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Transient diffusion and two-regime localization of discrete breatherlike excitations in nonlinear
Schrödinger lattice with disorder
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We systematically simulate and analyze the motion of discrete breatherlike excitations (DBEs) in the nonlinear
Schrödinger lattice with random potentials. A universal transient diffusion of the DBEs is observed for short
timescales (t � 103). For longer timescales (t up to 105), the DBEs become localized. Such localization,
depending on the DBE powers, has two different regimes: Regime I is the Anderson-like localization induced
by the disorder, while Regime II is an enhanced localization attributed to both the disorder and discreteness. Our
study is expected to shed light on understanding the interplay between disorder and strong nonlinearity, from the
diffusive transport and localization properties of nonlinear localized excitations in random media.
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I. INTRODUCTION

The interplay between disorder and nonlinearity is an
important subject extensively studied in different physical
systems. One open question is how the famous Anderson lo-
calization (AL) in random media [1] is influenced by the pres-
ence of nonlinearity [2,3]. This question has been theoretically
discussed within the framework of the nonlinear Schrödinger
(NLS) lattices [4–6]. Numerical simulations demonstrated
the AL would be broken up by a weak cubic nonlinearity,
leading to a subdiffusive spreading of the wave packets [7,8].
Meanwhile, Fishman et al. [4] used a perturbation approach to
point out that such a problem remained inclusive for long-time
evolution. The experiments on optics [9,10] and cold atoms
[11,12] provided evidence of the wave-packet localization,
with the combined effects of disorder and nonlinearity. A re-
cent observation of granular chain [13] showed the destruction
of the AL, as well as the occurrence of a superdiffusive energy
transport. Generally speaking, these studies present fruitful
results but are mainly focused, on one hand, on the spreading
of wave packets—the “wave nature” of lattice excitations.

On the other hand, existence of the long-lived discrete
breathers, the spatially localized and time-periodic stable
excitations, is a remarkable manifestation of nonlinearity,
that appear, e.g., in nonlinear optics and Bose-Einstein con-
densates (BECs) [14–21]. Such intrinsic localized structures,
embodying more “particlelike features,” transport mass and
energy when they are mobile in a lattice. In this work, we
consider the discrete breatherlike excitations (DBEs), whose
localized density oscillates with time (they may not be strictly
periodic and be named breathing solitons elsewhere). The
collision of DBEs with ordered impurities can be seen in
Refs. [22,23]. However, to our knowledge, the motion of
DBEs in a disordered lattice, as an aspect of the interaction be-
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tween disorder and strong nonlinearity, has been insufficiently
studied, which will be the subject here. It has to be mentioned
that some pioneering works considered the transport of soli-
tary waves in certain continuous systems with disorder; for
example, see the celebrated Gordon-Haus effect [24] and its
nonlocal counterpart [25,26]. The Brownian soliton motion
(normal diffusion) [27,28] and the so-called AL of solitons
[29–31] were reported as well. Nevertheless, our results for
the discrete system will be quite different, with a transient
diffusion and two regimes of localization revealed for the
DBEs.

II. MODEL AND METHOD

For the above purpose, we consider the following one-
dimensional (1D) time-dependent NLS lattice:

i
∂ψn

∂t
= −(ψn−1 + ψn+1) − ν|ψn|2ψn + εnψn , (1)

where ψn is the dimensionless wave function at site n and time
t , while ν characterizes the strength of the cubic nonlinearity.
The random potential εn satisfies the normal distribution with
zero mean value and standard deviation σ , that is, 〈εn〉 = 0
and 〈εnεn′ 〉 = σ 2δ(n − n′), where the angular brackets stand
for statistical averaging. Equation (1) can be a prototype
lattice model describing the propagation of optical and atomic
wave packets in a disordered environment [4,9,10,17].

Without random potentials (εn ≡ 0), one effective way to
generate the long-lived DBEs, with their lifetimes t � 105,
is starting from an initially localized wave packet, e.g., those
with the Gaussian or hyperbolic shape [17,20]. The profiles
of these DBEs are asymptotically well fitted, in the form
sinh(μ1)/ cosh(μ2n), where μ1 and μ2 are close to each
other [17]. Therefore we will practically use the initial state
ψn(t = 0) = sinh(μ)/ cosh(μn) to produce the DBEs in the
disordered lattice (εn �= 0), with μ viewed as the parameter
relating to the power of DBE [32]. This initial condition, with
the parameters in our context, locates in the non-Gibbs phase
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of the NLS lattice, where the formation of long-lasting DBEs
was reported [33,34]. Hereby we stress that the relatively
strong nonlinearity, compared with the strength of disorder,
is addressed in our work, keeping the DBEs neither breaking
up nor radiating quickly, so that they can evolve for a consid-
erable long time.

To investigate the particlelike motion of DBEs, we con-
centrate on random walks of these localized excitations,
considering the basic quantity: the ensemble-averaged mean
squared displacement (eMSD) 〈x2(t )〉, defined as 〈x2(t )〉 �
1
N

∑N
i=1 x2

i (t ), where x(t ) is the center of mass of the DBE
for the density |ψn(t )|2. For a classical particle, the eMSD
can characterize either a Brownian motion 〈x2(t )〉 ∼ t or an
anomalous diffusion 〈x2(t )〉 ∼ tγ with γ �= 1 for a certain
timescale. Anomalous diffusion plays an important role in
complex systems and has been discussed using a statistical
framework in different contents [35]. It typically includes
subdiffusion (0 < γ < 1), superdiffusion (1 < γ < 2), and
even a less understood case, hyperdiffusion (γ > 2). These
anomalous diffusions appear in various occasions: Subdiffu-
sion has been observed in the stochastic motion of mRNA
molecules [36] and also in the particle tracking of polystyrene
beads in micellar solutions [37]. Superdiffusion has been
reported for the transport of polymeric particles in living cells
[38] and for the diffusion of ellipsoids in bacterial suspensions
[39], as well as for the light in the engineered optical materials
[40]. Also, a transition from the short-time subdiffusion to
the longer-time normal diffusion was shown for telomeres in
the nucleus of mammalian cells [41]. In this study, we find a
transient diffusion of DBEs for a short timescale, induced by
disorder, containing time intervals with the different scaling
exponents γ , which to our best knowledge has never been
reported before.

We performed extensive simulations to analyze the DBE
motion. Equation (1) was integrated by using a fourth-order
Runge-Kutta scheme with the periodic boundary conditions.
The size of the lattice with n ∈ [−L, L] was chosen large
enough (L = 300) so the DBEs are far away from the bound-
aries. The step size of time discretization was 	t = 0.01, and
the total computational time was up to T = 105. Our statis-
tical results below were derived by averaging over N = 256
realizations, while in each realization, the DBE was checked
not to break up and remained localized at all times [42].

III. RESULTS AND DISCUSSIONS

Figure 1(a) displays a typical motion of the DBE in a
random potential, while nine different realizations of motion
trajectories are shown in Fig. 1(b). The initial state, after a
very short time [∼10 time units (TUs)], evolves into a DBE,
scattered by the random impurities to experience transverse
displacements larger than the scale of the DBE for many real-
izations. Hence, the diffusive behavior can exist in analog with
that for classical particles. The DBE may change its moving
direction at certain spots of “strong” impurities and oscillate
for many times before it gradually becomes localized for the
long timescale. Apparently, these diffusion and localization
are strongly nonlinear phenomena, since the DBEs are robust
enough to keep their identities during the motions [45].
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FIG. 1. (a) Density demonstration |ψn(t )|2 of the DBE in the
lattice for a realization of random potential, with the embedded
panel showing the profile at t = 105. (b) Motion trajectories for
the center of mass of the DBEs for nine independent realizations
of the random potentials. For both subfigures, the parameters are
μ = 0.7, σ = 0.01, and ν = 1.

In Fig. 2(a) we plot the eMSD 〈x2(t )〉 as a function of
the time t on a log-log scale for five orders of magnitude,
with the same representative parameters shown in Fig. 1. As
observed, diffusion of the DBEs persists at short timescales
(t � 103), and the eMSD reaches a plateau (the localization
of DBEs) at the longer time range. Analysis of the data
(see Table I below) suggests that the diffusive process may
consist of three different intervals: a diffusion of ∼40 TUs
with γ ≈ 3.2, a diffusion of ∼200 TUs with γ ≈ 1.6, and a
diffusion of ∼100 TUs with γ ≈ 0.8. In fact, the length of
these diffusion intervals would increase remarkably as for a
weaker randomness, but with the main features unchanged.

To further study the diffusive process (t � 103), the
time-averaged MSD (tMSD) of an individual trajectory
is introduced as δ2(	, T ) = 1

T −	

∫ T −	

0 [x(t + 	) − x(t )]2 dt
[35], where the so-called lag time 	 
 T defines a time
window slid along the time series x(t ) (here we use
0 < 	� T/10). For an ergodic system, the equivalence
〈x2(	)〉 = limT →∞ δ2(	, T ) is necessarily expected with the
identification t ↔ 	, and the opposite for a nonergodic sys-
tem [35,46–48]. Mithun et al. have recently found a weak
nonergodic phase of the NLS lattice dynamics [49].
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FIG. 2. (a) The eMSD 〈x2(t )〉 as a function of the time t . (b) The
tMSDs δ2(	) (T = 105) for individual trajectories as functions of the
lag time 	, and the black bold curve denotes the trajectory-averaged
tMSD 〈δ2(	)〉. All these quantities are evaluated from N = 256
independent realizations. The parameters are μ = 0.7, σ = 0.01,
and ν = 1.

Figure 2(b) shows the tMSDs δ2(	) up to 	 = 104, which
also cover the intervals of short-time diffusion, as well as
a longer-time localization, but the result obviously varies
from one individual trajectory to another. We consider the
trajectory-averaged tMSD 〈δ2(	)〉 for finite T [35,47,48] and
discover the inequality 〈x2(	)〉 �= 〈δ2(	)〉 for the diffusion
process. Such disparity between the eMSD and the trajectory-
averaged tMSD (t � 103) appears to be kept as T grows
(see Appendix A). These facts may indicate that the time
averages are different from the ensemble averages within our
computational limit. Systematic simulations have confirmed,
for a range of initial parameters (μ = 0.5–0.9), the DBEs
indeed undergo transient diffusion before their localization
(see Appendix B).

To better understand the transient behavior of the diffusive
process, we divide the DBEs into two classes at the time t :
One is the “free” DBE that propagates unidirectionally in the
interval [0, t] (without change of the sign of its velocity);
the other one is the DBE that alters its velocity sign at least
once in this interval. The eMSD for these two classes of
DBEs are denoted as 〈x2

f (t )〉 and 〈x2
r (t )〉, respectively. Data

analysis shows 〈x2
f (t )〉 � 〈x2

r (t )〉 for most of the diffusive
regions, and we can derive 〈x2(t )〉 ≈ 〈x2

f (t )〉S(t ) + 〈x2
r (t )〉

with S(t ) = Nf (t )/N , where Nf (t ) is the time-dependent
number of the free DBEs (see Appendix C). Take the case
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FIG. 3. (a) S(t ) as a function of the time t (logarithm plots).
(b) Comparison of 〈x2

f (t )〉, 〈x2
f (t )〉S(t ), and 〈x2

r (t )〉, in which we
see the suppressing effect of S(t ) on 〈x2

f (t )〉. The parameters are
μ = 0.70, σ = 0.01, ν = 1, and N = 256.

of μ = 0.70 as an example. For the initial stage, when the
number of the free DBEs is dominated, we have S(t ) ≈ 1, so
that 〈x2(t )〉 ≈ 〈x2

f (t )〉 ∼ t3.2. During the intermediate stage,
S(t ) is found to decrease with time, in the form of S(t ) ∼
t−1.4 [see Fig. 3(a)], which suppresses 〈x2

f (t )〉 and makes
both superdiffusive terms 〈x2

f (t )〉S(t ) and 〈x2
r (t )〉 comparable

[see Fig. 3(b)], finally resulting in their addition, i.e., 〈x2(t )〉,
to be superdiffusive as well. For the last stage before the
plateau, S(t ) becomes considerably small, and the major
contribution to the spreading is due to the second class of
DBEs, which are sufficiently constrained by the disorder, such
that an interval of diffusion with γ < 1 occurs before the
localization. By checking the data of μ = 0.50 ∼ 0.90, we
further confirmed such a mechanism to be generally effective
for interpreting the transient diffusive behaviors studied in this
work.

Now we discuss the localization with detailed information.
According to Fig. 2(a), we first define the following quantity
to characterize the plateau as

L � 1

T

∫ T

0
〈x2(t )〉 dt , (2)
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FIG. 4. Dependence plots of L on μ. Each plotted value is
evaluated from N = 256 independent realizations. The parameters
are σ = 0.01 and ν = 1.

with T = 105. The formulas (2) can be used to describe
the length of the localization: a larger L means a wider
distribution of the localized DBEs, while oppositely, a smaller
L indicates that the DBEs are confined in a narrower spatial
region. The dependence of L on the parameter μ is obtained
from systematic simulations of the DBE motions, as shown
in Fig. 4. We clearly see that, with an increase of the DBE
powers, there exist two regimes with different tendencies. In
Regime I, L is almost independent of μ, while L quickly
decreases by about two orders of magnitude in Regime II. The
transition from Regime I to Regime II occurs near μ = 0.85.

Such a transition hereby can be understood, by using a
disordered version of the Peierls-Nabarro (PN) potential [50].
This effective potential, approximately describing the DBE
motion, is made up of two parts: One is the discreteness-
generated potential Ud ∼ − 2π2ν sinh2(μ)

μ3 sinh(π2/μ) cos(2πx), and the
other one is the randomness-generated potential Ur , with
〈U2

r 〉 ∼ σ 2λ2(μ), where λ(μ) is a μ-dependent function [one
can see its numerical form in Fig. 1(c) of Ref. [50]]. The
interaction between these two potentials is estimated by the
following ratio:

κ (μ, σ/ν) = σ

ν

[
μ3 sinh(π2/μ)λ(μ)

2π2 sinh2(μ)

]
, (3)

in which, besides the strength of disorder and nonlinearity,
the parameter μ also plays an important role. For the case of
Fig. 4, the variation of κ with μ is illustrated in Appendix D.
We find κ > 101 in Regime I, meaning that Ur is at least one
order of magnitude stronger than Ud , so the localization in
this regime should be dominated by the effect of disorder. In
Regime II, the strength of Ur and Ud reach the same order of
magnitude, such that this is a regime where the localization
is resulted from the mutual interplay of both the disorder and
discreteness. With μ increasing, the localization of Regime II
is apparently enhanced, since the potential barrier of Ud

becomes larger for the DBE with higher power. Formula (3)
can be effective in qualitatively analyzing the localization of
DBEs for different ratios of σ/ν: For stronger disorder, we
observe that the transition point from Regime I to Regime II
moves to a larger value of μ, which is reasonable because of
the upper shift of the κ (μ) curve (see Appendix D).

Are these transient diffusive and localization behaviors
universal for other types of disorder? At least we have checked
the DBE motions in the uniformly distributed random po-
tential, i.e., εn ∈ unif[−W,+W ], and have found the results
present general similarity with the above discussions (see
Appendix E).

IV. OUTLOOKS AND SUMMARY

So what further can we benefit from this study? First of all,
these systematic behaviors are due to the interaction of disor-
der and strong nonlinearity, which reveal the novel scopes of
the particlelike motion of the DBEs, rather than the diffusive
spreading of wave packets induced by weak nonlinearity. One
notices that for strong nonlinearity, a single-site excitation
cannot uniformly spread over the entire disordered lattice,
leaving partially the wave packet staying localized. This self-
trapping was rigorously proved and related to the presence of
time-quasiperiodic breatherlike states [51,52]. Here we might
expect the location of such trapped states, depending on their
power, to fulfill either regime of the transient localization
for long-time measurement. Second, as the DBE’s power,
linked with its shape structure, is a factor that influences
the properties of the DBE diffusion and localization, one
may experimentally engineer the DBEs in optical lattices of
waveguide arrays (or BEC setup), to realize their controllable
transport to some extent. Finally, whether we can make some
judgment on ergodicity from longer-time (t > 105) simulation
of the DBE transport seems to be an open question.

In summary, we have observed transient diffusion and two-
regime localization of DBEs by systematically simulating a
prototype NLS lattice with random potentials. The diffusion
shows an inequivalence of the eMSD and the tMSD for the
DBE’s center of mass within our computational limit. The
transition, from an Anderson-like localization to an enhanced
localization, is qualitatively explained by the PN potential
with disorder. These phenomena appear to present a high
similarity for different types of randomness.
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APPENDIX A: 〈δ2(�)〉/〈x2(�)〉 FOR FINITE T

To describe the disparity between the tMSD and the eMSD,
we use the parameter EB(	) � 〈δ2(	)〉/〈x2(	)〉 as the ratio
of these two averages. Shown in Fig. 5, the dependence of the
EB(	) curve on T is small, and the function almost converges
as T grows and approaches 105. Hence the tMSD is generally
unequal to the eMSD for the short-time diffusion process, and
there is no indication that the equality might hold within our
computational limit.
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104 to T = 105). The parameters are μ = 0.7, σ = 0.01, ν = 1, and
N = 256.

APPENDIX B: SIMULATION RESULTS
FOR μ = 0.50–0.90

We have performed a series of simulations, while μ varies
from 0.50 to 0.90 with a step size of 0.025. Generally speak-
ing, the higher-power DBE, with larger value of μ, has a
larger amplitude and a narrower width, which presents a better
stability against the perturbation on its profile. However, we
carefully checked each realization, to make sure that, with
our parameters, both of the low- and high-power DBEs keep

TABLE I. Diffusive properties of the DBE dynamics for μ =
0.50, 0.60, 0.70, and 0.80. The eMSD and tMSD curves are fitting
to 〈x2(t )〉 ∼ tγ and 〈δ2(	)〉 ∼ 	γ ′

for different time intervals. The
R2 > 0.99 is kept for each fit unless otherwise stated.

Time interval γ γ ′

μ = 0.50

10–80 2.92 ± 0.01 1.60 ± 0.01
120–350 1.86 ± 0.01 0.59 ± 0.01
440–560 0.97 ± 0.01 0.26 ± 0.01

μ = 0.60

10–60 3.02 ± 0.01 1.63 ± 0.01
100–350 1.67 ± 0.01 0.47 ± 0.01
400–500 0.90 ± 0.01 0.19 ± 0.01

μ = 0.70

10–50 3.17 ± 0.01 1.67 ± 0.01
80–320 1.62 ± 0.01 0.37 ± 0.01a

350–480 0.84 ± 0.01 0.13 ± 0.01b

μ = 0.80

10–50 3.31 ± 0.01 1.59 ± 0.02
80–380 1.41 ± 0.01 Nearly localized
410–520 0.73 ± 0.01 Nearly localized

aR2 = 0.983 for this fit.
bR2 = 0.975 for this fit.
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FIG. 6. The eMSD 〈x2(t )〉 (thick dashed black curves, with
t ↔ 	), tMSDs δ2(	) (thin solid red/gray curves), and trajectory-
averaged tMSD 〈δ2(	)〉 (thick solid black curves) for DBE transport
with μ = 0.50, 0.60, 0.80, and 0.90. All quantities are evaluated
from N = 256 independent realizations (T = 105). Other parameters
include σ = 0.01 and ν = 1.

compact and localized during their transport (no less than
t = 105). Typical results are shown in Fig. 6, and relevant data
analysis can be seen in Table I.

These simulation results further confirm the transient diffu-
sion for short timescales. The inequivalence δ2(	) �= 〈x2(	)〉
is valid for a certain parameter phase. On the other hand, with
the power of DBE increasing, we find that, the eMSD and the
trajectory-averaged tMSD seem to reach their plateau values
at earlier times. A particular case is for μ = 0.90, where the
DBEs get localized after a much shorter diffusive process of
∼200 TUs [as seen in Fig. 6(d)]. Such facts, in some degree,
reflect the difference of the mobility between the low-power
and the high-power DBEs.
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FIG. 7. Comparison of 〈x2
f (t )〉 (solid red curves) and 〈x2

r (t )〉
(dashed green curves) in the time interval t ∈ [10, 600] for
μ = 0.50, 0.70, and 0.90. The parameters are σ = 0.01, ν = 1, and
N = 256. For most of the diffusive regimes, the value of 〈x2

f (t )〉 is an
order of magnitude larger than that of 〈x2

r (t )〉.
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APPENDIX C: ANALYSIS OF
THE TRANSIENT DIFFUSION

As we divide the DBEs into two classes, the eMSD 〈x2(t )〉
over N realizations can be separately expressed as

〈x2(t )〉 ≡ 1

N

N∑
j=1

x2
j (t )

= 1

N

⎧⎨
⎩

Nf∑
k=1

[
x2

f (t )
]

k
+

N−Nf∑
l=1

[
x2

r (t )
]

l

⎫⎬
⎭

= 1

N

[〈
x2

f (t )
〉
Nf + 〈

x2
r (t )

〉
(N − Nf )

]
= [〈

x2
f (t )

〉 − 〈
x2

r (t )
〉]

S(t ) + 〈
x2

r (t )
〉
. (C1)

Note that 〈x2
f (t )〉 and 〈x2

r (t )〉 are respectively averaged over
Nf and N − Nf realizations. For a range of parameters (μ =
0.50–0.90), numerical simulations generally reveal, as three
examples shown in Fig. 7:

〈
x2

f (t )
〉 � 〈

x2
r (t )

〉
. (C2)

Thus, we derive the following approximation:

〈x2(t )〉 ≈ 〈
x2

f (t )
〉
S(t ) + 〈

x2
r (t )

〉
. (C3)
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FIG. 9. The eMSD 〈x2(t )〉 (thick dashed black curves, with
t ↔ 	), tMSDs δ2(	) (thin solid red/gray curves), and trajectory-
averaged tMSD 〈δ2(	)〉 (thick solid black curves) for the DBE
transport with (a) μ= 0.50; (b) μ = 0.80 (W = 0.02 for both cases).
(c) The dependence of L on μ. All quantities are evaluated from
N = 256 independent realizations (ν = 1).

APPENDIX D: κ(μ) AND L(μ) FOR DIFFERENT σ

We consider the localization for stronger disorder (σ =
0.02 and σ = 0.03 are chosen, while ν = 1 is set without
loss of generality). The corresponding plots of κ , as functions
of μ, are presented in Fig. 8(a). By extended simulations,
the dependence of L on μ, for σ = 0.02 and σ = 0.03, is
computed and compared with that for σ = 0.01, as seen in
Fig. 8(b). Since a certain amount of low-power DBEs are
likely to be destroyed by the stronger disorder, we record the
values of L starting from μ = 0.60 for σ = 0.02, and from
μ = 0.70 for σ = 0.03.

APPENDIX E: SELECTED SIMULATION RESULTS
FOR εn ∈ unif[−W,+W ]

We performed extended simulations for the uniformly
distributed random potentials and found the DBE behaviors
kept the similar features to those for the normally distributed
random potentials. Two typical examples are presented in
Figs. 9(a) and 9(b), demonstrating the transient diffusion with
inequality between their eMSD and tMSD. Also, Fig. 9(c)
shows the two-regime localization of DBEs for three different
values of W .
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