinism and a test
for linearity.

©2019 American Physical Society
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FIG. 1. The classifications of models depending on stationarity-
nonstationarity, determinism-stochasticity, and linearity-
nonlinearity. Associated methods for time series analysis are
also annotated in the corresponding regions of these panels.

A. Test for determinism

Our test for determinism is constructed using ordinal
patterns, or permutations [7,8]. The ordinal pattern ()
for a subsequence x(¢), x(t + 1), ...,x(t + L — 1) of scalar
time series {x(¢)|t =1,2,...,T} is defined by inequality
relations x(r + i) <x(t+ i) <---<x(t+1i) as 7w(t) =
(i1, 1, ...,0L), where iy, iy, ...,i are integers from 0 and
L — 1 and unique. Here, we use the ascending order x(¢ +
i) < x(t + j) of the corresponding time indices if x(t + i) =
x(t+j) for i < j. In Ref. [9], the authors proposed to
count the number of appearing ordinal patterns {m(¢)|t =
1,2,...,T — L+ 1} for estimating the topological entropy
for the underlying dynamics. In particular, it is shown by
Amigé and Kennel [9] that if the underlying dynamics is
deterministic and expansive, and the given time series is
sufficiently long, then the number of appearing ordinal pat-
terns increases exponentially when the length of ordinal
patterns increases (Theorem 2 of Ref. [9]). Based on this the-
orem, Amigoé et al. [10] identified the existence of forbidden
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Determinism beyond pseudoperiodicity

FIG. 2. Classification of dynamic systems. Region 1 corresponds
to the class of nonlinear deterministic systems. Region 2 corresponds
to the class of linear stochastic systems. Region 3 corresponds to the
class of nonlinear stochastic systems. The blue region is the class of
systems the proposed approach can identify. In addition, we show the
class of systems that pseudoperiodic surrogates [11] can identify.

ordinal patterns to infer the determinism for the underlying
dynamics.

Therefore, here, we use the contraposition for this theorem:
Namely, if the number of appearing ordinal patterns does
not increase exponentially, then the underlying dynamics is
either stochastic or nonexpansive under the condition that
the given time series is sufficiently long. Hence, our test for
determinism is constructed in three steps: First, we assume the
null hypothesis that the underlying dynamics is deterministic
and expansive. Then, a logical consequence is that the number
of appearing ordinal patterns N (/) increases exponentially
(see the above argument related to Ref. [9]). Thus, second, we
test whether the number of appearing ordinal patterns N (/)
increases exponentially as the length / of ordinal patterns is
varied between [y, and [, If InN(l) can be fitted by a
linear model depending on / better than by the corresponding
quadratic model of [/, then we regard that N(I/) increases
exponentially depending on /. To judge which fitting is better,
we use the F distribution [12] with (Ipax — Imin — 1, Imax —
Inmin — 2) degrees of freedom. (Namely, if the null hypothesis
is true, In N(!) will fluctuate around o + BI, where coeffi-
cients « and B are specified during this procedure.) We set
Imin = 4 and [« = 8 in this paper. In addition, we use 5%
as a significance level. If the linear model is inferior to the
quadratic model even if we take into account the 5% signifi-
cance level, we call the underlying dynamics nonexponential
(see Fig. 2). Otherwise, then we call the underlying dynamics
exponential (see Fig. 2).Third, we exclude the case where
the underlying dynamics is expansive. A dynamic system is
called expansive if two neighboring orbits are separated by
more than a predefined distance certainly after some iterations
(the number of iterations is not specified here). For showing
the expansiveness, we use a recurrence plot [13,14]. The
condition for the expansiveness is equivalent to the condition
for the sensitive dependence on initial conditions [15]: In a
recurrence plot, each diagonal line has one or more interrup-
tions. Therefore, if we can show that the given time series
satisfies the condition of the sensitive dependence on initial
conditions, we can exclude the possibility for the nonexpan-
siveness. In the examples below, we use the first 10 000 points
to obtain a recurrence plot so that 5% of places excluding the
central diagonal line have points plotted, and we evaluate the
expansiveness. (This third step is not strictly a hypothesis test

yet.)

B. Test for linearity

Our test for linearity is based on an extended version [4]
of iterative adjusted Fourier transform surrogates [5]. In the
method of Ref. [4], or the symmetrized truncated Fourier
transform surrogates, the phases for the top 99% of high-
frequency components only are randomized so that trends of
the original time series as well as the power spectrum are
preserved. Thus, the null hypothesis is that the underlying
dynamics is linear noise with trends and is transformed by
a static nonlinear monotonic transformation.

Here, we use the average of x(¢)?x(t + 1)* over the time
series as a test statistic. The important point is that this
quantity does not have any meaning in terms of determinism.
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Therefore, we can evaluate simply the deviation from the
linearity by using this test statistic.

We generated 39 such surrogate data unless otherwise men-
tioned. Thus, the significance level in this paper is 2/(39 +
1) = 0.05. Thus, if the average of x(¢)’x(t + 1)*> for the
original time series is out of the range specified with the corre-
sponding 39 surrogate data, then we reject the null hypothesis
that the underlying dynamics is linear noise, implying the
nonlinearity for the underlying dynamics.

III. EXAMPLES

We verified the proposed set of methods using nine exam-
ples. Then, we applied the proposed set of methods to real data
of foreign exchange market and temperature series in Tokyo.
In this section, we also use pseudoperiodic surrogates [11]
with correlation dimensions [16] to test whether the underly-
ing dynamics has the determinism beyond pseudoperiodicity.
For each time series, we used the first 10000 time points to
generate 39 pseudoperiodic surrogates [11] so that each statis-
tic has a significance level of 5%. We used three-dimensional
delay coordinates with delay 8 to generate pseudoperiodic
surrogates throughout the paper. Since we used 19 dimensions
between 2 and 20 and each test statistic has a 5% chance of
rejection, we need four rejections out of 19 dimensions to
formally reject, as a total, the null hypothesis that a time series
is a periodic signal perturbed with uncorrelated noise.

A. Test examples: Maps

We used the following seven models based on maps for
testing the validity for the proposed set of methods. Although
we understand that the accuracies for the parameters are
different from model to model, we use the parameters as de-
scribed here so that these models can retain typical properties
which were demonstrated in their original papers.

1. Autoregressive linear model

The first model is the autoregressive linear model [17]. We
used the following model,

x(t+1) = —0.8x() + s, (D

where 7, follows the Gaussian distribution with mean 0 and
standard deviation 1. This model corresponds to a case where
the underlying dynamics is linear and stochastic. We gener-
ated 20 time series of length 1 000 000 by using different ini-
tial conditions and stochastic components prepared randomly,
unless otherwise mentioned.

Some of the results are presented in Figs. 3, 4(a), 5(a), and
6(a). The logarithm for the number of appearing permutations
InN(l) is concave, meaning that the underlying dynamics
should be classified as nonexponential (Fig. 3). In addition,
each diagonal line for the recurrence plot has at least an
interruption [Fig. 4(a)], meaning that the underlying dynam-
ics is expansive and thus stochastic. Moreover, the statistic
E[x(t)%x(t + 1)?] obtained from the original data is between
the minimum and the maximum of those obtained from the
surrogate data, meaning that the underlying dynamics is likely
to be linear [Fig. 5(a)]. Furthermore, there is no determinism
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FIG. 3. The increases of the number of appearing permutations
N(I) given the length [ of permutations. In this figure, the values
InN(l) for each model are aligned so that the values for [ =4
become the same point. To evaluate the straightness, concavity, or
convexity of these lines, use a straight edge.

beyond pseudoperiodicity because there was no rejection on
Fig. 6(a).

2. Fractional Gaussian noise

The second model is the fractional Gaussian noise (fGn)
[18]. The fractional Gaussian noise {&;, ¢ > 0} with the Hurst
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FIG. 4. Parts of recurrence plots for five models.
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FIG. 5. The results for surrogate data analysis on testing lin-
earity. In each panel, the histogram shows the distribution for the
surrogate data of Ref. [4] and the red dash-dotted vertical line
corresponds to the value of the test statistic for the original data.

parameter H € (0, 1) has the following property in the covari-
ance function [18]:

E[£&] =3[+ D + (n— D —20°"]. (2

When we generated each time series, we chose a Hurst param-
eter H € [0.1, 0.9] randomly from the uniform distribution.
We used the program in Ref. [18] to generate 20 time series
of length 2%° using different realizations of stochastic com-
ponents initially if the length is not explicitly specified. This
second model is also a case where the underlying dynamics is
linear and stochastic.

Some of the results are shown in Figs. 3, 4(b), 5(b), and
6(b). In this case, the underlying dynamics is nonexponential
(Fig. 3), expansive [Fig. 4(b)], and thus stochastic, while it is
linear [Fig. 5(b)]. In this case, there is no determinism beyond
pseudoperiodicity [Fig. 6(b)].

3. The logistic map

The third model is the logistic map [19]. We used the
following model:

x4+ 1) =3.8x(@)[1 — x(1)]. 3)

By using different initial conditions prepared randomly, we
generated 20 time series of length 1 000 000 unless otherwise
mentioned. This model corresponds to a model of nonlinear
determinism.

Some of the results are presented in Figs. 3, 4(c), 5(c),
and 6(c). These figures show that the underlying dynamics is
exponential (Fig. 3) and nonlinear [Fig. 5(c)], agreeing with
the properties for the logistic map. In addition, there is the
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FIG. 6. The results for surrogate data analysis on testing deter-
minism beyond pseudoperiodicity. In each panel, the test statistics
are normalized so that the minimum and the maximum for the
surrogate data become 0 and 1, respectively.

determinism beyond pseudoperiodicity because there were a
sufficient number of rejections happening in Fig. 6(c), which
is consistent with the nature of deterministic chaos for the
logistic map.

4. GARCH model

The fourth model is the generalized autoregressive condi-
tional heteroscedasticity (GARCH) model [20]. We used the
model and parameters shown in Ref. [20], namely,

h(t) = 14.4038 + 0.095¢2 | +0.895h(r — 1), (4
€ =/ h(t)n,, Q)

y(t) = 0.409933 4 0.095y(t — 1) + ¢, (6)

where 7, follows the Gaussian distribution of mean 0 and
standard deviation 1. We initialized the dynamics by y(0) =
0, h(0) =1, and ¢, = 0. By observing y(t), we generated
20 time series of length 1000000 by using different realiza-
tions of stochastic components unless otherwise mentioned.
This model corresponds to a case where the underlying dy-
namics is nonlinear and stochastic.

Some of the results are shown in Figs. 3, 4(d), 5(d),
and 6(d). These figures mean that the underlying dy-
namics is nonexponential (concave; Fig. 3) and expansive
[Fig. 4(d)], leading to the stochasticity, while the underlying
dynamics is nonlinear [Fig. 5(d)]. Furthermore, there is no
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TABLE I Results for time series generated from maps. These results are for time series of length 1000 000 (2?° for the fractional Gaussian
noise (fGn) case) without observational noise. The AR model and fGn are linear and stochastic, and thus we were expecting them to be
classified to linear stochastic (nonlinear = 0, nonexp. = 1, and expan. = 1) or linear exponential (nonlinear = 0 and nonexp. = 0). The logistic
map is nonlinear deterministic, and thus we were expecting it to be classified into the category of nonlinear exponential (nonlinear = 1 and
nonexp. = 0). The GARCH model and noise-induced order are mostly nonlinear and stochastic, and thus we were expecting initially them to
be classified into nonlinear stochastic (nonlinear = 1, nonexp. = 1, expan. = 1) or nonlinear exponential (nonlinear = 1 and nonexp. = 0).
Therefore, the results shown in this table mean that time series generated from these model examples were classified almost perfectly. We note
here that the lines with count O are omitted here so that we can save space.

Tests Models

Nonlinear Deter.

beyond

pseudo-

period Nonexp. Expan. AR model fGn logistic GARCH Noise-induced

order Bernoulli shift
1 0 0 1 0 0 9 0 6 2
1 1 0 1 0 0 11 0 0 2
0 0 1 1 19 19 0 0 0 0
1 0 1 1 1 1 0 15 12 10
1 1 1 1 0 0 0 5 2 6
Total 20 20 20 20 20 20

determinism beyond pseudoperiodicity [Fig. 6(d)]. Therefore,
these parts are consistent with the properties of the GARCH
model.

J

{—[0.125 — x(1)]'/? + 0.506 735 7} exp[—x(t)] + b + ¢,
{[x(t) — 0.125]'/3 4 0.506 073 57} exp[—x(t)] + b + ¢
0.121205692 x {10x(t)exp [ Lx()]}” + b+ ¢,

x(t+1)=

where b = 0.023 288 5279 and each ¢, follows the uniform
distribution between —1072 and 10?>. We generated 20 time
series of length 1000000 by using different realizations of
stochastic components. This model also corresponds to a case
where the underlying dynamics is nonlinear and stochastic.

One of the results is presented in Figs. 3, 4(e), 5(e), and
6(e). The function In N(/) is convex (Fig. 3), meaning that
the underlying dynamics is nonexponential. Together with the
expansiveness [Fig. 4(e)], the underlying dynamics should be
classified as stochastic. On the other hand, the underlying
dynamics is nonlinear because the statistic E [x(¢)>x(¢ + 1)?]
obtained from the original data is out of the interval speci-
fied with the minimum and the maximum of 39 surrogates
[Fig. 5(e)]. Moreover, there is no determinism beyond pseu-
doperiodicity [Fig. 6(e)]. As a total, the underlying dynamics
is nonlinear and stochastic, which is consistent with the as-
sumptions for the above model.

6. The Bernoulli shift with a random bit addition

Our sixth model is that of the Bernoulli shift. To run the
Bernoulli shift appropriately with a digital computer, we need
to add a random bit as follows so that it does not stick to zero:

x(t + 1) = 2x(t)mod 1 + 272, (8)

where b, takes 0 or 1 randomly with an equal probability
of 0.5.

5. Noise-induced order

The fifth model is the model of noise-induced order [21].
We used the following model:

ifx(r) < 0.125,
if0.125 < x(t) < 0.3, @)
0.3 < x(1),

(

Some of such results are shown in Figs. 3, 4(f), 5(f),
and 6(f). The logarithm for the number of appearing ordi-
nal patterns increases in a slightly convex manner (Fig. 3).
The underlying dynamics is expansive [Fig. 4(f)]. There-
fore, the underlying dynamics is stochastic. Moreover, the
underlying dynamics is likely to be nonlinear [Fig. 5(f)]. In
addition, there is the determinism beyond pseudoperiodicity
[Fig. 6(f)]. Therefore, based on the time series generated
from the Bernoulli shift, the underlying dynamics is classified
as nonlinear and stochastic with the determinism beyond
pseudoperiodicity. This classification is consistent with our
assumptions for generating the time series.

7. Results of each single example up to
the previous subsubsections

By combining the other 19 results for each model, the
overall results so far are summarized in Table I. The proposed
set of methods worked well with two exceptions: The first
exception is that a time series for each of AR model and
fGn was wrongly classified as nonlinear stochastic. But this
case is a chance level. The second exception is that 6 out
of 20 time series for noise-induced order were classified as
nonlinear and exponential. This case implies that when a
time series is classified as stochastic, it really came from
a stochastic source, while when a time series is classified
as with an exponential increase of appearing permutations,
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FIG. 7. Bifurcation diagram for the AR model converted into the
logistic map.

there are some cases where the underlying dynamics may still
contain stochastic components. The GARCH model and the
Bernoulli shift were statistically classified as stochastic with
the determinism beyond pseudoperiodicity. This classification
could be interesting for further studies. The other time series
for these numerical experiments were finely correctly.

By using the pseudoperiodic surrogates together with the
proposed methods, we can have more depths for obtained
results.

8. AR model converted into the logistic map

In addition, we constructed a model with a parameter
which connects a linear stochastic model with a nonlinear de-
terministic model. Namely, we consider the following model:

x4+ 1) =a(l — 1.8x(t)*) + (1 — a)[—0.8x(t) + ;1. (9)

where n; follows the Gaussian distribution with mean 0 and
standard deviation 1. When a = 0, the above model coincides
with an autoregressive linear model, while the model matches
with a logistic map when a = 1. In between, we may observe
nonlinear and stochastic behavior. We generated a time series
for each parameter a. A numerically obtained bifurcation
diagram for the model of Eq. (9) is shown in Fig. 7.

Figure 8 shows the results when we applied the proposed
set of methods to the model of Eq. (9). These panels for
the figure show that the underlying dynamics for Eq. (9) is
nonlinear and stochastic when the parameter a is between
0.13 and 0.4, at 0.63 and 0.66, and between 0.89 and 0.98.
In particular, the intervals of 0.13 and 0.4 and of 0.89 and
0.98 correspond to the cases where the attractor of Eq. (9)
is represented by an interval for the values of x(¢). On the
other hand, the interval for the parameter a between 0.41 and
0.88 seems to be the region where the period 2 behavior is
dominant. This behavior will explain why there is a certain
difference between the interval and the left and right sides
of the interval. This behavior is also consistent with our
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FIG. 8. Results for the AR model converted into the logistic map.
Panel (a) shows the results for the test of linearity. Panel (b) shows the
combined results for surrogate data analysis on determinism beyond
pseudoperiodicity and the test of exponential growth for the number
of appearing permutations. Panel (c) shows the results on the test of
expansiveness. In panel (a), the test statistic for each a is scaled so
that the minimum and the maximum for the surrogate data become 0
and 1, respectively.

previous observation that sometimes a stochastic source may
be classified as with an exponential increase of appearing
ordinal patterns.

With the pseudoperiodic surrogates, the underlying dy-
namics was most likely to be classified with the determinism
beyond pseudoperiodicity when 0.4 < a < 0.87 and some
other discrete values of a. Thus, a mixture of nonlinear
dynamics, stochasticity, and determinism beyond pseudoperi-
odicity was observed only at some discrete values of a such as
0.16, 0.24, 0.31, 0.32, 0.34, 0.35, 0.36, 0.37, 0.39, 0.40,
0.63, 0.66, 0.89, 0.90, 091, 0.94, and 098 in our
simulations here.

B. Example: Flows

Moreover, we tested the proposed set of methods with
flows, or systems where time is continuous.

1. The Rossler models

We followed Ref. [11] to use the Rossler model [22] under
conditions that dynamical noise is added or not and that
the original underlying dynamics without dynamical noise
is chaotic or periodic. The Rossler model follows the next
equations:

x = —+z2)dt + dW,(t), (10)
dy = (x + ay)dt + dW,(1), (11)
dz = [2 4 z(x — 4)]dt + dW,(1), (12)
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TABLE II. Results for time series generated from flows of the Rossler models.

Tests Stochastic Deterministic
Deter.
Nonlinear beyond
pseudo-
period Nonexp. Expan. Chaotic Periodic Chaotic Periodic
1 1 0 0 0 0 0 7
1 0 0 1 0 0 10 0
0 1 0 1 0 0 2 0
1 1 0 1 0 0 8 13
1 0 1 1 14 19 0 0
1 1 1 1 6 1 0 0
Total 20 20 20 20

where we use the parameter a = 0.398 for the chaotic case
and the parameter 0.3909 for the periodic case. We set df =
0.2 unit times. When we apply the dynamical noise, we gener-
ated dW,(t), dW,(t), and dW,(t) so that each of them follows
the Gaussian distribution of mean 0 and standard deviation
0.05. Otherwise, we set dW,(t) = dW,(t) = dW,(t) = 0. For
analyzing generated time series, we used the first minimum
for the mutual information to decide a time interval with
which we evaluate the ordinal patterns we discussed above.

The results are summarized in Table II. The results demon-
strate that the proposed methods work well even for flows. The
misclassifications for two cases for chaotic and deterministic
models are a chance level.

2. Lorenz 9611 model

We also tested the proposed set of methods using Lorenz
9611 model [23,24], which is a 240-dimensional model for
the atmosphere. The model equations are as follows:

. ho.c <
Xi = —Xi—2Xi—1 + Xi—1Xir1 — X +F — % ;y/',i’ (13)

where we set m =40, n =5, F =8, b=10, c =10, h, =
1, and hy = 1. The variables x; correspond to the higher layer
of the atmosphere, while the variables y;; correspond to the
lower layer of the atmosphere. We observed y; ;(¢) every 0.01
unit times for yielding 20 time series of length 1000000
consecutively from a random initial condition.

In this case, our numerical results show that this high-
dimensional dynamics is classified as nonlinear and exponen-
tial with the determinism beyond pseudoperiodicity (see Table
IIT). Therefore, the proposed set of methods seem to work well
even for a high-dimensional dynamics.

C. Dataset of foreign exchange market

We applied the proposed approach to a dataset of a foreign
exchange market compiled by the Thomson Reuters Corpo-
ration. This dataset covers the quotes for exchanges between
the United States dollar and the Japanese yen between January
2006 and December 2015. We prepared a series of interquote
intervals and applied the above two tests.

The results are presented in Table IV. The results mean
that the underlying dynamics for the interquote intervals is
mostly nonlinear and stochastic, and sometimes statistically

Vii = —cbyj1iyj2i +cbyi—1yip1,i — cyji + % Xi, significantly with the determinism beyond pseudoperiodicity.
(14)
) o . D. Temperature at Tokyo
with periodic boundary conditions of We also analyzed the real dataset for the temperature at
Xi = Xipm (15) Tokyo for every minute between J anuary 2006 and December
2015. We followed the procedures similar to the flows above.
and The results presented in Table IV mean that the underly-
ing dynamics for the temperature was mostly nonlinear and
Vitni = Yjitls (16) stochastic with the determinism beyond pseudoperiodicity.
TABLE III. Results for time series generated from Lorenz *96II model.
Tests Data
Deter.
Nonlinear beyond
pseudo-
period Nonexp. Expan. Without obs. noise With obs. noise
1 1 0 1 20 20
Total 20 20
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TABLE IV. Results for time series in the real world. For the dataset of foreign exchange market, we extracted a segment of length 1 000 000
and applied the proposed set of methods for each segment. For the dataset of temperature at Tokyo, we extracted a part of the dataset every 2

years and applied the proposed set of methods.

Tests Data
Deter.
Nonlinear beyond
pseudo-
period Nonexp. Expan. USD/JPY (2006-2015) Temperature at
Tokyo (2006-2015)
0 1 1 7 0
1 0 1 1 137 1
1 1 1 1 22 4
Total 166 5

IV. DISCUSSIONS
A. Robustness for the proposed methods

We evaluated robustness for the proposed methods from
two viewpoints: observational noise and length of time series.

When we added 5% observational noise, we almost cor-
rectly identified nonlinearity and stochasticity for the AR
model, the fractional Gaussian noise, the logistic map, the
GARCH model, and the model of noise-induced order (see
Table V). Even if the underlying dynamics is high dimensional
as the Lorenz *9611 model with 5% observational noise, then
these time series were classified as exponential and nonlinear,
which is consistent with nonlinear deterministic. If the level
of observational noise becomes as large as the original signal,
the proposed methods may classify such a time series as a
stochastic one.

When we shortened the time series to 100 000, we observed
that the stochasticity cannot be identified well in the AR
model and was misidentified in the logistic map (Table VI).
Thus, the time series needed are relatively long for the pro-
posed methods to work robustly.

B. Comparison with the methods in the existing literature

There are many methods that characterize stochasticity
for the underlying dynamics compared with determinism

[10,25-30], but these methods are either qualitative or
quantitative compared with independent noise or linear surro-
gates. Therefore, the proposed test for stochasticity would be
uniquely applied for identifying more general stochastic sys-
tems even including nonlinearity, although the systems should
have a number of permutations increasing in a nonexponential
manner.

C. Limitations

The limitation of the proposed methods is that we need
relatively long time series due to the combinatorial nature of
ordinal patterns. If we set [y, and /., smaller, we may be
able to shorten the length of time series. This point should be
investigated further in the future.

Another limitation is that the third step for the test of
determinism is not a hypothesis test yet. We should implement
this step, in the future, as a hypothesis test so that we can
more rigorously judge whether the underlying dynamics is
expansive statistically.

Currently, we cannot analyze a nonautonomous system
driven by noise since we regard such a system with a time-
varying component and thus nonstationary. In the future,
we will try to extend the current machinery toward such a
direction.

TABLE V. Results for time series generated from maps. These results are for time series of length 1 000 000 (2% for the fractional Gaussian

noise case) with 5% observational noise.

Tests Models
Deter.

Nonlinear beyond

pseudo-

period Nonexp. Expan. AR model fGn logistic GARCH Noise-induced Bernoulli shift

order
1 0 0 1 0 0 6 0 1 19
1 1 0 1 0 0 14 0 0 1
0 0 1 1 18 19 0 0 0 0
1 0 1 1 1 1 0 15 18 0
1 1 1 1 1 0 0 5 1 0
Total 20 20 20 20 20 20
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TABLE VI. Results for time series generated from maps. These results are for time series of length 100 000 (2'7 for the fractional Gaussian

noise case) with 5% observational noise.

Tests Models
Deter.

Nonlinear beyond

pseudo-

period Nonexp. Expan. AR model fGn logistic GARCH Noise-induced Bernoulli shift

order
0 0 0 1 19 4 0 0 0 0
1 0 0 1 1 1 0 0 4 0
0 0 1 1 0 13 0 0 0 0
1 0 1 1 0 1 4 14 16 18
0 1 1 1 0 1 0 0 0 0
1 1 1 1 0 0 16 6 0 2
Total 20 20 20 20 20 20

D. Implications for real datasets

In the field of econophysics, there are many papers in
the existing literature where researchers employ the Fokker-
Planck equation for quantifying the deterministic and stochas-
tic parts for the underlying dynamics [31,32]. In addition,
there is a work showing the nonlinearity of economic in-
dices [33]. Therefore, our finding that a foreign exchange
market sometimes contains some nonlinear deterministic and
stochastic components itself is not new and is consistent with
the statements in the existing literature, although we believe
that our approach is a demonstration that the underlying
dynamics of a foreign exchange market is nonlinear and has a
time-dependent mixture of deterministic and stochastic nature
through rigorous hypothesis tests. Since our previous work
on a similar dataset shows that a foreign exchange market
has a chaotic nature [34] from the viewpoint of a marked
point process, we should investigate more closely whether
the underlying dynamics for a foreign exchange market is
stochastic chaos [35].

As for the weather data, Palu§ and Novotna [36] showed
in 1994 using daily measurements that the temperature and
the pressure recordings are linear and nonlinear, respectively,
using Fourier-transform based-surrogate data [6] with an ex-
tended version of mutual information, which they call the
redundancy. Judging from our current results as well as our
previous results [37], daily measurements might be too coarse
to show that their underlying dynamics is nonlinear and
stochastic. There was an observation that the monthly South-
ern Oscillation Index is more stochastic rather than chaotic
using correlation dimensions and Lyapunov exponents [38].
In addition, there is a beautiful theory explaining the annual
cycles of climate by the stability for the underlying stochastic
dynamics [39]. Thus, the stochastic aspects on the weather
should be investigated further to, for example, integrate more
renewable energy resources into grids [40] and improve the
quality of our lives.

Therefore, we should investigate more deeply in the future
when there can coexist the nonlinearity, stochasticity, and
determinism beyond pseudoperiodicity.

E. Conclusions

In sum, we have proposed two methods, one which tests
linearity and one which tests determinism. The test of linearity
uses Fourier-transform-based surrogate data with a nonlin-
ear statistic, while the test of determinism judges whether
the number of appearing ordinal patterns increases expo-
nentially. The set of methods needs a long time series of
length 1000 000, but the set of methods may be used under
5% observational noise. We showed that a foreign exchange
market is mostly nonlinear and a time-fluctuating mixture
of stochasticity and determinism beyond pseudoperiodicity,
while the temperature in Tokyo is also nonlinear and quite of-
ten contains both stochastic components as well as determin-
istic components which affect beyond pseudoperiodicity. The
coexistence of nonlinearity, stochasticity, and determinism
beyond pseudoperiodicity were formally shown for a foreign
exchange market and a weather variable using hypothesis
tests. Therefore, the proposed set of methods and the method
of Ref. [11] are complementary because the proposed set of
methods is looking for an intersection between nonlinearity
and stochasticity, while the method of Ref. [11] is trying to
narrow down the class of nonlinear systems by looking for
the determinism beyond pseudoperiodicity as a subset of the
nonlinear class. Hence, if we use these methods together, the
methods will help each other to provide the deeper results
such as formally identifying a mixture of stochasticity and
determinism beyond pseudoperiodicity, only one of which
cannot characterize the GARCH model correctly [41]. The
contents of this paper have been substantially extended from
the contents [42] we presented at a conference in 2018.
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APPENDIX A

In this Appendix, we summarize surrogate data analy-
sis in the context of nonlinear time series analysis. Sur-
rogate data analysis was used by Osborne et al. [43] for
testing the nonlinearity for the underlying dynamics of a
given time series. A test of nonlinearity using surrogate
data has been extended further in Refs. [4-6] toward a
nonstationary time series [44]. Although all of the above
approaches are based on Fourier transform, there are some
approaches that are based on wavelet transform (for exam-
ple, see Ref. [45]). There is even a method for testing the
linearity that does not use the Fourier transform or the wavelet
transform [46].

There are some surrogate data that are testing the properties
other than the linearity for the underlying dynamics, for exam-
ple, that of Ref. [47] for serial dependence. This approach has
been extended to test short-term dynamics by small shuffle
surrogates [48]. The other null hypotheses we can find in the

existing literature include (i) there is no determinism beyond
pseudoperiodicity [11,49], (ii) the underlying dynamics is sta-
tionary [50], (iii) there is no singularity within an oscillation
[51], (iv) only short-term firing rates have meaning [52], and
(v) two time series are independent [53].

There is another way to use surrogate data, which is to ob-
tain a likely distribution for a statistic. This way of surrogate
data was used in Ref. [54] for multiscale processes.

APPENDIX B

Advancements for nonlinear time series analysis in the
past three decades can be also observed in characterizing
nonstationarity and fractalness. The key achievement is the
detrended fluctuation analysis [55,56] for characterizing long-
term dependence in a nonstationary time series. Please see
Ref. [57] if you are interested in further recent developments
in this direction. Since the current work is focusing on sta-
tionary time series, we cannot relate the current work with
the targets for the detrended fluctuation analysis, which is
originally for nonstationary time series (see Fig. 1). Thus,
we will attempt to include nonstationary time series within
our targets and use the method of the detrended fluctuation
analysis within our framework in the future communication.
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