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We present an analytical approach to study simple symmetric random walks on a crossing geometry consisting
of a plane square lattice crossed by nl number of lines that all meet each other at a single point (the origin) on
the plane. The probability density to find the walker at a given distance from the origin either in a line or in the
plane geometry is exactly calculated as a function of time t . We find that the large-time asymptotic behavior of
the walker for any arbitrary number nl of lines is eventually governed by the diffusion of the walker on the plane
after a crossover time approximately given by tc ∝ n2

l . We show that this competition can be changed in favor of
the line geometry by switching on an arbitrarily small perturbation of a drift term in which even a weak biased
walk is able to drain the whole probability density into the line at long-time limit. We also present the results
of our extensive simulations of the model which perfectly support our analytical predictions. Our method can,
however, be simply extended to other crossing geometries with a single common point.
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I. INTRODUCTION

Random walks (RWs) are ubiquitous models of stochastic
processes playing an essential role in many challenging prob-
lems in probability and statistical physics [1–4]. For random
walks, the probability density ρ(r, t ) to find a walk at time
t at a site with distance r from its origin obeys the scaling
collapse [5]

ρ(r, t ) ∝ t−d f /dw f (r/t1/dw ), (1)

with the scaling variable r/t1/dw , where d f is the dimension
of the underlying (possibly fractal) network. On a lattice
with translational invariance symmetry in any integer spatial
dimension d f = d , it has been shown that the walk is always
purely diffusive with dw = 2, with a Gaussian scaling function
f , which has been the content of many classic textbooks on
random walks and diffusion [1,6]. The scaling relation (1)
still remains valid when translational invariance is blurred
in certain ways or the network is fractal (i.e., for noninteger
d f ), for which anomalous diffusion with dw �= 2 may arise in
various transport processes [5,7–11].

Using Eq. (1), it is now straightforward to conceive Pólya’s
recurrence theorem [12] that a simple symmetric RWs on
Zd lattice is recurrent in d � 2 but transient in d � 3. Also
widely known is that the transition between recurrence and
transience occurs precisely at d = 2 (or more accurately at
the spectral dimension ds = 2) rather than at some fractal
dimension 2 < d f < 3. In this sense, d = 2 is the “critical
dimension” for intersection of a two-dimensional set (i.e.,
the path of RWs) and a zero-dimensional set (the origin).
Moreover, it is known [13] that the scaling limit (i.e., the limit
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that the lattice spacing is sent to zero) of the simple RWs in
d dimensions converges to the d-dimensional standard Brow-
nian motion which has a certain invariance under conformal
maps in two dimensions. The conformal invariance in d = 2
then provides a powerful tool to exactly determine the values
of the involved exponents [13].

Here we consider the RWs on a mixed geometry consisting
of an integer lattice Z2 which is crossed by nl number of
lattices Z that all share a single common point—the origin
(see Fig. 1). The RWs initiate from origin x = 0 at time t0 = 0
and we ask if the statistics of the walks at time t obeys the
scaling form (1).

Let us list the main results of this paper:
(1) A competing behavior is observed in which at early

times the diffusion along the crossing lines is dominant and
becomes less effective in time until a crossover time tc, after
which the diffusion on the plane governs the statistics of the
RWs.

(2) The probability density to find the random walker
at the origin behaves like ρ(0, t ) ∝ t−α with 1/2 � α � 1
spanning the crossover behavior from early time t � tc with
α = 1/2 for the line geometry [d = 1 and dw = 2 in Eq. (1)]
to long-time limit t � tc with α = 1 for the plane geometry
[d = 2 and dw = 2 in Eq. (1)]. Therefore, the symmetric
RWs is always recurrent even for arbitrarily large number of
crossing lines (nl � 1).

(3) We find both analytically and numerically that the
crossover time tc grows with the number of crossing lines nl

with the approximate power-law relation tc ∝ n2
l .

(4) Our analytical prediction for the mean-squared dis-
placement of the RWs on a crossing line at long-time limit
t � tc ∝ n2

l , gives 〈z2
l 〉 ≈

√
2/π3nl

√
t log t , which is well sup-

ported by our results obtained from numerical simulations of
the model.
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FIG. 1. Illustration of the combined geometry in our model com-
posed of an infinite lattice plane and nl = 3 crossing lattice lines that
all share a single common point—the origin.

(5) The probability to find the RWs at a point rp ≡ (x, y)
on the plane or at a point zl on a line at time t is provided by
the generating function given in Eq. (9).

The rest of this paper is structured as follows. In Sec. II, we
will present a general formulation of our model for general
combined lattices and briefly discuss its long-time behavior.
In Sec. III we will study an interesting nontrivial example
of the model composed of a lattice plane and a chain which
share a single point. Section IV will discuss the asymmetric
RWs on the chain competing with a lattice plane and discuss
its asymptotic behavior. In Sec. V we will present the results
of our numerical simulations for a plane lattice crossed by
nl number of chains which show perfect agreement with
our analytical results. Finally, the last section concludes our
discussion.

II. GENERAL STATEMENT AND FORMULATION
OF THE PROBLEM

We consider two general lattices a and b, on which the ran-
dom walk problem is known. We pose the following question:
What would the statistics of the random walk motion be like
if we connect a and b in a way that they have a single point in
common which we call O.1 Consider a classical symmetric
random walk that starts from origin O. We would like to
determine the probability of finding the walker at a given
point (on a or b) at time step n. The most simple quantity
to determine for the combined geometry is the first passage
probability through the origin. Let us denote the probability
of arriving at O for the first time at the nth step by F0(n). For
this quantity the walker is required not to visit the point O
until the nth step. Therefore once it stepped into a or b right
after the first step, it should remain there and return to O at the
nth step. Depending on the geometry of the two lattices which
meet each other at O, the only shared point between the two
domains a and b, at the first step the walker would enter into
either a or b with probabilities pa and pb, respectively, where
pa + pb = 1. We now have

F0(n) = paF a
0 (n) + pbF b

0 (n), (2)

1This problem can well be interpreted as finding the quantum
mechanical Green’s function of a single particle moving on the
underlying lattices.

where F i
0 (n) with i = a, b denotes for the same quantity as

F0(n) for either isolated lattice. Using this simple relation, one
can immediately obtain the total return probability R to the
origin,

R =
∞∑

n=1

F0(n) = paRa + pbRb. (3)

If the random walk is recurrent on each of the two lattices
a and b, i.e., Ra = Rb = 1, then it will be recurrent on the
combined geometry, too, i.e., R = 1.

With the first passage probability in hand, one can find the
site x occupation probability Px(n) as well. But let us first
consider the case for the origin, i.e., x = 0, by letting P0(n)
denote the probability of finding the walker at origin at the
nth step. This can be expressed in terms of the first passage
probability through O with the following relation [3,15]:

P0(n) = δ0n +
n∑

i=1

F0(i)P0(n − i), (4)

in which the summation is assumed to be zero for n = 0.
Using a z transform, as a discrete-time equivalent of the
Laplace transform, on both sides of Eq. (4) by multiplying
both sides by zn and summing over n, one can find a simple
equation for the generating function

P0(z) = 1 + F0(z)P0(z), (5)

in which we have used P0(z) = ∑
n znP0(n) and similar rela-

tion for F0(z). Using Eqs. (5) and (2) gives

P0(z) = [1 − F0(z)]−1,

= [
1 − paF a

0 (z) − pbF b
0 (z)

]−1
, (6)

which together with the normalization condition pa + pb = 1
leads to the following result:

1

P0(z)
= pa

Pa
0 (z)

+ pb

Pb
0 (z)

, (7)

that is very akin to the reciprocal of the total equivalent
resistance of two parallel resistors.

Now let us calculate the site occupation probability Px(n)
at a given site x other than the origin. This quantity can
be determined in terms of the solutions in the individual
geometries. The probability to arrive at x at the nth step can be
considered as the sum of the probability of being at the origin
at any earlier time i < n and arriving to the destination without
visiting the origin on the remaining time n − i. The latter is
known as the “taboo” probability [3], denoted by Tx(n − i), in
which the walker avoids the origin. One can therefore find that
Px(n) can be cast into the following form:

Px(n) =
n−1∑
i=0

P0(i)Tx(n − i), (8)

for which the generating function is Px(z) = P0(z)Tx(z). Since
the walker has to avoid the origin, it should stay in one of the
either a or b geometries during the time interval (i, n]. This
means one can write

Px(z) = P0(z)

{
paT a

x (z) x ∈ a
pbT b

x (z) x ∈ b
. (9)
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For a translationally invariant lattice one can show that for
x �= 0, T a,b

x (z) = F a,b
x (z) = Pa,b

x (z)/Pa,b
0 (z).

Long-time asymptotics

In order to determine the probabilities as function of time
from their generating functions, one needs to do inverse z
transform which means to find the coefficients of Taylor series
about z = 0. It is often of more interest to look at the behavior
in the long-time limit which is encoded in z → 1− limit of
the corresponding generating function. For instance, if the
lattice a has the more rapidly decreasing probability then its
generating function is less divergent. As a result, Eq. (7) gives

P0(z)
z→1−
≈ Pa

0 (z)/pa, meaning that the long-time behavior is
governed by the lattice a. Then the Tauberian theorem [3,14]
can be used to obtain the asymptotic behavior in time domain.

III. 1d LATTICE AND SQUARE LATTICE

In this section, we are going to study an interesting non-
trivial example of the general formulation presented in the
previous section by taking a to be a square lattice in the x-y
plane and b to be nl number of one-dimensional (1d) lattices
which cross a at a single point—the origin O (Fig. 1). The RW
problem is exactly solvable on the line (l) and plane (p) with
known results [3,15]

Pl
0(z) = 1√

1 − z2

z→1−
≈ [2(1 − z)]−

1
2 , (10)

Pp
0 (z) = 2

π
K (z2)

z→1−
≈ 1

π
log[1/(1 − z)], (11)

where K (x) is the elliptic integral of first kind. Long-time
n → ∞ behavior of the occupation probability of the origin
is decreasing algebraically with time given by Pl

0 (2n) ≈ 1√
πn

and Pp
0 (2n) ≈ 1

πn on the chain and the square lattice, respec-
tively.

Due to symmetry, the motion of random walk on the lines
will be the same as if there was a single line. Therefore we can
replace them with a single line but with different probability
of hopping to line at the origin. That is, pl = nl/(nl + 2)
and pp = 2/(nl + 2). Using Eq. (7) for the combined ge-
ometry and noting that the second term in the right-hand
side is dominant in the limit z → 1− we have P0(2n) ≈ nl +2

2πn .
Since each lattice is translationally invariant as we mentioned
for x �= 0 we have T l,p

x (z) = Pl,p
x (z)/Pl,p

0 (z). Therefore it is
enough to know Pl,p

x (z) in order to calculate the probabilities
on other lattice points of combined lattice. For linear and
square lattices it is also analytically available. For example,
Pl

x(z) = (1 − z2)−1/2(1 − √
1 − z2)|x|z−|x| and Pp

x (z) can be
expressed in terms of hypergeometric functions [16]. Using
Eq. (9) we obtain the site probability for a given lattice point.
A plot of probability as a function of position at a given
time is shown in Fig. 2 for line and plane. To see how the
diffusion takes place on the line, for example, we can calculate
the moments of the probability distribution. Total probability
of finding the walker, i.e., the zeroth moment on the line,
Pl (n) = ∑

x∈l Px(n), is given by

Pl (z) = pl
2z

1 − z + √
1 − z2

P0(z). (12)

FIG. 2. Probability of finding the RWs at distance r from the
origin either on a line (circles) or on the plane (triangles) at time
t = 200 for nl = 1 obtained from numerical inverse z transform of
Eq. (9). Both probability functions get wider in time.

Figure 3 shows the plot of this moment as a function of time.
Using Eq. (12) we can see that the long-time behavior of the
total probability on the line is Pl (n) ≈ nl

π3/2
√

2n
log(8n). The

first moment vanishes because of symmetry under x → −x.
To see how fast the particle diffuses on the line, it is also worth
calculating second moment 〈z2

l 〉 = ∑
x∈l |x|2Px(n). We find

〈
z2

l

〉 = pl
z(1 + z)1/2

(1 − z)3/2
P0(z). (13)

The time dependence at large time is 〈z2
l 〉 ≈

√
2/π3nl√

n log n.
We now ask the following question: Could the asymptotic

behavior, which we obtained above, be changed in favor of
the line by increasing the number of lines nl ? The answer is
no, because changing pl does not change the z dependence of
P0(z) at the limit z → 1 and therefore the asymptotic behavior
will be dominated by the plane. However, the probability pl

will set a timescale before which the behavior is effectively
one dimensional and then crosses over to two dimensional.
The timescale tends to infinity as the probability pl tends to

FIG. 3. Total probability for the walker for being on the line
geometries as a function of time. The dashed line represents the
asymptotic approximation predicted by our analytical result.
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1. We define the cross-over time t∗ = −1/ ln z∗ ≈ 1/(1 − z∗),
where the z∗ is the value at which two terms in the brackets in
Eq. (7) become of the same order, pp

Pp
0 (z∗ ) = pl

Pl
0 (z∗ )

. For small pp

this condition is fulfilled at a value of z∗ very close to 1. At this
limit we use the approximate forms of these probabilities (10)
and (11) which gives 1

π

√
2(1 − z∗) ln[1/(1 − z∗)] = pp/pl .

This is a transcendental equation for z∗ and thus the solu-
tion is not algebraic; however, it can be easily shown that
1 − z∗ approaches zero faster than (pp/pl )2 and slower than
(pp/pl )(2+δ) for any positive δ.

IV. 1d BIASED WALK AND SQUARE LATTICE

A simple generalization of previous case which turns out
to be important is to consider asymmetric walk on the line.
We denote different jump probabilities to the right by p and to
the left by q = 1 − p. This also can be a representation of the
walk on the Bethe lattice [17–19]. We should only replace the
generating function of site occupation probabilities of the line
with

Pl
x (z) = (1 − 4pqz2)−1/2(1 −

√
1 − 4pqz2)|x|

×
{

(2qz)−|x| x > 0
(2pz)−|x| x < 0

. (14)

It can be shown that the biased walk on the chain is not
recurrent. More quantitatively Rl = 1 − |2p − 1| which is less
than 1 if p �= 1

2 . As a result, the RW on the combined geometry
will no longer be recurrent as we have R = 1 − 1

3 |2p − 1|.
In contrast to the previous case, the occupation of the origin
is dominated by the behavior of line. We can see that Pl

0 (z)
is convergent in the limit z → 1−. As a result, Eq. (7) gives
P0(z) ≈ 1

3 Pl
0(z). Now it can easily be shown that P0(2n) ≈

1
3 (πn)−1/2(4pq)n. It is also interesting to note that the first
moment, i.e., the probability of finding the walker on the line
is approaching one which means that even an infinitesimal
amount of drift on the line will pull the walker into the
line.

V. NUMERICAL SIMULATIONS

In this section we present the results of our extensive
numerical simulations of the model discussed in the previ-
ous sections and compare them with our analytical predic-
tions. We consider systems of combined geometries com-
posed of a lattice plane and various number nl of lattice
lines nl = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300. The
total simulation time for the cases nl = 1, 2, 3, 4, 5, 10 and
20, 30, 40, 50 and 100, 200, 300 are taken to be 105, 106, 107,
respectively, to be able to capture their corresponding asymp-
totic behavior. All measured quantities are averaged over more
than 5 × 108 independent samples for each case. We assume
that the random walker starts moving from origin at t0 = 0 in
all computations.

The first natural and standard quantity of interest is the
mean-squared displacement (MSD) of the RWs on the com-
bined geometries. In order to see the individual contribution of
the lattice plane and the lines, we have computed MSD for the
plane (i.e., 〈r2

p〉) and the lines (i.e., 〈z2
l 〉) at time t separately.

Figures 4 and 5 show the corresponding dynamical evolution

FIG. 4. Mean-squared displacement of the RWs over time t on
the plane, i.e., 〈r2

p〉/t , as function of t in logarithmic scale for
different number of crossing lines nl = 1 to 300 from top to bottom.
All data converge to the diffusion constant Dp = 1 on the plane at
long-time limit.

of MSD for various number of crossing lines. As shown in
Fig. 4, the walker spends more time in the line geometries for
nl � 1 at the beginning times. It happens because at small
t , the walker visits the origin so often and there is a higher
probability pl for the walker to go to one of the line geometries
[pl = nl/(2 + nl )]. This leads to the decrease in MSD on
the plane for nl � 1. At very large times, instead, the plane
geometry will become dominant and the asymptotic behavior
of the walker converges to a normal diffusion on a plane
with the diffusion constant Dp = 1. This explains why all
plots for different nl converge to the same asymptotic value in
Fig. 4.

Figure 5 also presents MSD on a line for various nl . The
dashed lines show our analytical predictions for each nl for
the MSD on a line at the very long-time limit which is nl de-
pendent and shows perfect agreement between our numerical

FIG. 5. Mean-squared displacement of the RWs on a crossing
line, i.e., 〈z2

l 〉, as function of t in logarithmic scale for different
number of crossing lines nl = 1 to 300 from bottom to top. The
dashed lines show the comparison with our analytical prediction
of the behavior at long-time limit, i.e., 〈z2

l 〉 ≈ √
2/π 3nl

√
t log t for

t � tc ∝ n2
l —see Fig. 6.
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FIG. 6. The probability to find the random walker at the origin
x = 0 at time t , i.e., P(x = 0, t ), as function of t in logarithmic scale
for different number of crossing lines nl = 1 to 300 from left to right.
The open circles mark the crossover time tc after which the behavior
is governed by the plane geometry with known scaling relation ∝t−1

shown by the solid lines fitted to our data and followed by the dashed
lines before tc when the behavior is still affected by the crossing line
geometries. Inset: The crossover time tc as a function of the number
of crossing lines nl . The solid line is the best power-law fit to our
data tc ∝ n2

l in perfect agreement with our analytical prediction—see
the text.

simulations and analytical approximations. Notice that, unlike
the symmetric diffusion on a single line geometry (which
is known to behave as 〈z2

l 〉 ≈ t), the asymptotic behavior of
the walks on the lines in our model does not follow the free
diffusion and is governed by the square root of time contain-
ing a logarithmic correction, i.e., 〈z2

l 〉 ≈
√

2/π3nl
√

t log t for
t � 1.

To better quantify the competition between the plane ge-
ometry and the crossing lines, we have computed the proba-
bility of finding the random walker at the origin x = 0 at time
t , i.e., P(x = 0, t ), as function of t for various nl . As shown
in Fig. 6, the behavior of P(x = 0, t ) shows two primary and
asymptotic regimes roughly for t < tc and t > tc, respectively,
for a nl -dependent crossover time tc. We find that at early
times t � tc the behavior is governed by ∝t−1/2 for the
line geometry and crosses over to the long-time limit t � tc
with ∝t−1 for the plane geometry. For every nl , we define
tc as the (approximately) first time after which the scaling
behavior of P(x = 0, t ) is given by ∝t−1 (marked by the open
circle symbols in the Fig. 6). The inset of Fig. 6 shows the
scaling relation between the crossing time and the number of
crossing lines as tc ∝ n2

l , which is in close agreement with our
analytical approximations discussed at the end of Sec. III.

VI. CONCLUSIONS

We have studied analytically the random walks problem
on a combined lattice geometry composed of two general-
ized lattices with a single common point. After a general
formulation of the problem, we illustrated the consequences in
some nontrivial interesting examples by considering a lattice
plane crossed by nl number of lattice lines at the origin. We
have found that the probability of returning to the starting
point at a long-time limit is governed by the plane. The total
probability of being in the line geometry increases first at the
beginning time and then starts to decrease at larger times.
Mean-squared displacement asymptotically converges to the
normal diffusion on the plane but it behaves like

√
t ln t on the

line geometries. We have shown that the crossover time from
the primary to the asymptotic regimes scales approximately
as tc ∝ n2

l . Rather simple corollary is that the walk will be
recurrent if it is recurrent on both lattices and will be transient
if it is transient on at least one of them. We also examined the
stability of the asymptotic behavior of the walk by introducing
a perturbation to the model with a drift term along the line ge-
ometry (for nl = 1). We have found that even an infinitesimal
amount of drift can totally change the asymptotic behavior of
the walk in a way that the line geometry will dominate the
long-time behavior of the perturbed model.

Our problem can also be viewed as a normal diffusion on a
lattice plane with a single defect (or trapping) site of variable
waiting time. In this context, there has been studied [20] a
random reset problem on a d-dimensional lattice containing
one trapping site with an exponential waiting time at the defect
which exhibits a localization-delocalization phase transition.
In our case, however, the waiting time is a power law given by
the diffusion along the crossing lines tuned by their number.
Theory of diffusion in disordered media has a wide range
of applications. Among the most important practical applica-
tions related to our present study are the kinetics of trapping
processes which include various dynamical processes such
as polymers in solutions [21], electron-hole recombination
in random surfaces, and exciton trapping and annihilation
[22,23]. The results presented here could also motivate appli-
cations in random search processes and diffusions on geome-
tries with junctions such as heat conduction process in metals.
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