
PHYSICAL REVIEW E 100, 022201 (2019)

Variational approach to study soliton dynamics in a passive fiber loop resonator with coherently
driven phase-modulated external field
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We report a detailed semianalytical treatment to investigate the dynamics of a single cavity soliton (CS)
and two copropagating CSs separately in a Kerr mediated passive optical fiber resonator which is driven by
a phase-modulated pump. The perturbation is dealt with by introducing Rayleigh’s dissipation function in the
framework of a variational principle that results in a set of coupled ordinary differential equations describing the
evolution of individual soliton parameters. We further derive closed-form expressions for quick estimation of the
temporal trajectory, drift velocity, and the phase shift accumulated by the CS due to the externally modulated
pump. We also extend the variational approach to solve a two-soliton interaction problem in the absence as
well as in the presence of the externally modulated field. In the absence of a phase-modulated field, the two
copropagating solitons can attract, repulse, or propagate independently depending on their initial delay. The
final state of interaction can be predicted through a second-order differential equation which is derived by the
variational method. While in the presence of the phase-modulated field, the two-soliton interaction can result
in annihilation, merging, breathing, or a two-soliton state depending on the detuning frequency and the pump
power. Variational treatment analytically predicts these states and portrays the related dynamics that agrees
with the full numerical simulation carried out by solving the normalized Lugiato-Lefever equation. The results
obtained through this variational approach will enrich the understanding of complex pulse dynamics under a
phase-modulated driving field in passive dissipative systems.
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I. INTRODUCTION

Temporal cavity solitons (CSs) are the localized pulse that
coexists with a homogeneous continuous-wave (cw) back-
ground observed in driven nonlinear passive resonators [1–3].
Unlike the conservative system where nonlinearity balances
the pulse broadening due to chromatic dispersion [4], solitons
in the dissipative system need an extra balance of energy to
compensate for the total loss [5]. The total loss in these dissi-
pative systems is either balanced by an external cw pump or by
the presence of an active gain medium. CS was first observed
in 2010 in a single mode fiber ring resonator [6] and since
then it has gained considerable attention toward all optical
buffers [7,8]. They have also been observed in Kerr microres-
onators, which enables on-chip frequency comb generations
[9,10]. Soliton propagation within a resonator under a phase-
modulated driving field has received much attention [11–15]
because with the minimum modulation depth one can obtain
a deterministic way of generating CS without undergoing a
chaotic phase. Moreover, it helps to achieve greater control
over the generated CS. On the other hand, a theoretical tool
depending on the variational approach was first introduced
by Anderson [16] for nonlinear pulse propagation; since then
it has been used extensively in conservative systems [17–19]
as well as in dissipative systems including active [20,21] and
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passive resonators [22–24] to study the pulse dynamics. In the
first part of our study, we performed a detailed analysis of
the dynamics of a single CS in the framework of variational
treatment and obtained several closed-form expressions of
the CS characteristics which can be determined according
to the phase profile of the cw. To illustrate this perturbation
problem, we numerically solved the Lugiato-Lefever equation
(LLE) [25–28] and compared the results obtained with the
variational approach.

CSs are generally very robust in nature. One of the key
features of CSs is that they can be individually addressed
without affecting their nearest-neighbor soliton and several of
them can even coexist and propagate independently [2,21,29].
An important limitation may occur if they interfere with each
other while propagating. It will disrupt the information of a
bit pattern after a few round trips within the cavity. Recently,
the bound state (BS) of two solitons in a dissipative passive
resonator system has been studied [30,31], where the stable
and unstable equilibrium separation between CSs has been
attributed by calculating the maxima and minima of their
interaction potential. In another article [32], the controlled
interaction between two CSs is studied where the merging
and annihilation of two solitons are observed against suitable
driving strength and frequency detuning. Here, we consider
an interaction picture of two CSs both in the absence and in
the presence of a phase-modulated driving field in the frame-
work of a variational analysis with the addition of Rayleigh’s
dissipation function (RDF) [33] that takes into account the
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perturbations within the system. Though the phenomena of
a single CS dynamics in such a system is well understood in
the presence of a phase-modulated driving field, the analytical
closed-form expressions for different properties have not been
investigated earlier. The closed-form analytical expressions
for dynamic pulse parameters are useful in realizing the
underpinning physics. Also, our findings would extend the
importance of a variational method as a powerful theoreti-
cal tool which can handle multisolitons dynamics and even
identify the individual effects of internal perturbation (soliton
interactions) and external perturbations (phase- or amplitude-
modulated driving field). Thus, we believe our findings with
this semianalytical technique will help to further deal with
several real perturbation situations in the passive dissipative
resonator systems complementing various experimental and
numerical results.

We organize our work as follows: In Sec. II, we model
the localized CS by mean-field LLE and briefly introduce the
variational technique. In Sec. III, we discuss the results of a
single soliton dynamics under a phase-modulated cw driving
field. We assume a cosine-modulated phase profile of the input
laser which can be created with an electro-optic modulator
and the modulation frequency to be identical with the cavity
free spectral range (FSR). Numerical simulations for the
dynamics of a single CS are performed with a normalized
modified LLE incorporating the phase-modulated pump. The
variational technique further describes the results analytically
and unfolds the underlying physics. In Sec. IV, we consider
the two-soliton interaction dynamics due to a constant driving
field with the help of this semianalytical technique. In Sec. V,
we investigate various complex dynamics incorporating the
above-mentioned two perturbations simultaneously with a
fixed delay between the two CSs, i.e., two copropagating
CSs under a pump phase-modulated driving field. Stable
two-soliton, merged, annihilated, and breathing single-soliton
states are formed with a suitable choice of detuning frequency
and pump power.

II. GENERAL MODEL

A. Mean-field approach

We consider an optical fiber loop resonator that exhibits
Kerr nonlinearity with anomalous dispersion. The evolution
of the slowly varying intracavity field envelope ψ (t, τ ) is
modeled by the following mean-field LLE [3,25]:

τR
∂ψ

∂τ
= −(α + iν)ψ + iγ Lc|ψ |2ψ − i

β2Lc

2

∂2ψ

∂t2
+

√
θEin.

(1)

Here, τ is the normalized slow timescale related with
the total evolution time within the resonator, t denotes the
normalized fast timescale which characterizes the temporal
envelope profile of the generated CS in a reference frame
moving at the group velocity of the external driving field,
and τR is the round-trip time within the cavity. These three
timescales can be linked to the round-trip index number m as
E (t = mtR, τ ) = E (m)(0, τ ). The terms in the right-hand side
of Eq. (1) signify losses (α), nonlinear phase detuning (ν) of
the driving field Ein(t, τ ) from the nearest cavity resonance,

FIG. 1. Optical bistability of the steady and homogeneous state
of the intracavity field. (a) Bistability curve showing intracavity
power (Y ) vs normalized pump power (X ); filled circle indicates the
chosen pump power for simulation. (b) Ratio of the intracavity power
(Y ) to pump power (X ) vs normalized detuning (σ ); tilted under Kerr
nonlinearity; filled circle indicates the operating detuning frequency.

γ is the fiber nonlinear coefficient, β2 < 0 signifies second-
order anomalous dispersion, Ein is the external coherent cw
driving field, θ is the power transmission coefficient from the
coupler to the resonator, and the length of the resonator is Lc.
By introducing the normalization factors τ → ατ/τR, t →
t (2α/|β2|Lc)1/2, the intracavity field ψ → ψ (γ Lc/α)1/2, nor-
malized detuning frequency σ = ν/α, and normalized pump
Ein → Ein(γ Lcθ/α3)1/2, Eq. (1) takes the following form:

∂ψ

∂τ
= −(1 + iσ )ψ + i|ψ |2ψ + i

∂2ψ

∂t2
+ Ein. (2)

The steady-state and homogeneous solution of Eq. (2)
satisfies the well-known cubic steady-state equation [34] X =
Y 3 − 2σY 2 + (σ 2 + 1)Y with X = |Ein|2 and Y = |ψ |2. The
steady-state curve is single valued for σ <

√
3 and the curve

takes an S shape in the case of σ >
√

3. It has been calculated
in [34] that for σ � 2, the power threshold for modulation in-
stability to occur in an anomalous dispersion regime requires
Y > σ/2, which makes the entire upper branch of Fig. 1(a)
unstable, so we choose the operating power (filled circle) in
the lower stable branch of the bistability curve. Figure 1(b)
can be interpreted as the resonance of the ring cavity which is
tilted in the presence of the Kerr nonlinearity where we have
also marked (filled circle) the operating normalized detuning
frequency.

B. Variational approach

We introduce an analytical model which can support the
numerical simulation results obtained via the LLE. To analyze
a complex situation like soliton interaction in the presence
of an external perturbation, we deal with two problems in-
dividually with the help of a variational technique. It helps
us to gain more insight into the physical parameters of CSs
that undergo changes in the presence of a phase -modulated
driving field and also due to soliton interactions. The for-
malism of the variational technique is based on the proper
choice of an ansatz function. Though a functional form of a
soliton pulse in a dissipative system is presented in [35], we
found a rather easy sech ansatz is also suitable to start with
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in such dissipative systems which has previously been used
in [3,22,23]. Further, we introduce the RDF [33] to handle
the perturbations. The construction of the RDF has been
performed in such a way that the generalized Euler-Lagrange
(EL) equation must reproduce the LLE and its complex con-
jugate. First, we reduce the problem by inserting the ansatz
into Lagrangian and RDF functions. Then, integrating it over
fast time t we get Lg = ∫ ∞

−∞ L dt and Rg = ∫ ∞
−∞ R dt . For

different perturbation situations the reduced Lagrangian (Lg)
remains the same, whereas the reduced RDF (Rg) changes
according to the perturbations faced by the CS. Finally, we
exploit the EL equation to obtain the equation of motion of
different pulse parameters:

d

dτ

(
∂Lg

∂ ṗ j

)
− ∂Lg

∂ p j
+

(
∂Rg

∂ ṗ j

)
= 0. (3)

Here pj stands for different pulse parameters (such as ampli-

tude, position, phase, frequency, etc.) and ṗ j = d p j

dτ
.

III. SOLITON PROPAGATION IN A CAVITY WITH
PHASE-MODULATED DRIVING FIELD

We consider a situation when the phase of a driving beam
is modulated with a cosine profile instead of a constant value
and modulation frequency is identical with the resonator free
spectral range. Data for numerical simulation is identical to
that reported in [32]. The driving field Ein of Eq. (2) becomes
a function of fast time (t ); we assume it is of the form

Ein(t ) = Pin exp [iMχ (t )], (4)

where χ (t ) = cos(ωt ), M is the modulation depth, and ω is
the modulation frequency. The driving cw field has power Pin

where its phase is modulated with the help of an electro-optic
modulator [11]. For numerical simulations, we use normal-
ized parameters, σ = 3.4, Pin = 2.3, M = 0.15, ω = 0.05
and we choose our initial wave function of the form ψ (0, t ) =√

2σ sech[
√

σ (t − tp)]; tp = 5. Under phase modulation, the
CS undergoes a temporal shift within the resonator.

A. Derivation of the reduced model

To gain more insight, we develop a perturbative theory
based on a variational method. We proceed with our analysis
using the standard Kerr soliton ansatz [33]:

ψ (t, τ ) =
√

2η(τ ) sech{
√

η(τ )[t − tp(τ )]}
× exp(i{φ(τ ) − δ(τ )[t − tp(τ )]}), (5)

where the amplitude (
√

2η), phase (φ), position (tp), and
frequency shift (δ) are allowed to vary over slow time. Note,
the accuracy of the variational method depends on the proper
choice of the ansatz. Unlike the Schrödinger Kerr soliton,

FIG. 2. Comparison of the actual CS (shaded) and the ansatz
(solid line) used in the variational formulation.

the CS is formed over a homogeneous pedestal. The given
sech ansatz does not include this pedestal and slight misfit
from the actual CS as depicted in Fig. 2. Note that in the
formalism of the variational method we require an ansatz
which is square integrable (i.e.,

∫ ∞
−∞ |ψ |2dt < ∞). It is dif-

ficult to form the reduced Lagrangian Lg(= ∫ ∞
−∞ Ldt ) if the

given ansatz contains a constant pedestal. Hence the lack of
a pedestal in the sech form may lead to an error in peak
power calculation. However, this error can be reduced by
eliminating the homogeneous background through the rescal-
ing of field power as |ψ (t, τ )|2 → |ψ (t, τ )|2 − |ψh|2, where
ψh ≈ Einσ

−1(σ−1 − i) is the homogeneous field describing
the cw background [3]. Next we construct the Lagrangian (L)
and RDF (R) for LLE given in Eq. (2) as follows:

L = i

2
(ψψ∗

τ − ψτψ
∗) + |ψt |2 − 1

2
|ψ |4 + σ |ψ |2, (6)

R = i(ψψ∗
τ − ψτψ

∗) + i(E∗
inψτ − Einψ

∗
τ ). (7)

It is observed that even a small value of modulation depth
(M � 1) can influence the trajectory of the CS. Therefore, we
approximate Ein as mentioned in Eq. (4) as

Ein(t ) ≈ Pin[1 + iM cos(ωt )]

≈ Pin

(
1 + iM − iMω2t2

2

)
. (8)

Exploiting the EL equation with the help of a reduced form
of the Lagrangian (Lg = ∫ ∞

−∞ L dt ) and RDF (Rg = ∫ ∞
−∞ R dt )

(see the derived forms of Lg and Rg in Appendix A), we
derive a set of coupled ordinary differential equations (ODEs)
describing the overall soliton dynamics (η, δ, φ, tp). The equa-
tions of motion for individual pulse parameters are as follows:

∂η

∂τ
= −4η +

√
η

2

(
2
√

2πPin − π3δ2Pin

2
√

2η

)
(cos φ + M × sin φ) − Mω2√η

4

[
2
√

2Pin sin φ

(
π3

4η
+ πt2

p

)
− 2δ2Pin

η

× sin φ

(
π3t2

0

4
+ 5π5

16η

)
−

√
2δπ3Pintp cos φ

η
+ 5

√
2π5δ3Pin

24η2
× tp cos φ

]
, (9)
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∂φ

∂τ
= −σ + η + δ2 + π3Pinδ

2

2
√

2η3/2
(sin φ + M cos φ) + 5

√
2Mω2π3δPintp sin φ

8η3/2
− 5π5δ4PinM cos φ

96
√

2η3/2

− 55
√

2δ2Pintpπ
5Mω2 sin φ

192η3/2
− Mω2Pinδ

4 cos φ

12
√

2η3/2

(
61π7

64η
+ 5π5t2

p

16

)
− Mω2Pinδ

2 cos φπ3

8η3/2

(
25

√
2π2

8η
+ 3t2

p√
2

)
, (10)

∂δ

∂τ
= − δ

4
√

η

(
2
√

2πPin − π3δ2Pin

2
√

2η

)
(cos φ + M sin φ) + Mω2

4
√

η

[
2
√

2πPintp cos φ +
√

2δPinπt2
p sin φ

×
(

1 − δ2π2

4
√

2η

)
+ 3δPinπ

3 sin φ

2
√

2η
−

√
2π3δ2Pintp cos φ

η
×

(
1 + 5π2

96η

)]
, (11)

∂tp

∂τ
= −2δ + δPinπ

3

4
√

2η3/2
(sin φ − M cos φ) − Mω2

4
√

2η3
×

[
Pintpπ

3 sin φ − 2
√

2δPin cos φ

(
5π5

16η
+ π3t2

p

4

)

− 5π5δ2Pintp sin φ

8
√

2η
+ Pinδ

3 cos φ

3
√

2η

(
61π7

64η
+ 5π5t2

p

16

)]
. (12)

To obtain closed-form expressions for the CS trajectory as
well as the peak amplitude and phase of the generated CS in
the steady state, we found that the contributions of those terms
containing higher orders of δ (δn, n � 2) in Eqs. (9)–(12) are
negligible.

B. Prediction of the soliton trajectory

From the mathematical expressions Eqs. (9)–(12), it is
evident that pulse parameters undergo some changes during
propagation for nonvanishing M. In Fig. 3(a), we plot the
trajectory of a CS under a phase-modulated external pump.
We observe that the CS acquires a drift velocity during its
propagation. The trajectory of the soliton is influenced by
the modulation depth. The numerical solution of the coupled
ODEs predicts the trajectory nicely [see Fig. 3(b)]. However,
those ODEs will be more useful if we decouple them with suit-
able approximations(see Appendix B). It can be shown that
the dynamic expression for the temporal shift of the pulse is

tp(τ ) ≈ tp(0) exp(−2Mω2τ ). (13)

Equation (13) clearly indicates with an increase in slow time
(τ ), the location of the pulse shifts toward the origin (t = 0).
Here modulation depth (M ) and modulation frequency (ω) act
as parameters and control the drift velocity of the generated
CS. The pulse shifts to its stationary location at less round
trips with increasing M or ω [see Figs. 3(c) and 3(d)]. The drift
velocity has been previously mentioned to be directly propor-
tional to the gradient of the external driving field [26,35]. Our
calculations enable us to obtain a simple mathematical form
for the drift velocity of the generated CS, which is given as
vd (τ ) = dtp

dτ
≈ −2Mω2tp(τ ). In Fig. 4 we observe that drift

velocity of the CS initially increases and gradually saturates
to null value and thus the CS obtains its stationary position.

The behavior of the CS trajectory can be understood in an
alternative way with the concept of intracavity field momen-
tum, which is defined by [11]

P = − i

2

∫ ∞

−∞

(
ψ∗ dψ

dt
− ψ

dψ∗

dt

)
dt . (14)

Using this definition along with Eq. (2), the rate of change of
momentum of the intracavity field is found to be

dP

dτ
= −2P − Im

∫ ∞

−∞
ψ

dE∗
in

dt
dt . (15)

In the absence of any modulation (phase or amplitude) of
the pump, the rate of change of momentum is determined
only by the first term of the right-hand side of Eq. (15) and
the momentum seems to decay exponentially with τ → ∞
such that the net force acting on the soliton also vanishes

FIG. 3. Contour plots of (a) simulation and (b) variational results
showing the trajectory of the CS under the influence of a phase-
modulated driving field. (c) Variation of the CS trajectory with differ-
ent phase-modulation depth (M ) and (d) different phase-modulation
frequency (ω) of cw, shown both numerically and analytically.
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FIG. 4. Drift velocity (vd ) profile of the CS shown both numeri-
cally and analytically. (a) Variation of drift velocity with propagation
for two modulation depths [M = 0.15 (dotted), M = 0.2 (solid)].
(b) Drift velocity profile for two modulation frequencies [ω = 0.04
(dotted), ω = 0.05 (solid)].

with propagation and the soliton eventually acquires its steady
position. Note that in this problem the phase of the driving
field is modulated as φ(t ) = Mχ (t ) = M cos(ωt ). In the pres-
ence of phase modulation (i.e., Ein = Pineφ(t )) the second term
of the Eq. (15), which contains the gradient of the driving
field, will dominate. Now, the CS will gradually acquire its
stationary position where the gradient of the driving field, i.e.,
dEin/dt (or dφ

dt ), vanishes. Note that ψ and Ein both are in
general complex with a phase term. Since the amplitude of ψ

(which represents soliton) is a symmetric function, it is easy
to show that the integrand in Eq. (15) vanishes when dφ

dt is
an asymmetric function or zero. Now when the function dφ

dt
is neither symmetric nor asymmetric the integrand can still
vanish, if dφ

dt = 0 and the soliton is dragged to that point.
We illustrate this phenomenon in Fig. 5 where the soliton is
dragged at the point where dEin/dt (or dφ

dt ) vanishes. Note that
the concept of the intracavity field momentum only locates
the stabilized temporal position of an off-shifted CS under a
phase-modulated pump. It can never predict the pulse trajec-
tory like variational treatment does. The variational treatment
can be extended further to evaluate the other pulse parameters
such as amplitude (A = √

2η), phase (φ), and frequency shift
(δ). In Fig. 6 we plot the variation of A, φ, and δ as a
function of slow time (τ ). We know the dissipative CSs always
emerge out of the cw background unlike the Kerr solitons in

FIG. 5. (a) CS undergoes a shift in its reference frame due to a
phase-modulated cw pump (Ein = Pineφ(t )). (b) Left axis: gradient of
external pump field dEin

dt = E ′
in; right axis: final steady position of the

generated CS.

FIG. 6. Evolution of CS parameters under a phase-modulated
driving field shown both numerically and with variational analysis.
(a) Amplitude (A = √

2η), (b) phase (φ), and (c) frequency shift (δ).

the conservative system. During our variational analysis we
assume a sech pulse shape which is merely an approximation.
Note, in order to get rid of the homogeneous pedestal (ψh),
we rescale the field as |ψ (t, τ )|2 → |ψ (t, τ )|2 − |ψh|2 and
compare it with variational result in Fig. 6. It is observed that
the variational results are in good agreement with the results
obtained from full numerical solution of the LLE.

C. Derivation of the stationary solution

By exploiting the variational expressions we extract the
steady-state condition for the CS. Without any phase modula-
tion (M = 0), from Eqs. (9) and (10), we obtain the amplitude
and phase of the CS in its steady state as

η = σ,

φ = cos−1
(

2
√

2η

πPin

)
= cos−1

(
2
√

2σ
πPin

)
.

(16)

From Eq. (16) it is evident that for a given pump power

(Pin) the CS ceases to exist when σ >
π2P2

in
8 . We numerically

verify this argument by keeping Pin = 2.3 and find that the
CS is generated when σ � 6.5, which is consistent with the
expression we have derived. In a phase-space diagram, the CS
always makes a spiral [12] centered about a point known as
the fixed point of the system. This spiral nature is a signature
of the evolution of amplitude and phase of the generated
CS. Under phase modulation, the fixed point might change
as depicted in Fig. 7(a). For nonvanishing M, Eq. (16) is

FIG. 7. (a) Phase-space diagram of the generated CS in three
different cases, without modulation (M), M = 0.15, and M = 0.35,
respectively. (b) Variation of soliton phase (φ) with modulation depth
(M ); shown for both numerical and analytical results.
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modified as

η ≈ σ,

φ ≈ tan−1M + cos−1
(

B√
1+M2

)
,

(17)

where B = 2
√

2σ
πPin

. In Fig. 7(b), we plot the CS phase (φ)
as a function of modulation depth (M ). We observe that
the variational results (solid line) agree well with the full
numerical results (filled circles).

IV. SOLITON INTERACTION IN THE PRESENCE OF A
CONSTANT DRIVING FIELD

The earlier work of Malomed and Akhmediev and later
several other authors have considered the detailed analysis
of the soliton (bright-bright, bright-dark) interaction problem
in a conservative system [36–42]. The stability of two- and
multisoliton states has also been reported for dissipative soli-
tons where the system contains a gain medium [43–45], or in
a coherently driven passive microresonator [22,31,46,47]. In
recent papers [30,31], soliton interaction and the possibility
of the formation of BS in a microresonator system has been
studied thoroughly. For normalized detuning value σ < 2,
the generated CS has an oscillatory tail, such that a second
soliton can lock at any extrema of the tail oscillations. One
can find the stable and unstable equilibrium separation by cal-
culating the interaction potential [30,37]. On the other hand,
for higher detuning value the CS tail becomes monotonous,
and oscillations become too weak to form any BS, which is
the case we consider here. We encountered three different
situations likely: attraction, repulsion, or independent soliton
propagation depending on the initial delay between two CSs.
Our reduced analytical model can predict these results quite
well. To visualize the overall dynamics of two copropagating
CSs, we numerically solve Eq. (2) with the initial wave
function of the form ψ (0, t ) = √

2σ sech[
√

σ (t − tp)] +√
2σ sech[

√
σ (t + tp)]. We consider zero phase modulation

(M = 0) such that Ein becomes Pin in Eq. (2). The simulation
is performed with the constant values of σ = 3.4 and Pin =
2.3 and in each case we vary the initial separation (2tp)
between two CSs.

A. Derivation of the reduced model

We find that the well-known variational treatment beauti-
fully brings out the variation of the soliton parameters such
as amplitude, phase, and frequency shift during different
interaction scenarios. We assume soliton 1 (ψ1) propagates in
such a way that only the tail of soliton 2 (ψ2) interacts with it.
The governing equation of soliton 1 is [18]

i
∂ψ1

∂τ
+ ∂2ψ1

∂t2
+ |ψ1|2ψ1 + 2|ψ1|2ψ2 + ψ2

1 ψ∗
2 − σψ1

+ iψ1 − iPin = 0. (18)

FIG. 8. Evolution of two CSs when initial separation 2tp = 4.
First row: Path of the soliton shown with both (a) numerical and
(b) variational results. (c) Separation (2tp = T ) between two soli-
tons with propagation. Second row: Analytical model showing the
evolution of two-soliton parameters: (d) amplitude, (e) phase, and (f)
frequency shift.

The Lagrangian and the RDF correspondingly are written
as

L = i

2
(ψ1ψ

∗
1τ − ψ1τψ

∗
1 ) + |ψ1t |2 − 1

2
|ψ1|4 + σ |ψ1|2, (19)

R = (2|ψ1|2ψ2 + ψ2
1 ψ∗

2 )ψ∗
1τ + (2|ψ1|2ψ∗

2 + ψ∗2
1 ψ2)ψ1τ

+ i(ψ1ψ
∗
1τ − ψ1τψ

∗
1 ) − iPin(ψ∗

1τ − ψ1τ ). (20)

FIG. 9. Evolution of two CSs when the initial separation 2tp = 6.
First row: Path of the soliton showing both (a) numerical and (b) vari-
ational results. (c) Separation (2tp = T ) between two solitons with
propagation. Second row: Analytical model showing the evolution
of two-soliton parameters: (d) amplitude (e) phase, and (f) frequency
shift.
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FIG. 10. First row: Independent propagation of two CSs when
the initial separation 2tp = 10. (a) Numerical result and (b) vari-
ational result. (c) Separation (2tp = T ) between two solitons with
propagation. Second row: Analytical model showing the evolution
of two-soliton parameters: (d) amplitude, (e) phase, and (f) frequency
shift.

The derived forms of the Lagrangian and RDF density using
the ansatz function for soliton 1 are given in Appendix C. The
evolution equations for soliton 1 (ψ1) are
∂η1

∂τ
= −4η1 + 16η1

√
η1η2e−√

η1T sin θ +
√

2η1πPin cos φ1

− π3δ2
1Pin cos φ1

4
√

2η1
, (21)

∂δ1

∂τ
= 8η1

√
η2 cos θe−√

η1T −
(

1 − π2δ2
1

8η1

)

× δ1 cos φ1πPin√
2η1

, (22)

∂t1
∂τ

= −2δ1 − 4
√

η2 sin θe−√
η1T +

(
1 − 5π2δ2

1

24η1

)

× π3δ1Pin sin φ1

4
√

2η
3/2
1

, (23)

∂φ1

∂τ
= −σ + δ2

1 + η1 + 12
√

η1η2 cos θe−√
η1T + 4δ1

√
η2

× sin θe−√
η1T − π3Pinδ

2
1 sin φ1

2(2η1)3/2

(
2− 5π2δ2

1

24η1

)
, (24)

where θ = φ1 − φ2 and T = t1 − t2.
In a similar way one can also find out the evolution

equations for soliton 2 (ψ2) parameters as follows:

∂η2

∂τ
= −4η2 − 16η2

√
η1η2e−√

η2T sin θ +
√

2η2πPin

× cos φ2 − π3δ2
2Pin cos φ2

4
√

2η2
, (25)

∂δ2

∂τ
= −8η2

√
η1 cos θe−√

η2T −
(

1 − π2δ2
2

8η2

)

× δ2 cos φ2πPin√
2η2

, (26)

FIG. 11. Contour plot showing the CS breathing state for
[σ, Pin] = [4.2, 3]. (a) Attraction state [2tp = 4]. (b) Repulsion state
[2tp = 6]. (c) Independent soliton state [2tp = 10].

∂t2
∂τ

= −2δ2 − 4
√

η1 sin θe−√
η2T +

(
1 − 5π2δ2

2

24η2

)

× π3δ2Pin sin φ2

4
√

2η
3/2
2

, (27)

∂φ2

∂τ
= −σ + δ2

2 + η2 + 12
√

η1η2 cos θe−√
η2T

+ 4δ2
√

η1 sin θe−√
η2T

− π3Pinδ
2
2 sin φ2

2(2η2)3/2

(
2 − 5π2δ2

2

24η2

)
. (28)

A set of eight coupled ordinary differential equations
(21)–(28) describe the overall dynamics of two copropagating
CSs. It is observed that the initial separation between CSs
controls the strength of the interaction and based on which
three distinct situations arise: attraction, repulsion, and in-
dependent soliton propagation. In Fig. 8, we show how two
copropagating CSs attract themselves to form a single state. A
detailed variational treatment predicts identical behavior [see
plot in Fig. 8(c)] and locates the collision point from where
the single soliton emerges. Combining Eqs. (22),(23) and
Eqs. (26),(27) we derive a second-order differential equation
which approximately predicts the variation of two-soliton

FIG. 12. (a) Effect of the CS interaction on the generated fre-
quency comb; interference fringe density changes with separation or
delay (�t ) between the two CSs. (b) Position of interference fringes
of different order vs. delay (�t ) between two CSs.
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FIG. 13. Dynamics of soliton interaction in the presence of cosine-modulated phase profile (M = 0.15) of the driving field when the
mutual separation 2tp = 10 and modulation frequency ω = 0.05. (a) [σ, Pin] = [2.9, 2] two-soliton state, (b) [σ, Pin] = [3.4, 2.3] merged CSs,
(c) [σ, Pin] = [4, 2.2] annihilated CSs, and (d) [σ, Pin] = [4.2, 3] merged breathing CSs.

separation (T = t1 − t2) given as

∂2T

∂τ 2
+ B

∂T

∂τ
≈ 2A(C − 2)e−√

ηT . (29)

In order to derive this differential equation, we have as-
sumed η1 = η2 = η and φ1 = φ2 = φ. The constants in the
equations are as follows: A = 8η3/2 cos θ, B = π cos φPin√

2η
, C =

π3 sin φPin

(2η)3/2 . Note that a variational analysis is applicable when-
ever two independent solitons exist. It will not produce any re-
sults when two solitons merge to form a single soliton because
for such case, the assumption of ansatz function is violated.
However, variational results work nicely before collision and
we find the evolution of A, φ, and δ in Figs. 8(d)–8(f). A
further increase in separation will lead to repulsion (see Fig. 9)
and independent propagation of two CSs (see Fig. 10). We
study all three cases based on the variational results. Note that
in all three cases the frequency shift for an individual soliton
is nonidentical (in fact, opposite in magnitude) and results
in three different dynamics. In a special situation depending
upon the external parameters (σ, Pin), we obtain a steady
breather CS where the peak power of the CS periodically
breathes over round-trip evolution. Like previous situations,
a different initial delay between two pulses led to attractive
or repulsive force or the creation of two independent breather
CSs (see Fig. 11).

B. Soliton interaction mediated frequency comb generation

It is well known that CS corresponds to a frequency comb
in spectral domain with single FSR spacing. Due to four-wave
mixing and proper phase matching, side modes are excited
from the resonant pump mode of the cavity. On the other
hand, for the soliton interaction problem, we can intuitively
say that two resonant modes are simultaneously excited which
interfere. By solving the LLE, we observe interference fringes
in the frequency spectrum. Such interference fringes with

high contrast reflect stable binding separation [48]. Here, we
choose a different time delay between the two CSs where
they can propagate independently. Interference patterns are
changed with their binding separation. The position of the
individual interference maxima changes with the separation
[see Fig. 12(a)]. The interference pattern becomes denser
with increasing binding separation. For a fixed delay, the
interference maximas locate at

�n = ±(
n − 1

2

)
��, (30)

where n = 1, 2, 3, . . . and �� = 2π/�t . n is the interference
maxima order and �n are the corresponding frequencies. In
Fig. 12(b) we observe that our simulation results agree quite
well with the analytical formulas.

V. SOLITON INTERACTION IN PRESENCE OF
PHASE-MODULATED DRIVING FIELD

Finally, we consider a copropagating soliton interaction
when the driving beam is phase modulated with a cosine
profile at a frequency ω with modulation depth M. To
illustrate the interaction mechanism, we numerically inte-
grate Eq. (2) using a symmetric initial condition ψ (0, t ) =√

2σ {sech[
√

σ (t − tp)] + sech[
√

σ (t + tp)]}. The initial sep-
aration (2tp = 10) is made larger compared to the character-
istic width of the CS in order to avoid any self-interaction
during propagation. This ensures that two CSs can move inde-
pendently in the absence of any modulated driving field. We
observe different interaction scenarios based on two external
parameters: cavity detuning frequency (σ ) and pump power
(Pin).

In Fig. 13, we show the evolution of two copropagating
CSs for four different sets of (σ, Pin). We observe that depend-
ing on the external parameters (σ, Pin) four distinct states may
evolve: (a) a stationary two-soliton state, (b) a single soliton
state after merging, (c) an annihilation state, and finally (d) a
breathing state. The spectral evolution is also plotted for four
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FIG. 14. First row: Variation of frequency shift (variational re-
sults). Second row: Variation of separation of two CSs when modula-
tion depth M = 0.15. (a) and (d) Two-soliton state [σ, Pin] = [2.9, 2].
(b) and (e) Merged state [σ, Pin] = [3.4, 2.3]. (c) and (f) Annihilated
state [σ, Pin] = [4, 2.2].

different cases. As expected, interference fringes are observed
for the two-soliton state, whereas an annihilated state exhibits
a single frequency complimenting the cw background in time
domain. For the single-soliton state and the breathing state the
spectra are almost identical.

A. Analysis of the reduced model

The variational analysis discussed in earlier sections (Secs.
III and IV) are useful here to visualize the pulse dynamics
in this complex scenario. In Fig. 14 we observe that the
different final stationary states such as the two-soliton state,
merged single-soliton state or annihilated state corresponds to
different frequency shifts. Though the variational formalism
cannot capture the single-soliton state after merging, it can
well predict the point of merging and annihilation of two CSs.
The evolution equations of the two soliton parameters are
mentioned in Appendix D. We adopt the variational results
(solid lines) to obtain the separation (T ) as a function of
slow time (τ ) and find a close agreement with full numerical
analysis (dotted lines). In Fig. 15(a), we plot τc as a function
of M for a fixed ω for both the merged single-soliton state and
the annihilated state. For a given set of (σ, Pin), the collision
point (τc) changes with the values of modulation depth (M).
The solitons collide earlier for larger M. The simulated values
are given by filled circles whereas the solid line depicts the
variational result. The variational analysis compliments the
numerical results with a certain degree of accuracy. The CS
which contains a pedestal is approximated as a sech shape in
variational treatment and perhaps this is the reason why we
have the mismatch of two results at lower modulation depth
(M ). So, it is evident that the parameter set (σ, Pin) leads to
a different steady state of the intracavity field whereas the
parameter set (M, ω) mainly controls the drift velocity of the
generated CSs.

FIG. 15. (a) Variation of the collision distance (τc ) with modu-
lation depth (M ), shown both with simulation and variational results
for the merged and annihilated state (b) Numerically simulated intra-
cavity field energy (E ) evolution for all the four (two soliton state,
merged, annihilation and breathing) cases.

B. Intracavity field energy

Finally, we compare the relative intracavity field energy for
four cases in Fig. 15(b) by numerically computing the quantity
E = ∫ tmax

−tmin
ψ∗ψ dt over the slow time. We observe that the

total energy remains almost steady throughout the evolution
time for the stationary two-soliton state. For merged and
annihilated states the energy drops sharply at some critical τ

corresponding to the point of merging or annihilation. During
annihilation, the energy does not drop to zero as the resonator
always has the constant cw field, which is clearly visible
in the temporal dynamics of annihilation in Fig. 13(c). For
the breathing state we observe oscillatory energy. The mean
energy of oscillation for the breathing soliton is found to be
identical to the final energy of the merged single soliton.

VI. CONCLUSION

We have studied the complex dynamics of a single CS and
copropagating CSs separately in a passive fiber loop resonator
under a phase-modulated driving field. A semianalytical vari-
ational method is adopted to unfold the unique behavior of
temporal CSs under this driving field. The variational cal-
culations led to an in-depth analysis for each perturbation
situation and results in obtaining a set of ordinary differential
equations which determine the evolution of individual pulse
parameters. We start with a single soliton whose temporal
trajectory is controlled by the modulation depth and the
modulation frequency of the external pump. The variational
analysis efficiently predicts the path followed by the CS. The
derived explicit form of the temporal trajectory and the drift
velocity of CSs will enable us to control them externally
with the modulation parameters. The phase-space diagram
portrays the amplitude and phase evolution of CSs under this
perturbation. During the two-soliton interaction, this semian-
alytical treatment can efficiently find out the role of different
external parameters such as delay, detuning frequency, pump
power, modulation depth, and modulation frequency which
can enrich any numerical and experimental results. We believe
that our analysis will help one to investigate single or multiple
CS dynamics further in the presence of several other forms of
phase- or amplitude-modulated external fields.
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APPENDIX A: DERIVATIONS OF THE REDUCED
LAGRANGIAN AND RDF FOR THE CASE MENTIONED

IN SEC. III

To obtain the set of coupled differential equations for the
evolution of CS parameters, these steps are followed.

Step 1. The ansatz function:

ψ (t, τ ) =
√

2η(τ ) sech{
√

η(τ )[t − tp(τ )]}
× exp(i{φ(τ ) − δ(τ )[t − tp(τ )]}). (A1)

The driving field is

Ein(t ) ≈ Pin[1 + iM cos(ωt )]

≈ Pin

(
1 + iM − iMω2t2

2

)
. (A2)

The explicit form of the Euler-Lagrangian (EL) equation is

d

dτ

(
∂L

∂ψ∗
τ

)
+ d

dt

(
∂L

∂ψ∗
t

)
− ∂L

∂ψ∗ +
(

∂R

∂ψ∗
τ

)
= 0. (A3)

We choose the form of Lagrangian (L) and RDF (R) function
intuitively in such a way that the above EL equation will
give back the original form of the LLE ∂ψ

∂τ
= −(1 + iσ )ψ +

i|ψ |2ψ + i ∂2ψ

∂t2 + Ein:

L = i

2
(ψψ∗

τ − ψτψ
∗) + |ψt |2 − 1

2
|ψ |4 + σ |ψ |2, (A4)

R = i(ψψ∗
τ − ψτψ

∗) + i(E∗
inψτ − Einψ

∗
τ ). (A5)

Step 2. Now we integrate the Lagrangian and Rayleigh’s
function over the fast time (t):

Lg =
∫ ∞

−∞
L dt, (A6)

Rg =
∫ ∞

−∞
R dt . (A7)

The forms of (Lg) and RDF (Rg) are as follows:

Lg = 4
√

η

(
δ

∂t

∂τ
+ ∂φ

∂τ
− η

3
+ σ + δ2

)
, (A8)

Rg = 8
√

η

(
δ
∂tp

∂τ
+ ∂φ

∂τ

)
− ∂η

∂τ

π3Pinδ
2

√
2η2

(sin φ − M cos φ) + 2
√

2Pinπδ
∂tp

∂τ

(
1 − π2δ2

8η

)
(cos φ + M sin φ)

−
(

δPin
∂tp

∂τ
+ Pin

∂φ

∂τ

)[
(cos φ + M sin φ)

(
2
√

2π − π3δ2

2
√

2η

)]
+ δPinπ

3

√
2η

(
1 − 5π2δ2

24η

)
∂δ

∂τ
(sin φ − M cos φ)

− Mω2

2

{(
−∂η

∂τ
× 2Pinπ

3

η2

)(
cos φ +

√
2δtp sin φ − 5

√
2δ2π2 cos φ

8η
− Pinδ

2t2
p cos φ

2
√

2
− δ3π2tp sin φ

6
√

2η

)

+ ∂tp

∂τ

[
4
√

2πPintp cos φ

(
1 − π2δ2

4η
− 5π4δ4

96η2

)
+

√
2π3δPin sin φ

η
− 5δ3 sin φPinπ

5

√
2η2

]
− ∂φ

∂τ

[
2
√

2Pin sin φ

(
π3

4η
+ πt2

p

)

−
√

2δ2Pin sin φ

(
π3t2

p

4η
+ 5π5

16η2

)
−

√
2Pintpπ

3δ cos φ

η
+ 5

√
2π5δ3Pintp cos φ

24η2

]
+ ∂δ

∂τ
×

[√
2Pintpπ

3

η
sin φ

(
1 − 5δ2π2

4
√

2η

)

− 2
√

2Pinδ cos φ

(
5π5

16η2
+ π3t2

p

4η

)
+

√
2Pinδ

3 cos φ

3η2

(
61π7

64η
+ 5π5t2

p

16

)]}
. (A9)

Step 3. Now using the form of Lg and Rg in

d

dτ

(
∂Lg

∂ ṗ j

)
− ∂Lg

∂ p j
+

(
∂Rg

∂ ṗ j

)
= 0, (A10)

where pj = η, tp, φ, δ and ṗ j = ∂η

∂τ
,

∂tp

∂τ
,

∂φ

∂τ
, ∂δ

∂τ
, we obtain the coupled ODEs for the CS parameters. These evolution equations

are mentioned in Eqs. (9)–(12).

APPENDIX B: DERIVATION OF CS TRAJECTORY UNDER PHASE-MODULATED DRIVING FIELD

We show the simplified coupled equations including only the dominating terms required for tracing the soliton trajectory. The
simplified coupled equations are

∂tp

∂τ
=

(
−2 + π3Pin sin φ

4
√

2η3/2

)
δ −

(
Mω2Pinπ

3 sin φ

4
√

2η3/2

)
tp, (B1)

∂δ

∂τ
= −πPin cos φ√

2η
δ + Mω2πPin cos φ√

2η
tp. (B2)
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We can write it in the form
∂tp

∂τ
= A1δ − A2tp, (B3)

∂δ

∂τ
= −B1δ + B2tp, (B4)

where A1 = (−2 + π3Pin sin φ

4
√

2η3/2 ), A2 = ( Mω2Pinπ
3 sin φ

4
√

2η3/2 ), B1 = πPin cos φ√
2η

, B2 = Mω2πPin cos φ√
2η

. The set of coupled differential equations
can be easily decoupled and we can get a second-order differential equation of tp of the form

∂2tp

∂τ 2
+ D1

∂tp

∂τ
+ D2tp = 0, (B5)

where D1 = (A2 + B1) = Mω2Pinπ
3 sin φ

4
√

2η3/2 + πPin cos φ√
2η

, D2 = (B1A2 − A1B2) =
√

2Mω2πPin cos φ√
η

. Now, the solution of the above equa-

tion can simply be written as tp(τ ) = Xem1τ + Yem2τ , where m1,2 = [−D1 ± D1(1 − 4�)1/2]/2, with � = D2/D2
1 and X,Y

are constants. Note that if � is very small (as Mω2 � 1) then m1 ≈ −D2/D1 and m2 ≈ −D1(1 − �). Now the boundary
conditions tp(0) = t0 and vd (0) = 0 lead to X = t0(1 + �) and Y = −�t0. Now neglecting � and A2 we may have the following
approximate expression of the temporal position:

tp ≈ t0 exp(−2Mω2τ ). (B6)

APPENDIX C: CALCULATIONS FOR THE REDUCED LAGRANGIAN AND RDF IN CASE MENTIONED IN SEC. IV

To obtain the evolution equations of two CSs we follow the same procedure mentioned in Appendix A.
Step 1. For the two-soliton interaction problem we choose our ansatz as follows.
For soliton 1:

ψ1(t, τ ) =
√

2η1(τ ) sech{
√

η1(τ )[t − t1(τ )]} × exp (i{φ1(τ ) − δ1(τ )[t − t1(τ )]}), (C1)

The interaction between two solitons is mediated with the tail oscillations, therefore we approximate ψ2 in the following form:

ψ2(t, τ ) ≈ 2
√

2η2 exp{−√
η2[t − t2(τ )]} × exp(i{φ2(τ ) − δ2(τ )[t − t2(τ )]}), (C2)

The explicit form of the EL equation is
d

dτ

(
∂L

∂ψ∗
1τ

)
+ d

dt

(
∂L

∂ψ∗
1t

)
− ∂L

∂ψ∗
1

+
(

∂R

∂ψ∗
1τ

)
= 0. (C3)

Considering ψ = ψ1 + ψ2, we can write the LLE for ψ1 as

i
∂ψ1

∂τ
+ ∂2ψ1

∂t2
+ |ψ1|2ψ1 + 2|ψ1|2ψ2 + ψ2

1 ψ∗
2 − σψ1 + iψ1 − iPin = 0. (C4)

We choose the form of Lagrangian (L) and RDF (R) functions in such a way that the EL equation for ψ1 will give back the LLE
for ψ1 as mentioned in C4:

L = i

2
(ψ1ψ

∗
1τ − ψ1τψ

∗
1 ) + |ψ1t |2 − 1

2
|ψ1|4 + σ |ψ1|2, (C5)

R = (2|ψ1|2ψ2 + ψ2
1 ψ∗

2 )ψ∗
1τ + (2|ψ1|2ψ∗

2 + ψ∗2
1 ψ2)ψ1τ + i(ψ1ψ

∗
1τ − ψ1τψ

∗
1 ) − iPin(ψ∗

1τ − ψ1τ ). (C6)

Step 2. Now we integrate the Lagrangian and Rayleigh’s function over the fast time (t):

Lg =
∫ ∞

−∞
L dt, (C7)

Rg =
∫ ∞

−∞
R dt . (C8)

The forms of Lagrangian (Lg) and RDF (Rg) are as follows:

Lg = 4
√

η1

(
δ1

∂t1
∂τ

+ ∂φ1

∂τ1
− η1

3
+ σ + δ2

1

)
, (C9)

Rg = 8
√

η1

(
δ1

∂t1
∂τ

+ ∂φ1

∂τ

)
+ 8η

3/2
1 η

1/2
2 e−√

η2T

[
6 cos θ ×

(
1

2η
3/2
1

∂η1

∂τ
− 2

3

∂t1
∂τ

)
− 2 sin θ

(
2δ1√
η1

∂t1
∂τ

+ 2√
η1

∂φ1

∂τ
+ 1

η1

∂δ1

∂τ

)]

− π3Pinδ
2
1 sin φ1

2
√

2η2
1

∂η1

∂τ
+

(
1 − π2δ2

1

8η1

)
2
√

2Pinπδ1 × cos φ1
∂t1
∂δ1

+ π3δ1Pin sin φ1√
2η1

(
1 − 5π2δ2

1

24η1

)

−
(

δ1Pin
∂t1
∂τ

+ Pin
∂φ1

∂τ

)(
2
√

2π cos φ1 − π3δ2
1 cos φ1

2
√

2η1

)
, (C10)
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where θ = φ1 − φ2 and T = t1 − t2.
Step 3. Now using the form of Lg and Rg in

d

dτ

(
∂Lg

∂ ṗ j

)
− ∂Lg

∂ p j
+

(
∂Rg

∂ ṗ j

)
= 0, (C11)

where pj = η1, t1, φ1, δ1 and ṗ j = ∂η1

∂τ
, ∂t1

∂τ
,

∂φ1

∂τ
, ∂δ1

∂τ
, we obtain the coupled ODEs for CS parameters. These evolution equations

are mentioned in Eqs. (21)–(24).
Similarly, to obtain the evolution equation for the second CS, which was mentioned in Eqs. (25)–(28), we have interchanged

the form of ψ1 and ψ2 in the ansatz function mentioned in (C1) and (C2) and follow the same procedure to obtain the coupled
ODEs for the parameters of the second CS.

APPENDIX D: COUPLED DIFFERENTIAL EQUATIONS OF TWO SOLITON PARAMETERS MENTIONED IN SEC. V

Following the procedures mentioned in Appendix A for single CS propagation under a phase-modulated driving field and
in Appendix C two-soliton propagation with a constant driving field one can easily obtain the governing equations of two CS
parameters under a phase-modulated driving field. Here are the coupled mode equations for the two CSs:

∂η1

∂τ
= −4η1 + 16η1

√
η1η2 exp(−√

η1T ) sin θ +
√

η1

2
×

(
2
√

2πPin − π3δ2
1Pin

2
√

2η1

)
(cos φ1 + M sin φ1) − Mω2√η1

4

×
[

2
√

2Pin sin φ1

(
π3

4η1
+ πt2

1

)
− 2δ2

1Pin

η1
sin φ1

(
π3t2

1

4
+ 5π5

16η1

)
−

√
2δ1π

3Pint1 cos φ1

η1
+ 5

√
2π5δ3

1Pin

24η2
1

t1 cos φ1

]
,

(D1)

∂φ1

∂τ
= −σ + η1 + δ2
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Here, η1 (η2), t1 (t2), φ1 (φ2), and δ1 (δ2) are the corresponding amplitude, position, phase, and frequency shift of the soliton
1 (soliton 2), θ = φ1 − φ2 and T = t1 − t2.

The evolution equations for the second CS are
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. (D8)

These sets of eight coupled differential equations (D1)–(D8) help to visualize the evolution of two CS parameters under a
phase-modulated driving field.
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