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We study here one-dimensional model of aggregation and fragmentation of clusters of particles obeying the
stochastic discrete-time kinetics of the generalized totally asymmetric simple exclusion process (gTASEP) on
open chains. The gTASEP is essentially the ordinary TASEP with backward-ordered sequential update (BSU),
however, equipped with two hopping probabilities: p and pm. The second modified probability pm models a
special kinematic interaction between the particles of a cluster in addition to the simple hard-core exclusion
interaction, existing in the ordinary TASEP. We focus on the nonequilibrium stationary properties of the gTASEP
in the generic case of attraction between the particles of a cluster. In this case the particles of a cluster have
higher chance to stay together than to split, thus producing higher throughput in the system. We explain how the
topology of the phase diagram in the case of irreversible aggregation, occurring when the modified probability
equals unity, changes sharply to the one, corresponding to the ordinary TASEP with BSU, as soon as the modified
probability becomes less than unity and aggregation-fragmentation of clusters appears. We estimate various
physical quantities in the system and determine the parameter-dependent injection and ejection critical values by
extensive computer simulations. With the aid of random walk theory, supported by the Monte Carlo simulations,
the properties of the phase transitions between the three stationary phases are assessed.

DOI: 10.1103/PhysRevE.100.022145

I. INTRODUCTION

The asymmetric simple exclusion process (ASEP) is one of
the simplest models of self-driven many-particle systems with
bulk particle-conserving stochastic dynamics exhibiting phase
transitions in nonequilibrium steady state. In the extremely
asymmetric case, when particles are allowed to move in one
direction only, it reduces to the totally ASEP (TASEP). These
models are some of the rare examples of exactly solved
models far from equilibrium (see Refs. [1–3]). Presently, our
understanding of non-equilibrium systems lags behind our
knowledge of equilibrium systems and ASEP and TASEP
are considered paradigmatic models (similarly to the Ising
model in the equilibrium case) for understanding a variety
of properties of systems in nonequilibrium steady states,
nonequilibrium phase transitions and various phenomena with
no counterpart in the equilibrium case. Different variants of
TASEP model are widely studied currently, since it is believed
that this model can be helpful in understanding various types
of systems in Nature, such as kinetics of protein synthesis
[4,5], molecular motors on a single track [6], colloid particles
moving in narrow channels [7–9], and vehicles on a single-
lane road [10–13], etc. In the model under consideration here,
the particles obey the dynamics of the generalized TASEP
(gTASEP) [14], which is the ordinary TASEP with backward-
sequential update (BSU), however, having two hopping prob-
abilities: p and pm. The modified probability pm models a
special kinematic interaction between the particles in a cluster
(which hop during the same integer-time moment) in addition
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to the simple hard-core exclusion interaction, existing in
ordinary TASEP. In principle, the model admits the study
of aggregation-fragmentation phenomena, fluctuations and
finite-size effects in nonequilibrium stationary states induced
by the boundary conditions.

We remind the reader that the original TASEP was defined
as a continuous-time Markov process (random-sequential up-
date in the Monte Carlo simulations) and was solved exactly
with the aid of recurrence relations by Domany et al. [15]
for special values of the model parameters, and by Schütz
and Domany [16] in the general case. A breakthrough in the
methods for solving TASEP on open chains marks the matrix-
product representation of the steady-state probability distribu-
tion, found in Ref. [17]. Different versions of this approach,
known as the Matrix Product Ansatz (MPA), were used also
to obtain exact solutions for the stationary states of TASEP
and ASEP under several types of discrete-time stochastic
dynamics: sublattice-parallel [18,19], forward-ordered and
backward-ordered sequential [20,21], and fully parallel (si-
multaneous updating of all sites) [22,23]. One of the goals
of these studies was also to see how the system dynamics
(update rules) influences the system nonequilibrium steady-
state properties. An extensive comparative study of the ASEP
with different updates was presented in Ref. [24] with the aim
for a better understanding of the similarities and differences
of the different updates. It appeared that they all have the
same structure of the phase diagram and relations were es-
tablished connecting the current and bulk density in ASEPs
with different updates. The above studied cases of TASEP
show also that the only dynamics that allow clusters to move
forward as a whole entity is the backward-ordered one. Then,
the probability for translation of a cluster of k particles one site
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FIG. 1. Schematic image of the generalized TASEP, showing the time evolution of system configuration at three consecutive time steps.
Isolated particles and the first particle of a cluster (shown as gray boxes) on the right (head particle) are shown with black solid circles—they
may move one site to the right with probability p. Particles, which belong to a cluster (except the head particle), are shown with patterned
(red) circles—they may move one site to the right (provided the particle in front of them has moved at the same time step) with a modified
probability pm. When pm > p (“attraction” interaction) the particles have higher probability to stay in clusters than to split. The left boundary
condition is also modified accordingly to ensure consistency with the update rules in the bulk (for more details see the text).

to the right is pk , while such a cluster is broken into two parts
with probability p − pk . That is why gTASEP is based upon
TASEP with BSU. Under the generalized TASEP dynamics,
the probability for translation of a cluster of k particles one
site to the right becomes ppk−1

m , and its fragmentation into two
parts happens with probability p(1 − pk−1

m ).
In terms of real traffic the case pm > p (termed “attraction”

interaction) models the natural tendency of a driver to catch up
with the car ahead. Thus clusters of synchronously moving
particles or cars may appear, leading to higher throughput
(current) in the system. The higher the value of pm is the
more motion of particles in clusters is favored. There are
many other systems where aggregation (and fragmentation) of
particles into clusters play an important role. Their tendency
to aggregate is modelled as attraction interaction. Some of
these systems appear in aerosol physics, polymer growth, etc.
In living systems the aggregation of pathogenic proteins in
the cells may lead to the appearance of a number of neurode-
generative diseases like Alzheimer’s, prion diseases, etc. [25].
We would like to point out here that knowledge of behavior
and predictions of different simple models of aggregation-
fragmentation phenomena could be helpful in understanding
better the contributions of specific interactions and processes,
playing part in real aggregation phenomena. Though simple,
they can still serve as guide for future experiments.

We note that the above generalized backward-ordered dy-
namics was suggested as exactly solvable one by Wölki [14],
and studied on a ring in Refs. [26–28]. The limit case of
gTASEP with pm = 1 corresponds to irreversible aggregation,
or jam formation in the case of vehicles, suggested and studied
by Bunzarova and Pesheva [29] and further elaborated in
Refs. [30,31]. Here, we focus on the nonequilibrium sta-
tionary properties of gTASEP when p < pm < 1, describing
the generic case of attraction between particles, hopping
stochastically and unidirectionally in discrete time along finite
one-dimensional chains with given boundary conditions at
the ends. In particular, we are interested to see how the
phase diagram of gTASEP with pm = 1 is destroyed and

transformed into a new one when the condition pm = 1 is
relaxed to p < pm < 1.

II. THE MODEL AND SOME KNOWN RESULTS

A. The model

The dynamics of the gTASEP follows the discrete time
backward-sequential rules [20,21], however, modified to in-
clude two hopping probabilities: p and pm—see Fig. 1, where
a schematic image of gTASEP is presented. Single particles
and the first particle of a cluster on the right (called head
particle) may move one site to the right with probability p.
Particles, which belong to a cluster (except the head particle)
may move one site to the right, provided the particle in front
of them has moved at the same time step, with a modified
probability pm. The case when pm > p models the behaviour
of drivers in real traffic to follow the car ahead, thus leading to
the appearance of more clusters moving in the system, which
in turn leads to higher current.

More precisely, we consider an open one-dimensional lat-
tice of L sites. An occupation number τi is associated with a
site i, where τi = 0, if site i is empty and τi = 1, if site i is
occupied. During each discrete moment of time t , an update
of the configuration of the whole chain with L sites, labelled
by i = 1, 2, . . . , L, takes place in L + 1 steps, passing through
successive updates of the right boundary site i = L, all the
pairs of nearest-neighbor sites in the backward order (L −
1, L), . . . , (i, i + 1), . . . , (1, 2), and, finally, the left boundary
site i = 1 is updated. According to the generalized backward-
sequential rules:

(1) Each integer time moment t (or else configuration
update) starts with the update of the last site of the chain: if
site i = L is occupied, the particle at it leaves the system with
probability β and stays in place with probability 1 − β. If the
last particle has left the system, then if there is a particle at site
i = L − 1, it moves to the site i = L with modified probability
pm; otherwise, it remains immobile with probability 1 − pm.
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(2) Next, a particle at site i = 1, 2, . . . , L − 2 hops to an
empty site i + 1 with probability p or pm, depending on the
update of the next nearest neighbor on the right-hand side at
the current moment of time. Isolated particles and the first
particle of a cluster of particles hop one site forward with
probability p. When the first particle of a cluster hops, the
remaining particles of the same cluster may hop during the
same integer-time moment with a modified probability pm,
i.e.:

(i) if site i is occupied and site i + 1 is empty at the
beginning of the current update, then the particle from site i
jumps to site i + 1 with probability p and stays immobile with
probability 1 − p;

(ii) alternatively, if site i + 1 is occupied at the beginning
of the current moment of time t and became empty after the
particle from i + 1 jumped to the empty i + 2, then the particle
at site i jumps to site i + 1 with probability pm and stays
immobile with probability 1 − pm.

(3) The left boundary condition also depends on the occu-
pation history of the right nearest-neighbor. If site i = 1 was
empty at the beginning of the current update, then a particle
enters the system with probability α or site i = 1 remains
empty with probability 1 − α. Alternatively, if site i = 1 was
occupied at the beginning of the current moment of time,
but became empty under its current update, then a particle
enters the chain with probability α̃ or the site remains empty
with probability 1 − α̃. Note, that to ensure consistency with
the update rules in the bulk, one needs to set α̃ = αpm/p.
However, α̃ (which is a probability) may exceed 1 for some
values of the parameters α, p and pm, thus one needs to set

α̃ = min{1, αpm/p}. (1)

We note that the above left boundary condition was introduced
first by Hrabák in Ref. [32] and, independently, in Ref. [29].
It provides also smooth transition of gTASEP to the special
cases of the ordinary TASEP with BSU, when pm = p and
α̃ = α, as well as to the TASEP with parallel update, when
pm = 0 and α̃ = 0.

B. Known results in particular cases

Here we summarize some known results about the phase
diagrams and the phase transitions between the stationary
phases of gTASEP in the particular cases of pm = p (the
ordinary TASEP with BSU) and pm = 1 (irreversible aggrega-
tion). The corresponding phase diagrams are shown in Fig. 2
and density profiles (local density ρ(x) along the chain length)
are shown at representative points of the different phases of
the respective phase diagrams in Fig. 3.

In Fig. 2(a) the nonequilibrium phase transitions between
low-density (LD) phase (LD = AI ∪ AII) and maximum-
current (MC) phase, as well as between high-density (HD)
phase (HD = BI ∪ BII) and MC phase, are continuous, while
the transition between LD and HD is discontinuous, with a
finite jump in the local density. The subregions AI (BI) and
AII (BII) differ by the shape of the local density profiles [see
also Fig. 3(a) below]. The exact critical injection/ejection rate
values are αc = βc = 1 − √

1 − p. In our case of p = 0.6,
αc = βc = 0.367544 . . . .

(a) (b)

FIG. 2. Phase diagrams in the {α, β}-plane of: (a) the standard
TASEP with BSU with p = pm = 0.6. There are three stationary
phases: maximum-current phase, MC, low-density phase, LD =
AI ∪ AII, and high-density phase, HD = BI ∪ BII; (b) the gTASEP
with p = 0.6 and pm = 1. The three stationary phases are of different
nature: a many-particle phase MP = MPI ∪ MPII, a CF phase of
completely filled chains, and a mixed MP+CF phase.

In Fig. 2(b) the many-particle phase MP contains a macro-
scopic number of particles or clusters of size O(1) as L → ∞;
MPI and MPII differ only by the shape of the local density
profile [see Fig. 3(b)], which results from the different type
of evolution of the configuration gaps. However, in contrast to
the case of the standard TASEP, where a similar place in the
phase diagram is taken by a LD phase, here the bulk density
(ρb = αb/p) can take any value from zero to one. In the region
MPI, the inequality β > p leads to growing average width of
the rightmost gap, hence the profile bends downward near the
chain length. In the complementary region MPII, the opposite
inequality β < p holds and the rightmost gap is short-living,
while the gaps on the left-hand side of it have a critical type
of evolution with mean lifetime of the order O(L1/2); see
Ref. [31]. The unusual phase transition (found in Ref. [29])
is manifested by the jumps both in the bulk density ρb(α)
and the current J (α). It takes place across the boundary α = p
between the MPI and CF phases.

The phase MP+CF is mixed in the sense that the com-
pletely filled configurations are perturbed by short living gaps
entering the chain from the first site. The configurations of the
stationary nonequilibrium phase CF represent a completely
filled chain with current J = β [not shown in Fig. 3(b) to
avoid overfilling the figure]. If one interprets the probability of
completely filled lattice, P(1), as an order parameter, then one
has a continuous, clustering type phase transition throughout
MP+CF phase, from a completely disaggregated phase in
MPII to a completely aggregated one in CF.

III. THE GENERIC CASE OF ATTRACTION

First, we aim here to analytically approach the question of
how the completely filled phase (CF) at pm = 1 [see Fig. 2(b)]
is destroyed, when 0 < 1 − pm � 1, and transformed into
new phases typical for pm < 1 [see Fig. 2(a)]. One of the
methods, developed in Refs. [30,31], and which is used also
here, is based on the study of the time evolution of single gaps
in different regions of the CF phase.
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(a () b)

FIG. 3. Typical density profiles (local density ρ(x) as function of space variable x = i/L) for a chain of L = 400 sites, hopping probability
p = 0.6, are shown at representative points of the different phases of the respective phase diagrams for: (a) ordinary TASEP with BSU
(pm = p): two points in the LD phase, α = 0.2, β = 0.6 (AII)—solid (blue) down triangles, α = 0.2, β = 0.1 (AI)—empty (cyan) down
triangles; coexistance α = 0.2, β = 0.2—empty (black) circles; MC phase α = 0.6, β = 0.8 – solid (green) diamonds, and two points in
HD phase, α = 0.2, β = 0.1 (BI)—empty (magenta) up triangles, α = 0.6, β = 0.2 (BII)—solid (red) up triangles; and (b) gTASEP in the
limit case of irreversible aggregation (pm = 1) at fixed ejection probability β = 0.3: two values of α from phase MPII: α = 0.1—empty
(green) down triangles, and α = 0.2 – solid (magenta) down triangles, the coexistence line of phases MPII and MP+CF, appearing when
α = β = 0.3—empty (black) circles, and phase MP+CF at α = 0.4—empty (orange) stars and α = 0.5—solid (blue) stars. A point form MPI
phase is shown, appearing when α = 0.2 and β = 0.8—empty (purple) diamonds.

Second, we present results of extensive computer simu-
lations, which suggest the topology of the modified phase
diagram, the shift of the triple point [αc(p, pm), βc(p, pm)]
under the change of pm ∈ [p, 1] at fixed p, and the nature of
the phase transitions between the stationary nonequilibrium
phases.

A. Time evolution of configuration gaps

We begin with finding out the probability of a single gap
appearance under boundary conditions corresponding to the
CF phase. Then we consider the first step in the time evolution
of the gap width. The problem is rather complicated because
the probability of appearance of a gap is position dependent
when pm < 1. In contrast to the case of pm = 1, here we show
that when β �= p, the gap width performs a special, position
dependent random walk.

Let Pi(p, pm) denote the probability of appearance of a sin-
gle gap at site i = 1, 2, . . . , L in a completely filled configu-
ration with τ1 = τ2 = . . . τL = 1, when 0 < 1 − pm � 1. For
brevity of notation, we do not show the explicit dependence
on the injection and ejection rates of that probability. Since we
exclude the appearance of a second gap, under the generalized
backward-sequential update we obtain

PL−k (p, pm) = (1 − pm)pk
mβ, k = 0, 1, . . . L − 2,

P1(p, pm) = (1 − α̃)pL−1
m β. (2)

Under the assumption 0 < 1 − pm � 1, the left boundary
condition yields α̃ = 1 for all p < α � 1, which means that
P1(p, pm) = 0 at the beginning of each update. Therefore, we
focus on the case when the gap appears at sites 2 � i � L.
Then, the right edge of the gap, positioned at site i + 1 < L
can move one site to the right, provided that site is empty.
The latter event occurs only if the particle at site i = L leaves

the system with probability β, and the remaining cluster of
L − i − 1 particles at sites i + 1, . . . , L − 1 moves as a whole
entity one site to the right, which happens with probability
pL−i−1

m . Thus, the total probability for the particle at the right
edge to hop to the right is pL−i−1

m β, and to remain at its place
is (1 − β ) + (1 − pL−i−1

m )β. However, the particle at the left
edge i − 1, being either the rightmost particle of a cluster or
isolated, may hop to the right with the position independent
probability p, and stay immobile with probability 1 − p. As a
result, the gap width increases by one site with probability

pg(i) = (1 − p)pL−i−1
m β, (3)

decreases by one site with probability

qg(i) = [
(1 − β ) + (

1 − pL−i−1
m

)
β
]
p = (

1 − pL−i−1
m β

)
p,

(4)

and remains the same with probability

rg(i) = 1 − p + pL−i−1
m β(2p − 1). (5)

As expected, at pm = 1 these expressions reduce to equalities
Eq. (4) in Ref. [31]. As is readily seen, in the alternative
case of several coexisting gaps, the above probabilities apply
exactly to the rightmost one.

Now we have to average the gap width evolution over the
initial probabilities given by Eq. (2). The probability normal-
ization factor under the condition of a single gap opened at
sites i = 2, 3, . . . , L is

N (p, pm ) = (1 − pm)β
L−2∑

k=0

pk
m = β

(
1 − pL−1

m

)
. (6)

Then, the changes in the gap width at the first time
step, averaged over all events of gap appearance at sites i =
2, 3, . . . , L, become as follows:
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The gap width increases by one site with probability

p̄g = (1 − p)(1 − pm)β

pm
(
1 − pL−1

m

)
L∑

k=2

p2k
m = (1 − p)

(
1 + pL−1

m

)
β

pm(1 + pm)
,

(7)

decreases by one site with probability

q̄g = p(1 − pm)(
1 − pL−1

m

)
L−2∑

k=0

(
pk

m − p2k−1
m β

) = p − p
(
1 + pL−1

m

)
β

pm(1 + pm)
,

(8)

and remains the same with probability

r̄g = (1 − pm)(
1 − pL−1

m

)
L−2∑

k=0

[
(1 − p)pk

m + p2k−1
m β(2p − 1)

]

= 1 − p + (2p − 1)β
(
1 + pL−1

m

)

pm(1 + pm)
. (9)

Notably, at pm = 1 the above results reduce again to equalities
Eq. (4) in Ref. [31].

By comparing the expressions for p̄g and q̄g, we conclude
that on the average a single-site gap will grow after the first
time step of its evolution when

β > p
pm(1 + pm)(
1 + pL−1

m

) . (10)

When pm → 1 and L is fixed, or L → ∞ so that pL
m → 1, this

condition simplifies to β > p. However, for fixed values of
pm close to 1, pL

m will decrease to zero as L → ∞. For ex-
ample, in our computer simulations we used: pm = 0.99 and
L = 800, which yields pL−1

m 	 3.22 × 10−4 and the criterion
becomes much stronger, β > 1.97p. However, with each time
step j = 1, 2, . . . the right edge of the gap will hop forward
by one site with increasing probability pL−i− j

m β, while its
left edge may hop to the right with the position independent
probability p. Thus, the value of pg(i) will increase and the
value of qg(i) will decrease in the course of time.

Without going into the involved details of the complete
gaps evolution, we conjecture that the simple criteria β > p
for growing gaps, and β < p for decreasing gaps, hold true.
Thus, our expectation, confirmed by the computer simula-
tions, is that in the upper region (p < α � 1] × (p < β � 1]
of the CF phase a maximum-current phase will appear. Its
local density profile satisfies the inequalities ρ1 = 1 > ρl/2 >

ρL, which follow from the conditions α̃ = 1, and the larger
probability of gap formation near the end of the chain. In the
lower region (p < α � 1] × (0 < β < p] of the CF phase the
gaps are scarce, small and short-living, which is indicative of
a high-density phase. Again, the left-hand side of the local
density profile bends upward to ρ1 = 1.

Note that in the above consideration p =
limpm→1−0 σc(p, pm). In the case of pm < 1, the critical
values should decrease down to σc(p, p) = 1 − √

1 − p, as
pm → p + 0.

FIG. 4. Behavior of the stationary midpoint density, ρ1/2, and
the current, J , for the gTASEP for two values of the modified
hopping probability, pm = 0.6 and pm = 0.9, as a function of the
input rate α at chain length L = 800 sites, fixed p = 0.6 and output
rate β = 0.8. Apparently, their behavior (for pm = 0.6 and for pm =
0.9) is similar and reflects the continuous nonequilibrium phase
transition across the segment βc(p, pm ) < β � 1, however, with
different, pm-dependent critical values: our estimates for pm = 0.9
are αc(0.6, 0.9) = βc(0.6, 0.9) 	 0.41 (αc(0.6, 0.9) is shown by the
vertical red dashed-dotted line). The vertical green dashed line shows
the position of the critical value αc(0.6, 0.6) = 0.367544 of the
ordinary TASEP with backward sequential update.

B. Phase diagram and phase transitions

We performed Monte Carlo simulations of the gTASEP on
open chains of mainly L = 800 and L = 1600 sites. Each run
started with 106 relaxation updates and had not less than 104

attempted updates per lattice site. The stationary properties
were evaluated by averaging over 100 (quasi)independent
runs. The estimated accuracy is O(10−3) for the local particle
density and O(10−4) for the current.

First, we compare the behavior of the current, J , and the
local density at the midpoint of the chain, ρ1/2, under two
modified hopping probabilities pm = 0.6 and pm = 0.9, as a
function of the input rate α, at chain length L = 800 sites,
fixed p = 0.6 and output rate β = 0.8; see Fig. 4.

We recall that in the standard backward-sequential TASEP
with p = 0.6, the exact results in the thermodynamic limit
L → ∞ are: for the critical injection/ejection values

αc = βc = 1 −
√

1 − p = 0.367544 . . . ,

for the current in the maximum-current phase

JMC = 1 − √
1 − p

1 + √
1 − p

= 0.225148 . . . ,

and for the midpoint density in the MC phase

ρMC
1/2 = 1

1 + √
1 − p

= 0.612574 . . . .

The critical value αc, shown in Fig. 4 by a vertical green
dashed line, corresponds to the transition of the asymptotic be-
havior of the current J (at pm = 0.6) near αc from a parabolic
one on the left-hand side of the segment βc(0.6, 0.6) < β � 1,
to a constant value in the MC phase on the right-hand side of
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(a () b)

FIG. 5. The current in the gTASEP when p = 0.6, pm = 0.99 and L = 1600 sites, as a function of: (a) the injection probability α (at
β = 0.8). The critical value αc(0.6, 0.99) = 0.503 ± 0.001 is estimated from the apparent change in the asymptotic behavior of the current;
(b) the ejection probability β (at α = 0.8). The critical value βc(0.6, 0.99) = 0.502 ± 0.001 is estimated from the apparent change in the
asymptotic behavior of the current.

it. Due to finite-size effects, the current JMC slightly grows
with α up to 0.2256 at α = 1.

Similarly, at pm = 0.9, we see that the phase transi-
tion across the segment βc(0.6, 0.9) < β � 1 is continu-
ous too and we estimate the critical values αc(0.6, 0.9) =
βc(0.6, 0.9) 	 0.41, see the vertical red dash-dotted line in
Fig. 4. This indicates that the unusual phase transition, found
in [29] at pm = 1 across the boundary α = p becomes a
continuous one. Note that in the MC phase the current
grows up to JMC(0.6, 0.9) = 0.3090 . . . and the local density
ρMC

1/2 (0.6, 0.9) up to 0.7531.
To check the continuity of the phase transition across the

segment βc < β � 1, we consider in more detail both the α-
and β-dependence of the current on larger lattice and value of
pm closer to 1, namely L = 1600 and pm = 0.99. The results
are shown in Figs. 5(a) and 5(b).

It is instructive to analytically check the above estimates
for the critical values of the injection (ejection) αc (βc)
probabilities, commonly denoted by σc. To this end we use
the continuity condition for the first derivative of the current:
J ′(σc − 0) = J ′(σc + 0). Close to the critical value σc, we
have a parabolic approximation for the current below σc,

J (σ < σc) = A + Bσ + Cσ 2, (11)

and a linear approximation above σc,

J (σ > σc) = a + kσ. (12)

Hence, in the case of a continuous second order phase tran-
sition, when J ′(σc − 0) = J ′(σc + 0), we obtain an estimate
for σc:

σc = k − B

2C
. (13)

In the case of the current as a function of α, see Fig. 5(a), the
best least-square fit yields

A = −0.386 ± 0.05, B = 3.229 ± 0.21,

C = −3.186 ± 0.21, k = 0.022 ± 7.7 × 10−4, (14)

which leads to the estimate αc = 0.503 ± 0.07. In spite of the
large error interval, this estimate coincides with our former
value of αc(0.6, 0.99) 	 0.503.

In the complementary case of the β-dependent current, see
Fig. 5(b), the best least-square fit yields

A = −0.536 ± 0.055, B = 3.86 ± 0.22,

C = −3.82 ± 0.22, k = 0.023 ± 0.001, (15)

which leads to the estimate βc = 0.502 ± 0.05. Again, the
error bars are rather large, but this estimated value also co-
incides with our former assessment of βc(0.6, 0.99) 	 0.502.
Finally, we assume that within error bars αc(0.6, 0.99) =
βc(0.6, 0.99) = 0.502 ± 0.02.

Now we focus on the phase transitions taking place
by changing α across the segment 0 < β < βc(p, pm). In
Ref. [29], a mixed MP+CF phase was found at pm = 1, see
Fig. 2(b). This phase is characterized by the nonzero probabil-
ity P(1) of appearance of a cluster spanning the whole chain
of L sites: P(1) changes with α from zero at the left phase
boundary 0 < α = β < p to P(1) = 1 at the right bound-
ary α = p, 0 < β < p with the CF phase. In Ref. [31] the
MP+CF phase was interpreted as a boundary perturbed one.
Here we show that as pm < 1, P(1) exponentially decreases to
zero, not only in the MP+CF phase but also in the subregion
(0 < α < αc) × (0 < β < βc), which at pm = 1 belongs to
the CF phase. The results of our computer simulations for
the cluster-size distribution in gTASEP when pm = 0.99 at
α = 0.6, β = 0.25, and lattice sizes L = 200, 400, 800 are
shown in Fig. 6.

By using a larger series of chain sizes, from L = 200 to
L = 1600, we obtain that P(1) probability decays exponen-
tially fast with the unlimited increase of L,

PL(1) 	 0.2426 × exp{−(L − 200)/140}, L � 200. (16)

The quality of the fit is illustrated in Fig. 7.
Therefore, by continuity arguments, we conclude that in

the thermodynamic limit L → ∞ the regions between the left-
hand boundary 0 < α = β < σc(p, pm) and the right-hand
boundary at α = 1 and 0 < β < βc(p, pm), belong to the
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FIG. 6. Cluster size distribution in the gTASEP when p = 0.6,
pm = 0.99 on lattices L = 200, 400, 800 sites at α = 0.6, and β =
0.25. At L = 1600 the estimated value of P(1) drops down to
1.147 × 10−5.

same phase. The fact that across the coexistence line 0 < α =
β < σc(p, pm) there occurs a first-order phase transition is
seen from the shape of the local density profiles, shown in
Fig. 8 at different points (α, β ) in the α-β plane.

By using continuity arguments, we generalize the above
results to conjecture a generic phase diagram of the gTASEP
with pm < 1 with the same topology as in the case of the
backward-sequential TASEP, see Fig. 2(a), but with (p, pm)-
dependent triple point (αc, βc). In Fig. 9 we exemplify the
phase diagram of the gTASEP in the particular case of p = 0.6
and pm = 0.99 and the shift of the triple point (αc, βc) with the
increase of pm at fixed p = 0.6.

Now one can see the similarity in the behavior of the local
density profiles in the cases pm = p < 1 and p < pm < 1. In
the low-density phase LD = LDI ∪ LDII the bulk density
is less than 1/2, the difference between the LDI and LDII
regions is in the right-hand end of the local density profile: in
LDI it bends upward, while in LDII it bends downward, sim-
ilarly to the case of the standard backward-sequential TASEP.
This can be readily explained by using the exact relationship

FIG. 7. Least-square fit to the exponential decay of the complete-
cluster probability P(1) with the unlimited increase of the chain
length L in the gTASEP when p = 0.6 and pm = 0.99 at α = 0.6
and β = 0.25.

FIG. 8. Local density profiles of the gTASEP when p = 0.6 and
pm = 0.99 at different points in the phase space. Obviously, the
point (α = 0.25, β = 0.25) lies on the coexistence line between the
low-density phase, represented by the points (α = 0.25, β = 0.40)
and (α = 0.25, β = 0.75), and the high-density phase, represented
by the points (α = 0.40, β = 0.25), (α = 0.75, β = 0.25), and (α =
0.75, β = 0.50). The corresponding value of the current J is denoted
next to every density profile.

ρL = J/β, and assuming the same value of the current in the
two regions. In the considered particular case of p = 0.6 and
pm = 0.99, the bulk density in the high-density phase is very
close to 1, the difference between the regions HDI and HDII
being at left-hand side of the profile: In HDI it sharply bends
downward, while in HDII it bends upward, again similarly to
the case of the standard backward-sequential TASEP.

Additional information can be found in the different gaps
evolution regimes in regions LDI and HDI: in both cases

FIG. 9. Conjectured phase diagram of the gTASEP when p =
0.6 and pm = 0.99 (purple lines). It has the same topology as
in the case of the standard TASEP with backward-sequential up-
date [shown in Fig. 1(a)], but with different, pm-dependent critical
values—our estimates are α(3)

c (0.6; 0.99) = β (3)
c (0.6; 0.99) = 0.502,

see text. To illustrate the shift of the triple point we have added
also the critical lines of the standard backward sequential TASEP,
i.e., α(1)

c (0.6; 0.6) = β (1)
c (0.6; 0.6) = 0.3675 (thin green lines) and

of the gTASEP with p = 0.6 and pm = 0.9 – α(2)
c (0.6; 0.9) =

β2
c (0.6; 0.9) = 0.41 (thin blue lines).
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FIG. 10. A space-time plot (time is flowing downward in the vertical direction) of the gTASEP when p = 0.6, pm = 0.99, and L = 400
sites, showing the gaps evolution, in: (a) region LDI (α = 0.25, β = 0.40)—white stripes; (b) in region HDI (α = 0.40, β = 0.25)—white
spots.

α < p, which implies α̃ < 1, so that gaps can appear at the
first site i = 1 and evolve throughout the chain; however, in
LDI the gaps are wide and long-living, while in HDI they are
small, scarce and very short living, compare Figs. 10(a) and
10(b). The typical gaps pattern in LDII (HDII) is similar to
the one shown for LDI (HDI). These features may explain the
large difference in the particle densities in the low-density and
high-density phases.

Here we emphasize that the gTASEP does not satisfy the
particle-hole symmetry inherent to the standard versions of
TASEP. For example, the fundamental diagram of the generic
model, obtained by Hrabák, see Fig. 6.2 in Ref. [32], where
γ = pm/p, is not symmetric under the replacement ρ ↔
1 − ρ. The above mentioned phase diagram was obtained in
the thermodynamic limit under periodic boundary conditions,
which means that the very bulk dynamics at p < pm does not
respect the particle-hole symmetry. In addition, in our case
of open boundaries, the left boundary condition Eq. (1) is
not appropriate for introduction of holes from the right chain
end. Therefore, it is rather unexpected that the currents in
the phases LD and HD, calculated at symmetric points (α, β )
and (β, α), are equal: JLD(α = 0.25, β = 0.75) = JHD(α =
0.75, β = 0.25) 	 0.2477.

IV. DISCUSSION

We studied the generalized TASEP in the regime of parti-
cle attraction (pm > p) between hopping nearest-neighboring
particles. In this case (p < pm < 1) cluster aggregation and
fragmentation is allowed in the system. A central problem of
interest was to find how the topology of the phase diagram
in the case of irreversible aggregation pm = 1, see Fig. 2(b),
transforms into the topology of the well-known phase diagram
of the usual TASEP with backward-ordered sequential update,
see Fig. 2(a), when pm decreases from pm = 1 down to pm =
p. Based on an incomplete random-walk theory and on exten-
sive Monte Carlo calculations, we conjectured that the above
phenomenon takes place sharply, as soon as pm becomes less
than 1. The main difference between the phase diagrams for
pm = 1 and pm < 1 turned out to be the dependence of the

critical probabilities σc(p, pm) on pm, at fixed p. Apart from
that, we have shown the similarity of the local density profiles
and the current as a function of the injection α and ejection
β probabilities, in the cases pm = p and pm > p. The main
effect of increasing the modified hopping probability pm turns
out to be increase in the values of critical point coordinates,
the bulk density and the current. For example, on passing from
pm = p to pm = 0.99, these values grow from

αc = βc 	 0.3675, JMC 	 0.2251, ρMC
1/2 	 0.6126,

to

αc = βc 	 0.502, JMC 	 0.4409, ρMC
1/2 	 0.8891.

On the ground of our random walk theory and the computer
simulations, we have conjectured that the simple criteria
β > p, for growing gaps, and β < p, for decreasing gaps, hold
true on the average.

An interesting result is the exponential decay to zero of
the probability P(1) of a complete cluster in the HDII phase
(which emerges in the lower region of the CF phase of the
gTASEP with pm = 1), when pm < 1 and the chain length L
increases unboundedly; see Fig. 7.

There are still many open problems, such as an elaboration
of the random walk theory to the extent of yielding both quali-
tative and quantitative predictions, the analytical derivation of
the local density at the chain ends, and the value of the current
in the different stationary phases, just to mention a few.
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